首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Pyridoxal phosphate-dependent DOPA decarboxylase has been purified from bovine striatum to a specific activity of 1.6 U/mg protein. After ammonium sulfate precipitation (30–60%) it was purified by DEAE-Sephacel, Sephacryl S-200, and TSK Phenyl 5 PW chromatography. The purified enzyme showed a single silver staining band with polyacrylamide gel electrophoresis under both denaturing and non-denaturing conditions. The bovine striatal DOPA decarboxylase is a dimer (subunit Mr = 56000 by SDS-PAGE) with a native Mr of 106000 as judged by chromatography on Sephacryl S-200 and by sedimentation analysis. Similar to the DOPA decarboxylase purified from non-CNS tissues, the bovine striatal enzyme requires free sulfhydryl groups for activity, is strongly inhibited by heavy metal ions, and can decarboxylate 5-hydroxytryptophan as well. It should be noted, however, that the final enzyme preparation is enriched in DOPA decarboxylase activity. The distribution of the DOPA decarboxylase and 5-HTP decarboxylase activities also varies among several bovine brain regions. In addition, heat treatment of the enzyme preparation inactivated the two decarboxylation activities at different rates.Abbreviations AADC Aromatic L-amino Acid Decarboxylase - CNS Central Nervous System - DOPA 3,4-dihydroxyphenylalanine - DTT Dithiothreitol, 5-HTP - 5-hydroxytryptophan - Mr relative molecular weight - PLP pyridoxal 5-phosphate - SDS-PAGE Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis Part of this paper was presented at the 1987 Annual Pharmacology and Toxicology Conferences held at University of North Dakota School of Medicine, North Dakota, USA Res Commun Psychol Psychiat Behav 12: 227–228, 1987 (Abstr).  相似文献   

2.
M Corgier  H Pacheco 《Biochimie》1975,57(9):1005-1017
L-aromatic aminoacid decarboxylase has been purified more than thousand times from homogenates of rat brain, in several steps : centrifugation, DEAE-cellulose, CM cellulose, hydroxylapatite, DEAE sephadex. Its properties have been studied, most of them on an intermediate fraction of the purification, because of the instability of the purified enzyme in spite of the addition of different stabilizing agents : the enzyme decarboxylates 5-hydroxytryptophan (5 HTP) and DOPA in a ratio constant throughout the purification but does not decarboxylate tryptophan, tyrosine, histidine at a measurable rate. Optimum pH, Km, Vm, have been measured with 5 HTP and DOPA as substrates. The enzyme has a molecular weight of 115.000, an apparent isoelectric point of 6,4-6,5. It is inhibited by serotonin, dopamine, some cations : Cu++, Fe++, Ni++ by N-ethylmaleimide, sodium dodecylsulfate. Some pyridoxal-5 phosphate (PLP) remains strongly bound to the enzyme. For relatively weak concentrations of substrate, the enzyme is inhibited by an excess of PLP ; for weak concentrations of PLP, the enzyme in inhibited by an excess of substrate, particularly of DOPA. We also observe a spontaneous decarboxylation of the substrates that reaches a plateau and is enhanced by high concentrations of PLP, by serotonin, dopamine, Cu++ and reduced by mercaptoethanol and the presence of crude or boiled homogenates. Several possible explanations of the spontaneous decarboxylation and of the enzymic inhibitions by an excess of PLP and by the substrates are given.  相似文献   

3.
Abstract— Optimal assay conditions for decarboxylation of 3,4-dihydroxy- l -phenylalanine (DOPA) and 5-hydroxy- l -tryptophan (5-HTP) were determined in homogenates of rat brain by use of a sensitive, precise microradiometric technique. The two activities exhibited widely different optima for pH, temperature and substrate concentrations. The activity of 5-HTP decarboxylase was stimulated 2-fold by added pyridoxal-5-phosphate and was relatively resistant to antagonists of pyridoxal-P. By contrast, the activity of DOPA decarboxylase was stimulated 20-fold by added coenzyme and could be completely inhibited by carboxyl trapping agents. DOPA decarboxylase activity in subcellular fractions of brain was associated predominately with the soluble fractions and its distribution in the various fractions closely paralleled that of lactic acid dehydrogenase. 5-HTP decarboxylase activity in brain was distributed almost equally between soluble and particulate fractions, and its distribution within the particulate fractions differed from that of succinic acid dehydrogenase. The two decarboxylases in brain exhibited a 7-fold divergence in relative specific activity when their respective distributions in subcellular fractions were compared. Similarly, the regional distributions of the two decarboxylases in rat brain did not parallel one another; e.g. there was a 4-fold difference between the ratio of the two activities in cerebellum and that found in the corpus striatum.  相似文献   

