首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanism of uncoupling by uncouples of oxidative phosphorylation   总被引:1,自引:0,他引:1  
Classical uncouplers duplicate exactly the uncoupling actions of the valinomycin-nigericin ionophoric combination in presence of K+ — a combination that mediates cyclical transport of K+ driven by electron transfer or pyrophosphorolysis of ATP in mitochondria. Evidence has been presented that uncouplers have the properties essential for mediating coupled cyclical transport of cations and that uncoupling of oxidative phosphorylation can be rationalized in terms of one coupled process being displaced and replaced by another. The critical demonstrations were first that uncoupling is a cation-dependent process and that only those cations that can undergo complexation with uncouplers are effective in restoring mitochondrial uncoupler action in a cation-deficient medium. The second demonstration was that uncouplers are ionophores, not only of the nigericin type but also of the valinomycin type (electrogenic). This combination in one molecule of electrogenic as well as non-electrogenic ionophoric activity for cations endows uncouplers with the capability for duplicating the uncoupling action of the valinomycin-nigericin combination and for mediating coupled cyclical transport of cations.  相似文献   

2.
B G Tenchov 《Biofizika》1975,20(3):437-440
A theory of ionic transport through membranes in which the phospholipid molecules play the role of ion-carriers is developed. The transport of ions is accompanied by a membrane asymmetry. Expressions for stationary-state ion-fluxes in the case of one sort of ions transport, and in the case of coupled transport of ions of two sorts, are obtained. In the latter case near equilibrium the cross-coefficients are equal in accordance with Onsager's law. The possible role of phospholipids as ioncarriers in native membranes is discussed.  相似文献   

3.
4.
Transport proteins of the neurotransmitter sodium symporter (NSS) family regulate the extracellular concentration of several neurotransmitters in the central nervous system. The only member of this family for which atomic-resolution structural data are available is the prokaryotic homologue LeuT. This protein has been used as a model system to study the molecular mechanism of transport of the NSS family. In this Journal Club, we discuss two strikingly different LeuT transport mechanisms: one involving a single high-affinity substrate binding site and one recently proposed alternative involving two high-affinity substrate binding sites that are allosterically coupled.  相似文献   

5.
We had previously proposed that organic cations are transported across the brush-border membrane in the canine kidney by a H+ exchange (or antiport) system (Holohan, P.D. and Ross, C.R. (1981) J. Pharmacol. Exp. Ther. 216, 294-298). In the present report, we demonstrate that in brush-border membrane vesicles the transport of organic cations is chemically coupled to the countertransport of protons, by showing that the uphill or concentrative transport of a prototypic organic cation, N1-methylnicotinamide (NMN), is chemically coupled to the flow of protons down their chemical gradient. In a reciprocal manner, the concentrative transport of protons is coupled to the counterflow of organic cations down their concentration gradient. The transport of organic cations is monitored by measuring [3H]NMN while the transport of protons is monitored by measuring changes in acridine orange absorbance. The functional significance of the coupling is that a proton gradient lowers the Km and increases the Vmax for NMN transport.  相似文献   

6.
Glutamate transport via the human excitatory amino acid transporters is coupled to the co-transport of three Na(+) ions, one H(+) and the counter-transport of one K(+) ion. Transport by an archaeal homologue of the human glutamate transporters, Glt(Ph), whose three dimensional structure is known is also coupled to three Na(+) ions but only two Na(+) ion binding sites have been observed in the crystal structure of Glt(Ph). In order to fully utilize the Glt(Ph) structure in functional studies of the human glutamate transporters, it is essential to understand the transport mechanism of Glt(Ph) and accurately determine the number and location of Na(+) ions coupled to transport. Several sites have been proposed for the binding of a third Na(+) ion from electrostatic calculations and molecular dynamics simulations. In this study, we have performed detailed free energy simulations for Glt(Ph) and reveal a new site for the third Na(+) ion involving the side chains of Threonine 92, Serine 93, Asparagine 310, Aspartate 312, and the backbone of Tyrosine 89. We have also studied the transport properties of alanine mutants of the coordinating residues Threonine 92 and Serine 93 in Glt(Ph), and the corresponding residues in a human glutamate transporter, EAAT1. The mutant transporters have reduced affinity for Na(+) compared to their wild type counterparts. These results confirm that Threonine 92 and Serine 93 are involved in the coordination of the third Na(+) ion in Glt(Ph) and EAAT1.  相似文献   

