首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kalanchoë daigremontiana, a species possessing crassulacean acid metabolism, was grown at four photon flux densities (1300, 400, 60, and 25 micromole photons per square meter per second). In leaves which had developed at 1300 and 400 micromole photons per square meter per second, CO2 was mainly incorporated through the lower, shaded leaf surfaces, and the chlorenchyma adjacent to the lower surfaces showed a higher degree of nocturnal acid synthesis than the chlorenchyma adjacent to the upper surfaces. In leaves acclimated to 60 and 25 micromole photons per square meter per second, the gradient in CAM activity was reversed, i.e. more CO2 was taken up through the upper than through the lower surfaces and nocturnal acidification was higher in the tissue next to the upper surfaces. Total net carbon gain and total nocturnal acid synthesis were highest in leaves which had developed at 400 micromole photons per square meter per second. Chlorophyll content was markedly reduced in leaves which had developed at 1300 micromole photons per square meter per second, especially in the exposed adaxial parts. There was also a sustained reduction in photosystem II photochemical efficiency as indicated by measurements of the ratio of variable over maximum chlorophyll a fluorescence. These findings suggest that, at high growth photon flux densities, the reduced activity of the exposed portions of these succulent leaves is caused by (a) the adverse effects of excess light, (b) together with a genotypic component which favors CO2 uptake and acid synthesis in the abaxial (lower) leaf parts even when light is not or only marginally excessive. This latter component is predominant at medium photon flux densities, e.g. at 400 micromole photons per square meter per second. It becomes overridden, however, under conditions of deep shade when strongly reduced light levels in the abaxial parts of the leaf chlorenchyma severely limit photosynthesis.  相似文献   

2.
In leaves of C3 plants, the rate of nonphotorespiratory respiration appears to be higher in darkness than in the light. This change from a high to a low rate of carbon loss with increasing photon flux density leads to an increase in the apparent quantum yield of photosynthetic CO2 assimilation at low photon flux densities (Kok effect). The mechanism of this suppression of nonphotorespiratory respiration is not understood, but biochemical evidence and the observation that a Kok effect is often not observed under low O2, has led to the suggestion that photorespiration might be involved in some way. This hypothesis was tested with snowgum (Eucalyptus pauciflora Sieb. ex Spreng.) using gas exchange methods. The test was based on the assumption that if photorespiration were involved, then it would be expected that the intercellular partial pressure of CO2 would also have an influence on the Kok effect. Under normal atmospheric levels of CO2 and O2, a Kok effect was found. Changing the intercellular partial pressure of CO2, however, did not affect the estimate of nonphotorespiratory respiraton, and it was concluded that its decrease with increasing photon flux density did not involve photorespiration. Concurrent measurements showed that the quantum yield of net assimilation of CO2 increased with increasing intercellular partial pressure of CO2, and this increase agreed closely with predictions based on recent models of photosynthesis.  相似文献   

3.
Apparent photosynthesis and dark respiration were followed during development in four light environments of leaves of Fragaria virginiana Duchesne. Leaf expansion was completed more rapidly the higher the growth photon flux density and leaves senesced more quickly in high light. Maximum photosynthetic capacity coincided with the completion of blade expansion and declined quickly thereafter. Leaves were transferred from high to low and low to high photon flux densities at several stages during expansion. Leaf photosynthetic performance and anatomy were subsequently analyzed. Leaf anatomy and apparent photosynthesis per unit dry weight can be modified during expansion to reflect the predominant light conditions. Adaptive potential is greatest early in blade expansion and decreases as expansion is completed.  相似文献   

