首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
James CL  Viola RE 《Biochemistry》2002,41(11):3726-3731
The direct channeling of an intermediate between enzymes that catalyze consecutive reactions in a pathway offers the possibility of an efficient, exclusive, and protected means of metabolite delivery. Aspartokinase-homoserine dehydrogenase I (AK-HDH I) from Escherichia coli is an unusual bifunctional enzyme in that it does not catalyze consecutive reactions. The potential channeling of the intermediate beta-aspartyl phosphate between the aspartokinase of this bifunctional enzyme and aspartate semialdehyde dehydrogenase (ASADH), the enzyme that catalyzes the intervening reaction, has been examined. The introduction of increasing levels of inactivated ASADH has been shown to compete against enzyme-enzyme interactions and direct intermediate channeling, leading to a decrease in the overall reaction flux through these consecutive enzymes. These same results are obtained whether these experiments are conducted with aspartokinase III, a naturally occurring monofunctional isozyme, with an artificially produced monofunctional aspartokinase I, or with a fusion construct of AK I-ASADH. These results provide definitive evidence for the channeling of beta-aspartyl phosphate between aspartokinase and aspartate semialdehyde dehydrogenase in E. coli and suggest that ASADH may provide a bridge to channel the intermediates between the non-consecutive reactions of AK-HDH I.  相似文献   

2.
We report here a comparison between immunochemical properties of the bifunctional enzyme aspartokinase II-homoserine dehydrogenase II of E.coli K12 and of its two isolated proteolytic fragments. Both fragments, one inactive and one endowed with homoserine dehydrogenase activity, react with antibodies raised against the native enzyme. Some of the antibodies elicited against the dehydrogenase fragment can recognize regions of this fragment which are not exposed in the entire enzyme.The immunochemical results are used to discuss a simple model in which this bifunctional enzyme is folded up in two domains. The organization of aspartokinase II-homoserine dehydrogenase II is compared to that of another bifunctional enzyme aspartokinase I-homoserine dehydrogenase I with which it shares some sequence homology.  相似文献   

3.
The dimeric bifunctional enzyme aspartokinase II-homoserine dehydrogenase II (Mr = 2 X 88,000) of Escherichia coli K12 can be cleaved into two nonoverlapping fragments by limited proteolysis with subtilisin. These two fragments can be separated under nondenaturing conditions as dimeric species, which indicates that each fragment has retained some of the association areas involved in the conformation of the native protein. The smaller fragment (Mr = 2 X 24,000) is devoid of aspartokinase and homoserine dehydrogenase activity. The larger fragment (Mr = 2 X 37,000) is endowed with full homoserine dehydrogenase activity. These results show that the polypeptide chains of the native enzyme are organized in two different domains, that both domains participate in building up the native dimeric structure, and that one of these domains only is responsible for homoserine dehydrogenase activity. A model of aspartokinase II-homoserine dehydrogenase II is proposed, which accounts for the present results.  相似文献   

4.
In our effort to elucidate the systems biology of the model organism, Escherichia coli, we have developed a mathematical model that simulates the allosteric regulation for threonine biosynthesis pathway starting from aspartate. To achieve this goal, we used kMech, a Cellerator language extension that describes enzyme mechanisms for the mathematical modeling of metabolic pathways. These mechanisms are converted by Cellerator into ordinary differential equations (ODEs) solvable by Mathematica. In this paper, we describe a more flexible model in Cellerator, which generalizes the Monod, Wyman, Changeux (MWC) model for enzyme allosteric regulation to allow for multiple substrate, activator and inhibitor binding sites. Furthermore, we have developed a model that describes the behavior of the bifunctional allosteric enzyme aspartate kinase I-homoserine dehydrogenase I (AKI-HDHI). This model predicts the partition of enzyme activities in the steady state which paves the way for a more generalized prediction of the behavior of bifunctional enzymes.  相似文献   