4.
—DOPA and 5-hydroxytryptophan (5-HTP) are generally supposed to be decarboxylated in mammalian tissues by a single enzyme, the two activities being present in constant ratio through a variety of purification procedures. It has now been shown that the ratio of activity of the liver enzyme towards the two substrates can be altered by mild treatments, such as might be used in solubilization of brain preparations. DOPA decarboxylase activity was preferentially inactivated by sodium dodecyl sulphate treatment, and 5-HTP decarboxylation by urea. Previous reports that the two substrates show different pH optima but are mutually competitive, have been confirmed. The Km of the enzyme towards 5-HTP was lowest at pH 7.8 (the optimum pH for decarboxylation of this amino acid), but the variation with pH of the Km towards DOPA was unrelated to the pH optimum for decarboxylation. There appeared to be no relation between the probable ionization state of the substrates and the pH dependence of the enzyme. Studies on the binding characteristics of the enzyme for the two products, dopamine and serotonin, did not show any specific saturable binding. It is proposed that the enzyme has a complex active site, with separate affinity sites for the two substrates, adjacent to a single catalytic site.  相似文献   

5.
The effect of 5-hydroxytryptophan (5-HTP)—the precursor of serotonin (5-hydroxytryptamine, 5-HT)—and of an inhibitor,N-(dl-seryl)-N-(2,3,4-trihydroxybenzyl)hydrazine (Ro4-4602), ofl-aromatic amino acid decarboxylase on the metabolism of glucose to amino acids in brain tissue was investigated. Labeled glucose (20 Ci, 0.24 mg in 0.2 ml 0.9% saline) was injected intravenously into fed rats pretreated with Ro4-4602 (50 mg/kg intraperitoneally) either alone or in combination with 5-HTP (30 mg/kg intravenously) or with the appropriate vehicle. After the injection of Ro4-4602 plus 5-HTP, the concentrations of 5-HT and 5-HTP in brain were increased, but the increase of 5-HTP that Ro4-4602 slightly inhibits the reaction of decarboxylation in the brain, although at the dose used the drug is usually considered to act only peripherally. After administration of Ro4-4602 alone or combined with 5-HTP, the concentration of glucose in plasma was not significantly increased. However, the concentration of glucose in brain was markedly increased with such treatments. The administration of Ro4-4602 alone or combined with 5-HTP reduced the flux of14C from labeled glucose to amino acids in brain. The concentrations of amino acids in brain were little changed by these treatments.  相似文献   

6.
Pyridoxal 5-phosphate (PLP) concentrations were measured in brains of rats to determine whether a deficiency of this coenzyme was a common feature in hepatic coma, ethanol intoxication, and in animals treated withl-dopa or with 5-hydroxytryptophan (5-HTP) alone or with inhibitors of MAO or ofl-aromatic amino acid decarboxylase. These treatments have been shown previously to be associated with reduced conversion of glucose to amino acids in brain. Cerebral PLP concentrations were reduced after some of these treatments, notably injection of ethanol, orl-dopa alone or with -phenylisopropylhydrazine, an inhibitor of MAO, or of 5-HTP together withN-[-(chlorophenoxy)ethyl]cyclopropylamine hydrochloride, Lilly 51641, another MAO inhibitor. However, in other circumstances where inhibition of conversion of glucose to amino acids has been shown {treatment with 5-HTP, or with Lilly 51641 or with [N-(d,l-seryl)-N-2,3,4-trihydroxybenzyl]hydrazine, an inhibitor ofl-aromatic amino acid decarboxylase, together withl-dopa or with 5-HTP}, PLP levels in brain were unchanged, or were increased (in hepatectomized rats).  相似文献   