4.
Summary The C4 species, Euphorbia forbesii, and the C3 species, Claoxylon sandwicense, occupy cool, shaded habitats in Hawaii. Both of these species exhibit the photosynthetic characteristics of typical shade plants: low light-saturated photosynthetic rates, low dark respiration rates, low light levels for saturation of photosynthesis, and low light compensation points. In addition, the quantum yields of the two species are similar at leaf temperatures near 22°C, reflecting a significant increase in the quantum yield of E. forbesii over that of C4 species from open habitats. C. sandwicense has a lower dark respiration rate than E. forbesii. Hence, since the quantum yields of the two species are similar at cool temperatures, C. sandwicense has a higher photosynthetic rate than E. forbesii at low incident photon flux densities. As a consequence, C. sandwicense should have a greater carbon gain than E. forbesii under the diffuse radiation conditions of their native habitat. However, since E. forbesii has a higher light-saturated photosynthetic rate than C. sandwicense, E. forbesii may have a greater carbon gain than C. sandwicense during sunflecks.  相似文献   

5.
The purpose of this research was to determine the magnitude of photorespiration in field-grown cotton (Gossypium hirsutum L.) as a function of environmental and plant-related factors. Photorespiration rates were estimated as the difference between measured gross and net photosynthetic rates.

A linear increase in photorespiration was observed as air temperature increased from 22 to 40°C at saturating photon flux density. At 22°C, photorespiration was less than 15 per cent of net photosynthesis and very comparable to the dark respiration rate. At 40°C, photorespiration represented about 50 per cent of net photosynthesis. Gross photosynthesis had a temperature optimum of 32 to 34°C. Water stress, as indicated by ΨL, did not alter the ratio of gross photosynthesis to net photosynthesis when the confounding effects of leaf temperature differences were accounted for in the data analyses. A reduction in both gross and net photosynthesis was apparent as ΨL declined from −2.0 megapascals indicating direct effects of water stress on the photosynthetic process. Photorespiration expressed as a proportion of net photosynthesis increased as water stress intensified.

Cotton cultivars possessing a fruit load had significantly higher gross and net photosynthetic rates and lower photorespiration rates than did photoperiod-sensitive cotton strains without a fruit load. Within the fruiting types, which were genetically very similar, only minor differences were observed in the photorespiration:net photosynthesis ratios. However, in the photoperiod-sensitive strains, considerable genetic variability existed when photorespiration was expressed as a proportion of net photosynthesis. These results suggest that the kinetics of ribulose-1,5-bisphosphate carboxylase:oxygenase may be different and, thus, the possibility of genetically reducing photorespiration exists.

  相似文献   

6.
Zelitch I 《Plant physiology》1992,98(4):1330-1335
Tobacco (Nicotiana tabacum) mutants with 40 to 50% more catalase activity than wild type show O2-resistant photosynthesis under conditions of high photorespiration. More than 90% of the population of mutant plants of an M7 and M8 generation had enhanced catalase activity, and nearly 40% had activities >3 standard deviations above the mean of wild type. Superoxide dismutase activity was the same in mutant and wild-type leaves. The greater photosynthetic rate of mutant leaves previously observed in the laboratory was confirmed with field-grown plants that showed significantly higher rates (8%) than wild type during 8 days of measurements during a 19-day period of active growth. The tip region of expanding mutant leaves had higher catalase activity than the base of the lamina, and photosynthesis was O2 resistant in 42% O2 in the tip compared with the base, thus further supporting the hypothesis that there is a biochemical linkage between these traits. Plants grown in high light (270 micromole photons per square meter per second) had greater catalase activity and an activity ratio of mutant to wild type of 1.45 compared with 1.22 for those grown in low light (130 micromole photons per square meter per second). After acclimation for 3 weeks, plants transferred from low to high light showed increasing activities, and after 5 days the activity ratio of mutant to wild type was the same as in plants acclimated in higher light. The role of enhanced catalase activity in reducing photorespiratory CO2 is discussed.  相似文献   