5.
Aspartokinase III (AKIII) from Escherichia coli catalyzes an initial commitment step of the aspartate pathway, giving biosynthesis of certain amino acids including lysine. We report crystal structures of AKIII in the inactive T-state with bound feedback allosteric inhibitor lysine and in the R-state with aspartate and ADP. The structures reveal an unusual configuration for the regulatory ACT domains, in which ACT2 is inserted into ACT1 rather than the expected tandem repeat. Comparison of R- and T-state AKIII indicates that binding of lysine to the regulatory ACT1 domain in R-state AKIII instigates a series of changes that release a "latch", the beta15-alphaK loop, from the catalytic domain, which in turn undergoes large rotational rearrangements, promoting tetramer formation and completion of the transition to the T-state. Lysine-induced allosteric transition in AKIII involves both destabilizing the R-state and stabilizing the T-state tetramer. Rearrangement of the catalytic domain blocks the ATP-binding site, which is therefore the structural basis for allosteric inhibition of AKIII by lysine.  相似文献   

6.
The enzymes aspartokinase and homoserine dehydrogenase catalyze the reaction at key branching points in the aspartate pathway of amino acid biosynthesis. Enterococcus faecium has been found to contain two distinct aspartokinases and a single homoserine dehydrogenase. Aspartokinase isozymes eluted on gel filtration chromatography at molecular weights greater than 250,000 and about 125,000. The molecular weight of homoserine dehydrogenase was determined to be 220,000. One aspartokinase isozyme was slightly inhibited by meso-diaminopimelic acid. Another aspartokinase was repressed and inhibited by lysine. Although the level of diaminopimelate-sensitive (DAPs) enzyme was not much affected by growth conditions, the activity of lysine-sensitive (Lyss) aspartokinase disappeared rapidly during the stationary phase and was depressed in rich media. The synthesis of homoserine dehydrogenase was controlled by threonine and methionine. Threonine also inhibited the specific activity of this enzyme. The regulatory properties of aspartokinase isozymes and homoserine dehydrogenase from E. faecium are discussed and compared with those from Bacillus subtilis.  相似文献   

7.
Metabolism of aspartate in Mycobacterium smegmatis   总被引:2,自引:0,他引:2  
Mycobacterium smegmatis grows best on L-asparagine as a sole nitrogen source; this was confirmed. [14C]Aspartate was taken up rapidly (46 nmol.mg dry cells-1.h-1 from 1 mM L-asparagine) and metabolised to CO2 as well as to amino acids synthesised through the aspartate pathway. Proportionately more radioactivity appeared in the amino acids in bacteria grown in medium containing low nitrogen. Activities of aspartokinase and homoserine dehydrogenase, the initial enzymes of the aspartate pathway, were carried by separate proteins. Aspartokinase was purified as three isoenzymes and represented up to 8% of the soluble protein of M. smegmatis. All three isoenzymes contained molecular mass subunits of 50 kDa and 11 kDa which showed no activity individually; full enzyme activity was recovered on pooling the subunits. Km values for aspartate were: aspartokinases I and III, 2.4 mM; aspartokinase II, 6.4 mM. Aspartokinase I was inhibited by threonine and homoserine and aspartokinase III by lysine, but aspartokinase II was not inhibited by any amino acids. Aspartokinase activity was repressed by methionine and lysine with a small residue of activity attributable to unrepressed aspartokinase I. Homoserine dehydrogenase activity was 96% inhibited by 2 mM threonine; isoleucine, cysteine and valine had lesser effects and in combination gave additive inhibition. Homoserine dehydrogenase was repressed by threonine and leucine. Only amino acids synthesised through the aspartate pathway were tested for inhibition and repression. Of these, only one, meso-diaminopimilate, had no discernable effect on either enzyme activity.  相似文献   