7.
The enzymatic decarboxylations of l-DOPA and l-5-hydroxytryptophan (l-5-HTP) by aromatic l-amino acid decarboxylase (AADC) were measured with homogenates from human brain regions, caduate nucleus and hypothalamus, using our new and highly sensitive methods for l-DOPA decarboxylase and l-5-HTP decarboxylase by high-performance liquid chromatography with electrochemical detection (HPLC-ED). Dopamine formed from l-DOPA as substrate was measured for DOPA decarboxylase activity using d-DOPA for the blank. For 5-HTP decarboxylase activity, serotonin (5-HT) formed from l-5-HTP was measured, and the blank value in presence of NSD-1055 was subtracted. NSD-1055 inhibited 5-HTP decarboxylase activity completely at a concentration of 0.2 mM. In this study, the properties of l-5-HTP decarboxylase activity in human caudate nucleus were first examined. AADC activities in human brains were found to be widely variable for both l-DOPA and l-5-HTP as substrates. The ratio of the activities for l-DOPA and l-5-HTP were found to be significantly higher in hypothalamus than in caudate nucleus. AADC activity for l-DOPA in the brain was found to be linear up to 40 min of incubation, while that for l-5-HTP was found to be linear up to 240 min of incubation. The optimum pyridoxal phosphate concentration was found to be similar for both substrates and was between 0.01 and 0.1 mM. The optimum pH values were found to be 7.2 and 8.2 for l-DOPA decarboxylase and l-5-HTP decarboxylase, respectively. Km and Vmax values for a human caudate nucleus l-DOPA decarboxylase were found to be 414 μM and 482 pmol/min/g wet weight, respectively, while those for l-5-HTP decarboxylase were found to be 90 μM and 71 pmol/min/g wet weight, respectively.  相似文献   

8.
1. Aromatic amino acid decarboxylase activities toward L-DOPA (L-3,4-dihydroxyphenylalanine), 5-HTP (5-hydroxytryptophan) and p-tyrosine in different tissues of the sclerotized and newly ecdysed cockroach were analyzed. 2. The ratios of enzyme activity with regard to L-DOPA and p-tyrosine varied considerably in the tissues and between the two different growth stages. 3. A DOPA decarboxylase and a p-tyrosine decarboxylase were separated by gel filtration and ion exchange chromatography. 4. The optimal pH requirement for both enzymes was 7.5 with the exception of the one decarboxylating 5-HTP. 5. The molecular weights of the cockroach brain DOPA decarboxylase and tyrosine decarboxylase were estimated to be 120,000 and 100,000, respectively. 6. Unlike the mammalian aromatic amino acid decarboxylase, the cockroach DOPA decarboxylase cannot be activated by a small amount of benzene. 7. An increase of over 50-fold of DOPA decarboxylase activity and a 50% reduction of tyrosine decarboxylase activity in the epidermal tissue of the newly ecdysed animals was observed. 8. In the fully sclerotized cockroach, a reversible endogenous inhibitor(s) of DOPA decarboxylase in the integument was observed, suggesting that the DOPA decarboxylase is suppressed in the epidermal tissues when ecdysis does not occur.  相似文献   

9.
Monoamine oxidase (MAO) activity in the liver and brain of the pacu, Piaractus mesopotamicus was determined using a fluorescence assay with kynuramine as substrate. Apparent Michaelis constant values (20·33 μM for liver and 25·85 μM for brain) were similar in these tissues, but in terms of tissue protein MAO activity from liver was 4·5 times higher than from brain. The greater inhibitory effects of clorgyline than of deprenyl on MAO activity from liver and brain of this species suggest that pacu's MAO is a type A-like enzyme.  相似文献   