7.
The effects of oxygen concentration and light intensity on the rates of apparent photosynthesis, true photosynthesis, photorespiration and dark respiration of detached spruce twigs were determined by means of an infra-red carbon dioxide analyzer (IRCA). A closed circuit system IRCA was filled with either 1 per cent of oxygen in nitrogen, air (21 % O2) or pure oxygen (100 % O2). Two light intensities 30 × 103 erg · cm ?2· s?1 and 120 × 103 erg · cm?2· s?1 were applied. It has been found that the inhibitory effect of high concentration of oxygen on the apparent photosynthesis was mainly a result of a stimulation of the rate of CO2 production in light (photorespiration). In the atmosphere of 100 % O2, photorespiration accounts for 66–80 per cent of total CO2 uptake (true photosynthesis). Owing to a strong acceleration of photorespiration by high oxygen concentrations, the rate of true photosynthesis calculated as the sum of apparent photosynthesis and photorespiration was by several times less inhibited by oxygen than the rate of apparent photosynthesis. The rates of dark respiration were essentially unaffected by the oxygen concentrations used in the experiments. An increase in the intensity of light from 30 × 103 erg · cm?3· s?1 to 120 · 103 erg · cm?2· s?1 enhanced the rate of photorespiration in the atmospheres of 21 and 100 % oxygen but not in 1 % O2. The rate of apparent photosynthesis, however, was little affected by light intensity in an atmosphere of 1 % oxygen.  相似文献   

8.
The effect of O2 on the CO2 exchange of detached soybean leaves was measured with a Clark oxygen electrode and infrared carbon dioxide analysers in both open and closed systems.

The rate of apparent photosynthesis was inhibited by O2 while the steady rate of respiration after a few minutes in the dark was not affected. Part of the inhibition of apparent photosynthesis was shown to be a result of increased photorespiration. This stimulation of photorespiration by O2 was manifested by an increase in the CO2 compensation point.

The differential effects of O2 on dark respiration (no effect) and photorespiration (stimulation) indicated that these were 2 different processes.

Moreover the extrapolation of the CO2 compensation point to zero at zero O2 indicated that dark respiration was suppressed in the light at least at zero O2 concentration.

  相似文献   

9.
Effects of temperature on the gas exchange of leaves in the light and dark   总被引:3,自引:0,他引:3  
G. Hofstra  J. D. Hesketh 《Planta》1969,85(3):228-237
Summary Evolution of CO2 into CO2-free air was measured in the light and in the dark over a range of temperatures from 15 to 50°. Photosynthetic rates were measured in air and O2-free air over the same range of temperatures. Respiration in the light had a different sensitivity to temperature compared with respiration in the dark. At the lower temperatures the rate of respiration in the light was higher than respiration in the dark, whereas at temperatures above 40° the reverse was observed. For any one species the maximum rates of photosynthesis and photorespiration occur at about the same temperature. The maximum rate for dark respiration generally is found at a temperature about 10° higher. Zea mays and Atriplex nummularia showed no enhancement of photosynthesis in O2-free air nor any evolution of CO2 in CO2-free air at any of the temperatures.  相似文献   

10.
CO2 exchange rates per unit dry weight, measured in the field on attached fruits of the late-maturing Cal Red peach cultivar, at 1200 μmol photons m?2S?1 and in dark, and photosynthetic rates, calculated by the difference between the rates of CO2 evolution in light and dark, declined over the growing season. Calculated photosynthetic rates per fruit increased over the season with increasing fruit dry matter, but declined in maturing fruits apparently coinciding with the loss of chlorophyll. Slight net fruit photosynthetic rates ranging from 0. 087 ± 0. 06 to 0. 003 ± 0. 05 nmol CO2 (g dry weight)?1 S?1 were measured in midseason under optimal temperature (15 and 20°C) and light (1200 μmol photons m?2 S?1) conditions. Calculated fruit photosynthetic rates per unit dry weight increased with increasing temperatures and photon flux densities during fruit development. Dark respiration rates per unit dry weight doubled within a temperature interval of 10°C; the mean seasonal O10 value was 2. 03 between 20 and 30°C. The highest photosynthetic rates were measured at 35°C throughout the growing season. Since dark respiration rates increased at high temperatures to a greater extent than CO2 exchange rates in light, fruit photosynthesis was apparently stimulated by high internal CO2 concentrations via CO2 refixation. At 15°C, fruit photosynthetic rates tended to be saturated at about 600 μmol photons m?2 S?1. Young peach fruits responded to increasing ambient CO2 concentrations with decreasing net CO2 exchange rates in light, but more mature fruits did not respond to increases in ambient CO2. Fruit CO2 exchange rates in the dark remained fairly constant, apparently uninfluenced by ambient CO2 concentrations during the entire growing season. Calculated fruit photosynthetic rates clearly revealed the difference in CO2 response of young and mature peach fruits. Photosynthetic rates of younger peach fruits apparently approached saturation at 370 μl CO21?2. In CO2 free air, fruit photosynthesis was dependent on CO2 refixation since CO2 uptake by the fruits from the external atmosphere was not possible. The difference in photosynthetic rates between fruits in CO2-free air and 370 μl CO2 1?1 indicated that young peach fruits were apparently able to take up CO2 from the external atmosphere. CO2 uptake by peach fruits contributed between 28 and 16% to the fruit photosynthetic rate early in the season, whereas photosynthesis in maturing fruits was supplied entirely by CO2 refixation.  相似文献   