7.
Strains of Salmonella typhimurium deficient in one or more of the proline transport systems have been constructed and used to study the mechanism of energy coupling to transport. Proline uptake through the major proline permease (PP-I, putP) is shown to be absolutely coupled to Na+ ions and not to H+ ions as has previously been assumed. Transport through the minor proline permease (PP-II, proP), however, is unaffected by the presence or absence of Na+. The effect of Na+ on the kinetics of proline uptake shows that external Na+ increases the Vmax for transport. It seems probable that proline transport through PP-I is also coupled to Na+ ions in Escherichia coli.  相似文献   

8.
The glutamine transporter SNAT3 (SLC38A3, former SN1) plays a major role in glutamine release from brain astrocytes and in glutamine uptake into hepatocytes and kidney epithelial cells. Here we expressed rat SNAT3 in oocytes of Xenopus laevis and reinvestigated its transport modes using two-electrode voltage clamp and pH-sensitive microelectrodes. In addition to the established coupled Na+-glutamine-cotransport/H+ antiport, we found that there are three conductances associated with SNAT3, two dependent and one independent of the amino acid substrate. The glutamine-dependent conductance is carried by cations at pH 7.4, whereas at pH 8.4 the inward currents are still dependent on the presence of external Na+ but are carried by H+. Mutation of threonine 380 to alanine abolishes the cation conductance but leaves the proton conductance intact. Under Na+-free conditions, where the substrate-dependent conductance is suppressed, a substrate-independent, outwardly rectifying current becomes apparent at pH 8.4 that is carried by K+ and H+. In addition, we identified a glutamine-dependent uncoupled Na+/H+ exchange activity that becomes apparent upon removal of Na+ in the presence of glutamine. In conclusion, our results suggest that, in addition to coupled transport, SNAT3 mediates four modes of uncoupled ion movement across the membrane.  相似文献   

9.
The muscle contraction, operation of ATP synthase, maintaining the shape of a cell are believed to be secured by motor proteins, which can be modelled using the Brownian ratchet mechanism. We consider the randomly flashing ratchet model of a Brownian motor, where the particles can be in two states, only one of which is sensitive the applied spatially periodic potential (the mathematical setting is a pair of weakly coupled reaction-diffusion and Fokker–Planck equations). We prove that this mechanism indeed generates unidirectional transport by showing that the amount of mass in the wells of the potential decreases/increases from left to right. The direction of transport is unambiguously determined by the location of each minimum of the potential with respect to the so-called diffusive mean of its adjacent maxima. The transport can be generated not only by an asymmetric potential, but also by a symmetric potential and asymmetric transition rates, and as a consequence of the general result we derive explicit conditions when the latter happens. When the transitions are localized on narrow active sites in the protein conformation space, we find a more explicit characterization of the bulk transport direction, and infer that some common preconditions of the motor effect are redundant.  相似文献   

10.
The accepted view of interprotein electron transport involves molecules diffusing between donor and acceptor redox sites. An emerging alternative hypothesis is that efficient long-range electron transport can be achieved through proteins arranged in supramolecular assemblies. In this study, we have investigated the crystal packing interfaces in three crystal forms of plastocyanin, an integral component of the photosynthetic electron transport chain, and discuss their potential relevance to in vivo supramolecular assemblies. Symmetry-related protein chains within these crystals have Cu-Cu separations of <25 A, a distance that readily supports electron transfer. In one structure, the plastocyanin molecule exists in two forms in which a backbone displacement coupled with side chain rearrangements enables the modulation of protein-protein interfaces.  相似文献   