8.
The Arabidopsis genome contains two genes predicted to code for bifunctional aspartate kinase-homoserine dehydrogenase enzymes (isoforms I and II). These two activities catalyze the first and the third steps toward the synthesis of the essential amino acids threonine, isoleucine, and methionine. We first characterized the kinetic and regulatory properties of the recombinant enzymes, showing that they mainly differ with respect to the inhibition of the homoserine dehydrogenase activity by threonine. A systematic search for other allosteric effectors allowed us to identify an additional inhibitor (leucine) and 5 activators (alanine, cysteine, isoleucine, serine, and valine) equally efficient on aspartate kinase I activity (4-fold activation). The six effectors of aspartate kinase I were all activators of aspartate kinase II activity (13-fold activation) and displayed a similar specificity for the enzyme. No synergy between different effectors could be observed. The activation, which resulted from a decrease in the Km values for the substrates, was detected using low substrates concentrations. Amino acid quantification revealed that alanine and threonine were much more abundant than the other effectors in Arabidopsis leaf chloroplasts. In vitro kinetics in the presence of physiological concentrations of the seven allosteric effectors confirmed that aspartate kinase I and II activities were highly sensitive to changes in alanine and threonine concentrations. Thus, physiological context rather than enzyme structure sets the specificity of the allosteric control. Stimulation by alanine may play the role of a feed forward activation of the aspartate-derived amino acid pathway in plant.  相似文献   

9.
Aspartokinase (EC 2.7.2.4) and homoserine dehydrogenase (EC 1.1.1.3) catalyze steps in the pathway for the synthesis of lysine, threonine, and methionine from aspartate. Homoserine dehydrogenase was purified from carrot (Daucus carota L.) cell cultures and portions of it were subjected to amino acid sequencing. Oligonucleotides deduced from the amino acid sequences were used as primers in a polymerase chain reaction to amplify a DNA fragment using DNA derived from carrot cell culture mRNA as template. The amplification product was radiolabelled and used as a probe to identify cDNA clones from libraries derived from carrot cell culture and root RNA. Two overlapping clones were isolated. Together the cDNA clones delineate a 3089 bp long sequence encompassing an open reading frame encoding 921 amino acids, including the mature protein and a long chloroplast transit peptide. The deduced amino acid sequence has high homology with the Escherichia coli proteins aspartokinase I-homoserine dehydrogenase I and aspartokinase II-homoserine dehydrogenase II. Like the E. coli genes the isolated carrot cDNA appears to encode a bifunctional aspartokinase-homoserine dehydrogenase enzyme.Abbreviations AK aspartokinase - HSDH homoserine dehydrogenase - PCR polymerase chain reaction - SDS sodium dodecyl sulfate The mention of vendor or product does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over vendors of similar products not mentioned.  相似文献   

10.
ABSTRACT

The orientation of the three domains in the bifunctional aspartate kinase-homoserine dehydrogenase (AK-HseDH) homologue found in Thermotoga maritima totally differs from those observed in previously known AK-HseDHs; the domains line up in the order HseDH, AK, and regulatory domain. In the present study, the enzyme produced in Escherichia coli was characterized. The enzyme exhibited substantial activities of both AK and HseDH. L-Threonine inhibits AK activity in a cooperative manner, similar to that of Arabidopsis thaliana AK-HseDH. However, the concentration required to inhibit the activity was much lower (K0.5 = 37 μM) than that needed to inhibit the A. thaliana enzyme (K0.5 = 500 μM). In contrast to A. thaliana AK-HseDH, Hse oxidation of the T. maritima enzyme was almost impervious to inhibition by L-threonine. Amino acid sequence comparison indicates that the distinctive sequence of the regulatory domain in T. maritima AK-HseDH is likely responsible for the unique sensitivity to L-threonine.

Abbreviations: AK: aspartate kinase; HseDH: homoserine dehydrogenase; AK–HseDH: bifunctional aspartate kinase–homoserine dehydrogenase; AsaDH: aspartate–β–semialdehyde dehydrogenase; ACT: aspartate kinases (A), chorismate mutases (C), and prephenate dehydrogenases (TyrA, T).  相似文献   