11.
Photosynthesis and respiration were analyzed in natural biofilms by use of O2 microsensors. Depth profiles of gross photosynthesis were obtained from the rate of decrease in O2 concentration during the first few seconds following extinction of light, and net photosynthesis of the photic zone was calculated from O2 concentration gradients measured at steady state. Respiration within the photic zone was calculated as the difference between gross and net photosynthesis. Two types of biofilms were investigated: one dominated by diatoms, and one dominated by cyanobacteria. High O2/CO2 ratios caused increased respiration especially within the diatom biofilm, which could indicate that photorespiration was a dominant O2-consuming process. The rate of respiration was constant within both biofilms during the first 4.6 s following extinction of light, even when respiration was stimulated by high O2/CO2 ratio. The assumption of a constant rate of respiration during the dark period is an essential one for the determination of gross photosynthetic activity by use of O2 microsensors. We here present the first evidence to substantiate this assumption. The results strongly suggest that gross photosynthesis as measured by use of O2 microsensors may include carbon equivalents that are subsequently lost through photorespiration. Computer modeling of photosynthesis profiles measured after 1.1, 1.6, and 2.6 s of dark incubation illustrated how the actual photosynthesis profile could have appeared if it had been possible to do the determination at time 0. Diffusion of O2 during the up to 4.6-s long dark incubations did not affect gross photosynthetic rate when integrated over all depths, but the apparent vertical distribution of the photosynthetic activity was strongly affected.  相似文献   

12.
The light-harvesting chlorophyll a/b proteins associated with PS II (LHC II) are often considered to have a regulatory role in photosynthesis. The photosynthetic responses of four chlorina mutants of barley, which are deficient in LHC II to varying degrees, are examined to evaluate whether LHC II plays a regulatory role in photosynthesis. The efficiencies of light use for PS I and PS II photochemistry and for CO2 assimilation in leaves of the mutants were monitored simultaneously over a wide range of photon flux densities of white light in the presence and absence of supplementary red light. It is demonstrated that the depletions of LHC II in these mutants results in a severe imbalance in the relative rates of excitation of PS I and PS II in favour of PS I, which cannot be alleviated by preferential excitation of PS II. Analyses of xanthophyll cycle pigments and fluorescence quenching in leaves of the mutants indicated that the major LHC II components are not required to facilitate the light-induced quenching associated with zeaxanthin formation. It is concluded that LHC II is important to balance the distribution of excitation energy between PS I and PS II populations over a wide range of photon flux densities. It appears that LHC II may also be important in determining the quantum efficiency of PS II photochemistry by reducing the rate of quenching of excitation energy in the PS II primary antennae.Abbreviations Fm, Fv maximal and variable fluorescence yields in a light adapted state - LHC II light harvesting chlorophyll a/b protein complex associated with PS II - qp photochemical quenching - A820 light-induced absorbance change at 820 nm - øPSI, øPSII relative quantum efficiencies of PS I and PS II photochemistry - øCO2 quantum yield of CO2 assimilation  相似文献   