11.
Transport of 2-deoxy-d-glucose (2-dGlc) and 6-deoxy-d-glucose (6-dGlc) is studied in Kluyveromyces marxianus, grown under different conditions. It is shown that early stationary phase cells contain only one glucose transporter, with low affinity for 6-dGlc and high affinity for 2-dGlc. This transporter is recognized by glucose and fructose. In late stationary phase cells, two transport systems are operative for 6-dGlc, one with a high and one with a low affinity. The high-affinity system appears to be a glucose-galactose carrier, catalyzing uphill transport, energized by coupling sugar transport to translocation of protons. Induction (or derepression) of the high-affinity 6-dGlc transport seems to be coupled, in an as yet unknown way, to citrate consumption and a strong alkalinization of the medium during growth. It is concluded that glucose transport in K. marxianus can proceed by at least two mechanisms: a glucose-fructose carrier, probably having phosphotransferase characteristics, and a derepressible glucose/galactose-proton symporter.  相似文献   

12.
Glutamate transport by the neuronal excitatory amino acid carrier (EAAC1) is accompanied by the coupled movement of one proton across the membrane. We have demonstrated previously that the cotransported proton binds to the carrier in the absence of glutamate and, thus, modulates the EAAC1 affinity for glutamate. Here, we used site-directed mutagenesis together with a rapid kinetic technique that allows one to generate sub-millisecond glutamate concentration jumps to locate possible binding sites of the glutamate transporter for the cotransported proton. One candidate for this binding site, the highly conserved glutamic acid residue Glu-373 of EAAC1, was mutated to glutamine. Our results demonstrate that the mutant transporter does not catalyze net transport of glutamate, whereas Na(+)/glutamate homoexchange is unimpaired. Furthermore, the voltage dependence of the rates of Na(+) binding and glutamate translocation are unchanged compared with the wild-type. In contrast to the wild-type, however, homoexchange of the E373Q transporter is completely pH-independent. In line with these findings the transport kinetics of the mutant EAAC1 show no deuterium isotope effect. Thus, we suggest a new transport mechanism, in which Glu-373 forms part of the binding site of EAAC1 for the cotransported proton. In this model, protonation of Glu-373 is required for Na(+)/glutamate translocation, whereas the relocation of the carrier is only possible when Glu-373 is negatively charged. Interestingly, the Glu-373-homologous amino acid residue is glutamine in the related neutral amino acid transporter alanine-serine-cysteine transporter. The function of alanine-serine-cysteine transporter is neither potassium- nor proton-dependent. Consequently, our results emphasize the general importance of glutamate and aspartate residues for proton transport across membranes.  相似文献   

13.
Electrogenic glutamate transport by the excitatory amino acid carrier 1 (EAAC1) is associated with multiple charge movements across the membrane that take place on time scales ranging from microseconds to milliseconds. The molecular nature of these charge movements is poorly understood at present and, therefore, was studied in this report in detail by using the technique of laser-pulse photolysis of caged glutamate providing a 100-micros time resolution. In the inward transport mode, the deactivation of the transient component of the glutamate-induced coupled transport current exhibits two exponential components. Similar results were obtained when restricting EAAC1 to Na(+) translocation steps by removing potassium, thus, demonstrating (1) that substrate translocation of EAAC1 is coupled to inward movement of positive charge and, therefore, electrogenic; and (2) the existence of at least two distinct intermediates in the Na(+)-binding and glutamate translocation limb of the EAAC1 transport cycle. Together with the determination of the sodium ion concentration and voltage dependence of the two-exponential charge movement and of the steady-state EAAC1 properties, we developed a kinetic model that is based on sequential binding of Na(+) and glutamate to their extracellular binding sites on EAAC1 explaining our results. In this model, at least one Na(+) ion and thereafter glutamate rapidly bind to the transporter initiating a slower, electroneutral structural change that makes EAAC1 competent for further, voltage-dependent binding of additional sodium ion(s). Once the fully loaded EAAC1 complex is formed, it can undergo a much slower, electrogenic translocation reaction to expose the substrate and ion binding sites to the cytoplasm.  相似文献   