11.
Lysine-ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH) is a bifunctional enzyme catalyzing the first two steps of lysine catabolism in animals and plants. To elucidate the biochemical signification of the linkage between the two enzymes of LKR/SDH, namely lysine ketoglutarate and saccharopine dehydrogenase, we employed various truncated and mutated Arabidopsis LKR/SDH polypeptides expressed in yeast. Activity analyses of the different recombinant polypeptides under conditions of varying NaCl levels implied that LKR, but not SDH activity, is regulated by functional interaction between the LKR and SDH domains, which is mediated by the structural conformation of the linker region connecting them. Because LKR activity of plant LKR/SDH enzymes is also regulated by casein kinase 2 phosphorylation, we searched for such potential regulatory phosphorylation sites using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and site-directed mutagenesis. This analysis identified Ser-458 as a candidate for this function. We also tested a hypothesis suggesting that an EF-hand-like sequence at the C-terminal part of the LKR domain functions in a calcium-dependent assembly of LKR/SDH into a homodimer. We found that this region is essential for LKR activity but that it does not control a calcium-dependent assembly of LKR/SDH. The relevance of our results to the in vivo function of LKR/SDH in lysine catabolism in plants is discussed. In addition, because the linker region between LKR and SDH exists only in plants but not in animal LKR/SDH enzymes, our results suggest that the regulatory properties of LKR/SDH and, hence, the regulation of lysine catabolism are different between plants and animals.  相似文献   

12.
J K Wright  M Takahashi 《Biochemistry》1977,16(8):1541-1548
The aspartokinase activity of the aspartokinase-homoserine dehydrogenase complex of Escherichia coli was affinity labeled with substrates ATP, aspartate, and feedback inhibitor threonine. Exchange-inert ternary adducts of Co(III)-aspartokinase and either ATP, aspartate or threonine were formed by oxidation of corresponding Co(II) ternary complexes with H2O2. The ternary enzyme-Co(III)-threonine adduct (I) had 3.8 threonine binding sites per tetramer, one-half that of the native enzyme. The binding of threonine to I was still cooperative as determined by equilibrium dialysis (nH = 2.2) or by studying inhibition of residual dehydrogenase activity (nH = 2.7). Threonine still protected the SH groups of I against 5,5'-dithiobis(2-nitrobenzoate) (DTNB) reaction but the number of SH groups reacting with thiol reagents (DTNB) was reduced by 1-2 per subunit in the absence of threonine. This suggests either that Co(III) is bound to the enzyme via sulfhydryl groups or that 1-2SH groups are buried or rendered inaccessible in I. The binding of threonine to sites not blocked by the affinity labeling produced changes in the circular dichroism of the complex comparable to changes produced by threonine binding to native enzyme and also protected against proteolytic digestion. The major conformational changes produced by threonine are thus ascribable to binding at this one class of regulatory sites. The interactions of kinase substrates with various aspartokinase-Co(III) complexes containing ATP, aspartate, or threonine and a threonine-insensitive homoserine dehydrogenase produced by mild proteolysis were studied. The inhibition of homoserine dehydrogenase by kinase substrates is not due to binding of these inhibitors at the kinase active site but was shown to be due to binding to sites within the dehydrogenase domain of the enzyme. L-alpha-Aminobutyrate, a presumed threonine analogue, also inhibits the dehydrogenase by binding at the same or similar sites in the dehydrogenase domain and not at threonine regulatory site.  相似文献   

13.
Regulation of enzymes of lysine biosynthesis in Corynebacterium glutamicum   总被引:9,自引:0,他引:9  
The regulation of the six enzymes responsible for the conversion of aspartate to lysine, together with homoserine dehydrogenase, was studied in Corynebacterium glutamicum. In addition to aspartate kinase activity, the synthesis of diaminopimelate decarboxylase was also found to be regulated. The specific activity of this enzyme was reduced to one-third in extracts of cells grown in the presence of lysine. Aspartate-semialdehyde dehydrogenase, dihydrodipicolinate synthase, dihydrodipicolinate reductase, and diaminopimelate dehydrogenase were neither influenced in their specific activity, nor inhibited, by any of the aspartate family of amino acids. Homoserine dehydrogenase was repressed by methionine (to 15% of its original activity) and inhibited by threonine (4% remaining activity). Inclusion of leucine in the growth medium resulted in a twofold increase of homoserine dehydrogenase specific activity. The flow of aspartate semialdehyde to either lysine or homoserine was influenced by the activity of homoserine dehydrogenase or dihydrodipicolinate synthase. Thus, the twofold increase in homoserine dehydrogenase activity resulted in a decrease in lysine formation accompanied by the formation of isoleucine. In contrast, repression of homoserine dehydrogenase resulted in increased lysine formation. A similar increase of the flow of aspartate semialdehyde to lysine was found in strains with increased dihydrodipicolinate synthase activity, constructed by introducing the dapA gene of Escherichia coli (coding for the synthase) into C. glutamicum.  相似文献   