10.
Abstract– The properties of histidine decarboxylase ( l -histidine carboxylyase EC 4.1,1.22) have been studied in a whole rat brain homogenate. Optimum pH depended upon substrate concentration; the variations of K m and V max were determined as a function of pH. pH values lower than 6.0 caused a loss of enzymic activity; activity was stable at pH values higher than 6.0. Enzyme activity was proportional to temperature in the range 30-45°C; temperature characteristic (μ) and Q10 were determined and thermal inactivation was studied. Addition of pyridoxal 5'-phosphate increased enzyme activity. Dialysis of homogenates against phosphate buffer caused a partial loss of enzyme activity which could be restored by addition of the coenzyme to the incubation mixture. Enzyme activity was inhibited by α-methylhistidine and benzene and was unaffected by α-methyl DOPA. The properties correspond to those of a 'specific' histidine decarboxylase. However, the brain enzyme differs from the corresponding enzyme in peripheral tissues in the inability to achieve a total inhibition of activity by dialysis.  相似文献   

11.
The metabolic transformation of tyrosine (TYR) by the decarboxylase and hydroxylase enzymes was investigated in the central nervous system of the locust, Locusta migratoria. It has been demonstrated that the key amino acids, 3,4-dihydroxyphenylalanine (DOPA), 5-hydroxytryptophan (5HTP) and tyrosine are decarboxylated in all part of central nervous system. DOPA and 5HTP decarboxylase activities show parallel changes in the different ganglia, but the rank order of the activity of TYR decarboxylase is different. Enzyme purification has revealed that the molecular weights of TYR decarboxylase and DOPA/5HTP decarboxylase are 370,000 and 112,000, respectively. The decarboxylation of DOPA by DOPA/5HTP decarboxylase is stimulated, whereas the decarboxylation of DOPA by TYR decarboxylase is inhibited in the presence of the cofactor pyridoxal-5'-phosphate. TYR hydroxylase could not be detected and 3H-TYR is found to be metabolised to tyramine (TA), but not to DOPA. The haemolymph contains a significant concentration of DOPA (120 pmol/100 microl haemolymph), and the ganglia incorporates DOPA from the haemolymph by a high affinity uptake process (K(M)=12 microM and V(max)=24 pmol per ganglion/10 min). Our results suggest that no tyrosine hydroxylase is present in the locust CNS and the DOPA uptake into the ganglia by a high affinity uptake process as well as the DOPA decarboxylase enzyme may be responsible for the regulation of the ganglionic dopamine (DA) level. Two types of decarboxylases exist, one of them decarboxylating DOPA and 5HTP (DOPA/5HTP decarboxylase), other decarboxylating TYR (TYR decarboxylase). The DOPA/5HTP decarboxylase enzyme present in the insect brain may correspond to the 5HTP/DOPA decarboxylase in vertebrate brain, whereas TYR decarboxylase is characteristic only for the insect brain.  相似文献   

12.
The expression vector containing the full-length cDNA of human aromatic L-amino acid decarboxylase (EC 4.1.1.28) was transfected in COS cells by a modified calcium phosphate coprecipitation method. The cells transfected with plasmids that had a true direction of the cDNA gave a major immunoreactive band at 50 kDa. This expressed enzyme catalyzed the decarboxylation of L-3,4-dihydroxyphenylalanine (L-DOPA), L-5-hydroxytryptophan (L-5-HTP) and L-threo-3,4-dihydroxyphenylserine. The optimal pH of the enzyme activity with L-DOPA as a substrate was 6.5, whereas the enzyme had a broad pH optimum when L-5-HTP was used as a substrate. Addition of pyridoxal phosphate to the incubation mixture greatly enhanced the activity for both L-DOPA and L-5-HTP.  相似文献   

13.
Abstract: An on-line microdialysis approach was developed to estimate changes in tyrosine hydroxylase activity in the locus ceruleus noradrenergic neurons of anesthetized rats by measuring the 3,4-dihydroxyphenylalanine (DOPA) acumulation in the extracellular fluid during perfusion of an aromatic amino acid decarboxylase inhibitor through a dialysis probe. The aromatic amino acid decarboxylase inhibitor used was difluoromethyl-DOPA, which was shown to be more stable than NSD 1015 or Ro 4-4602 in the perfusion fluid. A 1-h perfusion of a 10−4 mol/L of difluoromethyl-DOPA solution induced a linear increase in DOPA concentration in the locus ceruleus dialysates that achieved a steady state within 1 h. The identity of DOPA accumulated in dialysates during aromatic amino acid decarboxylase inhibition was confirmed by the disappearance of the chromatographic peak when DOPA formation was blocked by the administration of α-methyl- p -tyrosine. Systemic administration of the α2-antagonist piperoxane before difluoromethyl-DOPA perfusion markedly increased the DOPA concentration during both the accumulation and the steady-state periods, showing that the present technique is a suitable in vivo approach to monitor changes in tyrosine hydroxylase activity occurring in the locus ceruleus neurons.  相似文献   