13.
Abstract. Seedlings of Betula pendula were grown in a controlled environment chamber at quantum flux densities of 50, 250 and 600 μmol m−2 s−1. The relationship between the flux densities of absorbed CC2 and quanta was determined for shoots of whole seedlings. Rates of both light-saturated and in situ (measured under the growing conditions) net photosynthesis were determined and the pholosynthetic quantum yields under light-limiting conditions were calculated. Anatomical leaf characteristics, chlorophyll contents and sizes and densities of the photosynthetic units (chlorophyll/P700) were determined. Chloroplasts were isolated and their rates of 2,6-dichlorophenol indophenol photoreduction were measured together with their pool sizes of the electron transport carriers plastoquinone and cylochrome ƒ.
Although acclimated to different quantum flux densities, the three birch populations showed the same quantum yield of net photosynthesis. This was approximately 0.028 in normal air (21.2 kPa oxygen) and about 0.040 when photorespiration was largely inhibited in 2.0 kPa oxygen. In addition, the in situ net photosynthesis rates were limited by the absorbed quantum flux density for low, intermediate and high light grown seedlings. It was concluded that birch acclimated to the three light regimes at different levels of organization (metabolic and anatomical). Thus, the quanta which were absorbed in situ could be transferred into chemical equivalents at an optimal and constant efficiency. The use of different reference bases for expressing rates of net photosynthesis are also discussed.  相似文献   

14.
Chollet R 《Plant physiology》1978,61(6):929-932
Preincubation of illuminated tobacco (Nicotiana tabacum L.) leaf disks in glycidate (2,3-epoxypropionate) or glyoxylate inhibited photorespiration by about 40% as determined by the ratio of 14CO2 evolved into CO2-free air in light and in darkness. However, under identical preincubation conditions used for the light/dark 14C assays, the compounds failed to reduce photorespiration or stimulate net photosynthesis in tobacco leaf disks based on other CO2 exchange parameters, including the CO2 compensation concentration in 21% O2, the inhibitory effect of 21% O2 on net photosynthesis in 360 microliters per liter of CO2 and the rate of net photosynthetic 14CO2 uptake in air.

The effects of both glycidate and glyoxylate on the 14C assay are inconsistent with other measures of photorespiratory CO2 exchange in tobacco leaf disks, and thus these data question the validity of the light to dark ratio of 14CO2 efflux as an assay for relative rates of photorespiration (Zelitch 1968, Plant Physiol 43: 1829-1837). The results of this study specifically indicate that neither glycidate nor glyoxylate reduces photorespiration or stimulates net photosynthesis by tobacco leaf disks under physiological conditions of pO2 and pCO2, contrary to previous reports.

  相似文献   

15.
Six Lolium genotypes with contrasting apparent photorespiration and COa compensation concentration, [C02]c, were compared for net photosynthesis, dark respiration, leaf starch accumulation, rate of leaf expansion and shoot regrowth. Plants were grown in day/night temperatures of 15/10 and 25/20 oC. There were significant (P < 0–05) differences between the genotypes in all these parameters. At 25/20 oC apparent photorespiration was correlated with [CO2]c. Correlation coefficients, pooled from both temperature regimes, revealed that genotypes with high rates of net photosynthesis accumulated more leaf starch during light periods than genotypes with slow photosynthesis, but rates of leaf expansion and dry matter increase were only correlated, negatively, with dark respiration. Apparent photorespiration was negatively correlated with dark respiration. These findings suggest that attributes related to photorespiration such as [CO2]c and O2 uptake from CO2-free air in the light are unlikely to be useful selection criteria for growth of C3 grasses, that net photosynthesis was probably not limiting growth and that maintenance respiration may have been an important determinant of genotypic differences in growth rate. Selections for slow and fast rates of dark respiration of mature leaves were therefore made at 8 and at 25 oC from within two different populations of L. perenne, S.23. This characteristic showed repeatabilities (broad-sense heritability) of from 0–41 to o-66. Six independent comparisons of simulated swards of the slow- and fast-respiring selections were made under periodic cutting regimes, either in a growth room at 25 oC or in a glasshouse from August to May. Growth of all plots of slow-respiring genotypes was consistently more rapid than that of the fast-respiring, at 25 oC in the growth room, and during autumn and spring in the glasshouse. There was no difference in winter growth. The implications of these results for the use of gas exchange measurements as selection criteria in plant breeding programmes are discussed.  相似文献   