14.
The human bifunctional dehydrogenase-cyclohydrolase domain catalyzes the interconversion of 5,10-methylene-H(4)folate and 10-formyl-H(4)folate. Although previous structure and mutagenesis studies indicated the importance of lysine 56 in cyclohydrolase catalysis, the role of several surrounding residues had not been explored. In addition to further defining the role of lysine 56, the work presented in this study explores the functions of glutamine 100 and aspartate 125 through the use of site-directed mutagenesis and chemical modification. Mutants at position 100 are inactive with respect to cyclohydrolase activity while preserving significant dehydrogenase levels. We succeeded in producing a K56Q/Q100K double mutant, which has no cyclohydrolase yet retains more than two-thirds of wild type dehydrogenase activity. Neither activity is detectable in aspartate 125 mutants with the exception of D125E. The results indicate that the function of glutamine 100 is to activate lysine 56 for cyclohydrolase catalysis and that aspartate 125 is involved in the binding of the H(4)folate substrates. In highlighting the importance of these residues, catalytic mechanisms are proposed for both activities as well as an explanation for the differences in channeling efficiency in the forward and reverse directions.  相似文献   

15.
The activity of three enzymes, aspartokinase, homoserine dehydrogenase, and homoserine kinase, has been studied in the industrial strainSaccharomyces cerevisiae IFI256 and in the mutants derived from it that are able to overproduce methionine and/or threonine. Most of the mutants showed alteration of the kinetic properties of the enzymes aspartokinase, which was less inhibited by threonine and increased its affinity for aspartate, and homoserine dehydrogenase and homoserine kinase, which both lost affinity for homoserine. Furthermore, they showed in vitro specific activities for aspartokinase and homoserine kinase that were higher than those of the wild type, resulting in accumulation of aspartate, homoserine, threonine, and/or methionine/S-adenosyl-methionine (Ado-Met). Together with an increase in the specific activity of both aspartokinase and homoserine kinase, there was a considerable and parallel increase in methionine and threonine concentration in the mutants. Those which produced the maximal concentration of these amino acids underwent minimal aspartokinase inhibition by threonine. This supports previous data that identify aspartokinase as the main agent in the regulation of the biosynthetic pathway of these amino acids. The homoserine kinase in the mutants showed inhibition by methionine together with a lack or a reduction of the inhibition by threonine that the wild type undergoes, which finding suggests an important role for this enzyme in methionine and threonine regulation. Finally, homoserine dehydrogenase displayed very similar specific activity in the mutants and the wild type in spite of the changes observed in amino acid concentrations; this points to a minor role for this enzyme in amino acid regulation.  相似文献   

16.
M Veron  Y Guillou  G N Cohen 《FEBS letters》1985,181(2):381-384
A proteolytic fragment (Mr approximately 25 000) carrying only the aspartokinase activity has been purified by chromatofocusing after limited proteolysis of aspartokinase I-homoserine dehydrogenase I from E.coli K12. The NH2-terminal sequence shows that it corresponds to the amino terminal peptide of the native enzyme. The results confirm a previous hypothesis about the organization of native aspartokinase I-homoserine dehydrogenase I.  相似文献   