14.
DL-x-Difluoromethyl DOPA (DFMD, RMI 71801), an enzyme-activated irreversible inhibitor of aromatic L-amino acid decarboxylase in vitro, produces a rapid, long-lasting and dose-dependent inhibition of aromatic L-amino acid decarboxylase in peripheral tissues of mice when administered i.p. or orally. Doses of 500 mg/kg i.p. produce only very slight inhibition of the enzyme activity in mouse brain whilst inhibiting the enzyme activity of peripheral tissues by more than 90%. With L-[3H]-DOPA co-administration brain concentrations of L-[3H]DOPA and 3H-catecholamines are increased 3- to 8-fold concomitant with a decrease in the peripheral decarboxylation of L-[3H]DOPA. Under these conditions it is clear that the slight inhibition of enzyme activity in the brain is totally inadequate to inhibit the decarboxylation of L-DOPA in this organ. Similarly, the decarboxylation of exogenously supplied 5-hydroxytryptophan is inhibited peripherally with a consequent increase in brain serotonin concentrations. DFMD is another example of an enzyme-activated irreversible inhibitor which due to its novel and specific mechanism of action, may offer advantages over existing decarboxylase inhibitors.  相似文献   

15.
Biochemical properties and kinetic parameters of nonpurified dihydroxyphenylalanine-5-hydroxytryptophan decarboxylase extracted from brain and two peripheral organs, liver and adrenals, were studied in the cat. This study shows that decarboxylase activity in brain is lower than in peripheral organs and that 5-hydroxytryptophan can be decarboxylated without exogenous addition of pyridoxal-5'-phosphate (PLP). However, the addition of PLP substantially increases the enzyme activity. Excess of coenzyme (greater than 60 muM) induces inhibition in adrenals and liver but not in the central nervous system (CNS). The observed inhibition might be related to the presence of a tetrahydroisoquinoline derivative formed in the medium. Differentiation between mechanisms of action of decarboxylase in the CNS and peripheral organs is suggested.  相似文献   

16.
Glycine decarboxylase, or P-protein, is a pyridoxal 5′-phosphate (PLP)-dependent enzyme in one-carbon metabolism of all organisms, in the glycine and serine catabolism of vertebrates, and in the photorespiratory pathway of oxygenic phototrophs. P-protein from the cyanobacterium Synechocystis sp. PCC 6803 is an α2 homodimer with high homology to eukaryotic P-proteins. The crystal structure of the apoenzyme shows the C terminus locked in a closed conformation by a disulfide bond between Cys972 in the C terminus and Cys353 located in the active site. The presence of the disulfide bridge isolates the active site from solvent and hinders the binding of PLP and glycine in the active site. Variants produced by substitution of Cys972 and Cys353 by Ser using site-directed mutagenesis have distinctly lower specific activities, supporting the crucial role of these highly conserved redox-sensitive amino acid residues for P-protein activity. Reduction of the 353–972 disulfide releases the C terminus and allows access to the active site. PLP and the substrate glycine bind in the active site of this reduced enzyme and appear to cause further conformational changes involving a flexible surface loop. The observation of the disulfide bond that acts to stabilize the closed form suggests a molecular mechanism for the redox-dependent activation of glycine decarboxylase observed earlier.  相似文献   