16.
Abstract. Fully expanded leaves of 25°C grown Phaseolus vulgaris and six other species were exposed for 3 h to chilling temperatures at photon flux densities equivalent to full sunlight. In four of the species this treatment resulted in substantial inhibition of the subsequent quantum yield of CO2 uptake, indicating reduction of the photochemical efficiency of photosynthesis. The extent of inhibition was dependent on the photon flux density during chilling and no inhibition occurred when chilling occurred at a low photon flux density. No inhibition occurred at temperatures above 11.5°C, even in the presence of the equivalent of full sunlight. This interaction between chilling and light to cause inhibition of photosynthesis was promoted by the presence of oxygen at normal air partial pressures and was unaffected by the CO2 partial pressure present when chilling occurred in air. When chilling occurred at low O2 partial pressures, CO2 was effective in reducing the degree of inhibition. Apparently, when leaves of chilling-sensitive plants are exposed to chilling temperatures in air of normal composition then light is instrumental in inducing rapid damage to the photochemical efficiency of photosynthesis.  相似文献   

17.
Phaeodactylum tricornutum Bohlin was maintained in exponential growth over a range of photon flux densities (PFD) from 7 to 230 μmol·m?2s?1. The chlorophyll a-specific light absorption coefficient, maximum quantum yield of photosynthesis, and C:N atom ratio were all independent of the PFD to which cells were acclimated. Carbon- and cell-specific, light-satuated, gross photosynthesis rates and dark respiration rates were largely independent of acclimation PFD. Decreases in the chlorophyll a-specific, gross photosynthesis rate and the carbon: chlorophyll ratio and increases of cell- or carbon-specific absorption coefficients were associated with an increase in cell chlorophyll a in cultures acclimated to low PFDs. The compensation PFD for growth was calculated to be 0.5 μmol·m?2s?1. The maintenance metabolic rate (2 × 10?7s?1), calculated on the basis of the compensation PFD, is an order of magnitude lower than the measured dark respiration rate(2.7 × 10?6mol O2·mol C?1s?1). Maintenance of high carbon-specific, light-saturated photosynthesis rates in cells acclimated to low PFDs may allow effective use of short exposures to high PFDs in a temporally variable light environment.  相似文献   

18.
CO2 exchange rates (CO2 evolution) of late-maturing cv. Cal Red peaches, exposed to different photon flux densities, were simulated from 24 days after flowering (DAF) until harvest by using light and temperature response curves measured on attached fruits in the field at biweekly intervals. The daily patterns of dark respiration rates per unit dry weight indicated their dependence on temperatures. Fruit CO2 exchange rates in light were also affected by photosynthetic photon flux densities. Daily photosynthetic rates per unit dry weight and per fruit were significantly lower in shaded fruits receiving 7% of the full daily sunlight compared to fruits exposed to 35% sunlight. However, the difference in photosynthetic rates in peach fruits receiving 21 and 35% of total daily sunlight was small. Within the last 4 weeks before harvest, weekly carbohydrate requirements for the production of dry matter rose rapidly in cv. Cal Red peaches and were related to high carbohydrate accumulations, especially of sucrose, in the peach mesocarp. Weekly photosynthetic contribution of late-maturing cv. Cal Red peaches to these carbohydrate accumulations increased up to 115 DAF. A decline in photosynthetic contributions between 115 DAF and harvest was related to decreasing photosynthetic activities in association with declining chlorophyll contents. Photosynthesis of late-maturing cv. Cal Red peaches provided 3–9% of the weekly fruit carbohydrate requirements early in the season and 8–15% in the midseason depending on fruit exposure to light. Photosynthesis of mature fruits contributed 3–5% of the total fruit carbohydrate requirements. Since fruit photosynthetic rates approach saturation at a photosynthetic photon flux density of about 600 μmol m2 s?2, the difference in weekly photosynthetic contributions was small between exposed and partially exposed (35 and 21% sunlight, respectively) peach fruits. However, a shaded fruit (7% sunlight) supplied significantly less of its weekly carbohydrate requirements through photosynthesis compared to exposed fruits. During the growing period of 24 DAF until harvest, dry matter accumulation of latematuring cv. Cal Red peaches accounted for 78% of the total carbohydrate requirements and 22% was used in respiration. Fruit photosynthesis of shaded peach fruit, partially exposed fruit and exposed fruit (receiving 7. 21 and 35% of full sunlight over the day, respectively) contributed 5. 8 and 9%, respectively, of the total growth and maintenance carbohydrate requirements during the growing season.  相似文献   