17.
The role of conformational changes in the allosteric mechanism of aspartate transcarbamoylase from Escherichia coli was studied by reacting the isolated catalytic subunit with the bifunctional reagent tartryl diazide. Two derivatives differing moderately in substrate affinity were obtained depending on whether the reaction was conducted in the presence or absence of the substrate analogue succinate and carbamoyl phosphate. The modification was not accompanied by aggregation or dissociation. The modified catalytic subunits retained the ability to reassociate with unmodified regulatory subunits and produced hybrids similar in size to the native enzyme. These hybrids were appreciably sensitive to the allosteric effectors ATP and CTP but unlike native enzyme showed no cooperativity in substrate binding. The Michaelis constants of these hybrids for aspartate were intermediate between that of the isolated catalytic subunit and that of the relaxed state. Activation by ATP was caused by a reduction in Km to the value characteristic of the relaxed state whereas CTP inhibited by lowering the Vmax. The properties of the hybrids are strikingly similar to the modified enzyme obtained by Kerbiriou and Hervé from cells grown in the presence of 2-thiouracil. However, the crucial modifications are found in the regulatory subunits of the enzyme studied by these authors whereas they are located in the catalytic subunits of the hybrids reported here. Our results suggest that interactions between the catalytic and regulatory subunits have considerable effects on the state of the substrate binding sites in the native enzyme.  相似文献   

18.
Two aspartokinase (ATP:L-aspartate 4-phosphotrasferase, EC 2.7.2.4) enzyme activities have been identified and partially purified from Bacillus brevis. Aspartokinase I is subject to both inhibition and repression by lysine, and has a molecular weight in the region of 110 000. Aspartokinase II is a lysine-stabilised enzyme, inhibited multivalently by lysine plus theonine and has a molecular weight in the region of 95 000. This attern of aspartokinase activity has not been described previously and is unusual in that one end product (lysine) regulates two isoenzymes catalysing the first reaction of a branced biosynthetic pathway. In the absence of lysine, aspartokinase II changes to a more unstable non-inhibitable enzyme. Both enzymes are stabilised by sulphydryl reducing agents and have similar affinities for ATP, aspartate and lysine. However, there is no evidence for a view that they are products of a common gene. Problem concerned with the regulation of aspartokinase activities in Bacillus species are discussed.  相似文献   

19.
Asp kinase catalyzes the first step of the Asp-derived essential amino acid pathway in plants and microorganisms. Depending on the source organism, this enzyme contains up to four regulatory ACT domains and exhibits several isoforms under the control of a great variety of allosteric effectors. We report here the dimeric structure of a Lys and S-adenosylmethionine-sensitive Asp kinase isoform from Arabidopsis thaliana in complex with its two inhibitors. This work reveals the structure of an Asp kinase and an enzyme containing two ACT domains cocrystallized with its effectors. Only one ACT domain (ACT1) is implicated in effector binding. A loop involved in the binding of Lys and S-adenosylmethionine provides an explanation for the synergistic inhibition by these effectors. The presence of S-adenosylmethionine in the regulatory domain indicates that ACT domains are also able to bind nucleotides. The organization of ACT domains in the present structure is different from that observed in Thr deaminase and in the regulatory subunit of acetohydroxyacid synthase III.  相似文献   

20.
3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS) catalyzes the first step in the biosynthesis of a number of aromatic metabolites. Likely because this reaction is situated at a pivotal biosynthetic gateway, several DAHPS classes distinguished by distinct mechanisms of allosteric regulation have independently evolved. One class of DAHPSs contains a regulatory domain with sequence homology to chorismate mutase-an enzyme further downstream of DAHPS that catalyzes the first committed step in tyrosine/phenylalanine biosynthesis-and is inhibited by chorismate mutase substrate (chorismate) and product (prephenate). Described in this work, structures of the Listeria monocytogenes chorismate/prephenate regulated DAHPS in complex with Mn(2+) and Mn(2+) + phosphoenolpyruvate reveal an unusual quaternary architecture: DAHPS domains assemble as a tetramer, from either side of which chorismate mutase-like (CML) regulatory domains asymmetrically emerge to form a pair of dimers. This domain organization suggests that chorismate/prephenate binding promotes a stable interaction between the discrete regulatory and catalytic domains and supports a mechanism of allosteric inhibition similar to tyrosine/phenylalanine control of a related DAHPS class. We argue that the structural similarity of chorismate mutase enzyme and CML regulatory domain provides a unique opportunity for the design of a multitarget antibacterial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号