17.
We measured the activity of aromatic L-amino acid decarboxylase with L-dihydroxyphenylalanine as a substrate (DOPA decarboxylase) in normal lung tissues and lung tumors obtained fresh at surgery. The activity in control human lung tissues was low and variable: 3.50 +/- 0.42 pmole/min/mg protein (n = 56, mean +/- SE, range 0.01-15), indicating the wide individual variations. Most of small cell carcinoma specimens showed very high activity, as compared with both control lung tissues and with other types of non-SCC lung cancers. Similar results were also obtained in the athymic mice heterotransplants of SCC. High activity was also observed using 5-L-hydroxytryptophan as a substrate (5-HTP decarboxylase) in nine SCC samples. Serotonin was not detected in any control lung tissues, but was detected in all the nine SCC samples, but dopamine was detected only in three out of nine SCC samples.  相似文献   

18.
Abstract: β-Phenylethylamine (PEA) was characterized as a substrate for type A and type B monoamine oxidase (MAO) in brain and liver mitochondria of eight species at different substrate concentrations. In all species, at 10.0 μM, PEA was almost specific for type B MAO. At 1000 μM, however, the amine was common for both types of MAO in rat brain and liver, human brain and liver, mouse brain, guinea pig brain and liver, and bovine brain, while it was specific for type B MAO in mouse liver, rabbit brain and liver, bovine liver, pig brain and liver, and chicken brain and liver. From the present study, when PEA is used as a type B substrate, it is recommended that the substrate concentration should be sufficiently low to avoid the effects of species and tissue differences.  相似文献   

19.
Phosphorylation and decarboxylation of mevalonate in chick liver and brain was investigated during early post hatching stages of development. In chick liver, both mevalonate kinase and mevalonate-5-phosphate kinase increased their activity from day 5 of age while pyrophosphate decarboxylase activity remained low during the first days after hatching, increased sharply up to day 9 of age, and remained practically unchanged thereafter. The developmental pattern obtained in brain shows a slight decrease in the phosphorylation and decarboxylation of mevalonate after the first week of postnatal development. Further studies were performed using the specific substrate of mevalonate-5-pyrophosphate decarboxylase, corroborating the results obtained using mevalonate as substrate. Changes in hepatic decarboxylase were more pronounced than those observed in mevalonate-phosphorylating enzymes, thus suggesting an important role for decarboxylase in the control of cholesterogenesis during postnatal development.  相似文献   

20.
Abstract— Pyridoxine (50mg/kg, per os) given for 7 consecutive days did not modify the content of dopamine, noradrenaline, and serotonin in the neostriatum of the brain 3, 6 and 18 h after the last dose, but significantly increased DOPA/5HTP decarboxylase activity in both the neostriatum and liver. The administration of l-DOPA and pyridoxine (100 and 50mg/kg, per os, respectively) together for 7 days increased DOPA/5HTP decarboxylase activity in the brain to the same extent as did l-DOPA and pyridoxine given individually. Liver DOPA/5HTP decarboxylase activity remained normal when both drugs were administered together. However it decreased significantly after l-DOPA administration for 7 days but not after pyridoxine treatment. In cats under treatment with l-DOPA for 7 days, actinomycin D given for the final 3 days prevented the increased DOPA/5HTP decarboxylase activity induced by l-DOPA in the neostriatum and mesencephalon but had no effect on the enzymatic activity in the liver. These findings indicate that differences exist between brain and liver DOPA/SHTP decarboxylase activity in uivo. In addition, denatured supernatant from livers of animals treated with l-DOPA contained a dialysable compound which inhibits DOPA/SHTP decarboxylase activity in the supernatant from livers of untreated cats. In animals who received pyridoxine along with l-DOPA, no such inhibitor was found. These results may explain the mechanism by which l-DOPA exerts its beneficial effects and why pyridoxine administered with l-DOPA reduces the therapeutic effectiveness of l-DOPA in Parkinson's disease. These findings are consistent with the possibility that a tetrahydro-isoquinoline derivative formed in vivo in the liver after l-DOPA therapy for 7 days might affect DOPA/5HTP decarboxylase activity in the liver but not in brain. A tetrahydroisoquinoline derivative did not appear to be formed when l-DOPA and pyridoxine were administrated together suggesting that pyridoxine protected the enzyme and favored a more rapid degradation of l-DOPA peripherally with less l-DOPA available for the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号