19.
The metabolism of 14C-glycine (a substrate for photorespiration) was studied in the light and in darkness under natural CO2 concentration (0.03%) in the leaves of ephemeroides Scilla sibirica Haw. and Ficaria verna Huds. at different developmental stages. Using one and the same sample, potential photosynthesis (at 1% CO2), true photosynthesis (at 0.03% CO2), and leaf respiratory capacity were measured by the radiometric and manometric methods, respectively. All measurements were performed at 15°C, an average temperature during ephemer growth. It was found that, in the white zone of the Scilla leaf, the rate of CO2 evolution resulting from metabolization of exogenous 14C-glycine was similar in the light and in darkness. In the green zone of the Scilla leaf and in the green leaf of Ficaria, both 14C-glycine absorption and 14CO2 evolution were lower in the light as compared with darkness, which is explained by CO2 reassimilation. In all treatments of both plant species, a specific inhibitor of glycine decarboxylase complex (GDC), aminoacetonitrile (5 mM) suppressed CO2 evolution by 20–40%. It was concluded that in ephemeroides mitochondrial GDC, responsible for CO2 evolution in photorespiration, is formed at the earliest stage of leaf development. This indicates that photorespiration can occur simultaneously with the development of the leaf photosynthetic activity. On the basis of the assumption that carbon losses in the form of CO2 evolved during photorespiration comprise 25% of true photosynthesis, it was calculated that, in ephemer leaves, the highest rates of photorespiration and photosynthesis were attained during flowering when the leaf area was the largest and the rate of dark respiration was reduced by 1.5–2.0 times. The highest rates of dark respiration were observed in the beginning of growth. In senescing leaves by the end of the plant vegetation, potential photosynthesis and true photosynthesis were reduced, whereas dark respiration remained essentially unchanged. It is concluded that the high rates of potential and true photosynthesis are characteristic of ephemeroides when they complete their short developmental program in early spring (at 15°C); theoretically, photorespiration also occurs at a high rate during this period, when this process provides for a defense against the threat of photoinhibition at low temperature and high insolation.  相似文献   

20.
Sucrose phosphate synthase (SPS) activity was measured in extracts of maize (Zea mays L.) and soybean (Glycine max L. [Merr.]) leaves over a single day/night cycle. There was a 2- to 3-fold postillumination increase in extractable enzyme activity in maize leaves, whereas the activity of soybean SPS was only about 30% higher in extracts prepared from light- compared to dark-adapted leaves. Alterations in extractable maize leaf SPS activity correlated with light/dark transitions suggesting that the enzyme may be light modulated. Diurnal variations of extractable maize leaf SPS activity were also observed in a greenhouse experiment. A transition from high (light) to low (dark) extractable SPS activity occurred near the light compensation point for photosynthesis (about 20 micromole photons per square meter per second). Further increases in irradiance did not increase extractable SPS activity. Substrate affinities for uridine 5′-diphosphoglucose (Michaelis constant = 3.5 and 5.1 millimolar) and fructose-6 phosphate (half maximal concentration = 1.0 and 2.5 millimolar) were lower for partially purified SPS obtained from light compared to dark acclimated maize leaves. Light-induced changes in extractable SPS activity were stable for at least one column chromatography step. The above results indicate that light-induced changes in SPS activity may be important in controlling the photosynthetic production of sucrose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号