14.
A model for membrane transport through alpha-helical protein pores   总被引:3,自引:0,他引:3  
In this communication we explore possible mechanisms by which hydrogen-bonded, knobs-into-holes packed side chains from adjoining α-helical segments could function in proton transport through membranes and mechanisms by which proton transport could be coupled to active transport of other substances.  相似文献   

15.
We had previously proposed that organic cations are transported across the brush-border membrane in the canine kidney by a H+ exchange (or antiport) system (Holohan, P.D. and Ross, C.R. (1981) J. Pharmacol. Exp. Ther. 216, 294–298). In the present report, we demonstrate that in brush-border membrane vesicles the transport of organic cations is chemically coupled to the countertransport of protons, by showing that the uphill or concentrative transport of a prototypic organic cation, N1-methylnicotinamide (NMN), is chemically coupled to the flow of protons down their chemical gradient. In a reciprocal manner, the concentrative transport of protons is coupled to the counterflow of organic cations down their concentration gradient. The transport of organic cations is monitored by measuring [3H]NMN while the transport of protons is monitored by measuring changes in acridine orange absorbance. The functional significance of the coupling is that a proton gradient lowers the Km and increases the Vmax for NMN transport.  相似文献   

16.
The CitM transporter from Bacillus subtilis transports citrate as a complex with Mg2+. In this study, CitM was functionally expressed and characterized in E. coli DH5a cells. In the presence of saturating Mg2+ concentrations, the Km for citrate in CitM was 274 mM, similar to previous studies using whole cells of B. subtilis. CitM has a high substrate specificity for citrate. Other di- and tricarboxylic acids including succinate, isocitrate, cis-aconitate and tricarballylic acid did not significantly inhibit the uptake of citrate in the presence of Mg2+. However, CitM accepts complexes of citrate with metal ions other than Mg2+. The highest rate of citrate transport was seen in the presence of Mg2+, followed in order of preference by Mn2+, Ba2+, Ni2+, Co2+ and Ca2+. Citrate transport by CitM appears to be proton coupled. The transport was inhibited in transport buffers more alkaline than pH 7.5 and not affected by pH at acidic values. Transport was also inhibited by ionophores that affect the transmembrane proton gradient, including FCCP, TCC and nigericin. Valinomycin did not affect the uptake by CitM, suggesting that transport is electroneutral. In conclusion, the cloned CitM transporter from B. subtilis expressed in E. coli has properties similar to the transporter in intact B. subtilis cells. The results support a transport model with a coupling stoichiometry of one proton coupled to the uptake of one complex of (Mg2+-citrate)1-.  相似文献   

17.
The sarcoplasmic reticulum Ca2+-ATPase is able to cleave ATP through two different catalytic routes. In one of them, a part of the chemical energy derived from ATP hydrolysis is used to transport Ca2+ across the membrane and part is dissipated as heat. In the second route, the hydrolysis of ATP is completed before Ca2+ transport and all the energy derived from ATP hydrolysis is converted into heat. The second route is activated by the rise of the Ca2+ concentration in the vesicle lumen. In vesicles derived from white skeletal muscle the rate of the uncoupled ATPase is several-fold faster than the rate of the ATPase coupled to Ca2+ transport, and this accounts for both the low Ca2+/ATP ratio usually measured during transport and for the difference of heat produced during the hydrolysis of ATP by intact and leaky vesicles. Different drugs were found to selectively inhibit the uncoupled ATPase activity without modifying the activity coupled to Ca2+ transport. When the vesicles are actively loaded, part of the Ca2+ accumulated leaks to the medium through the ATPase. Heat is either produced or released during the leakage, depending on whether or not the Ca2+ efflux is coupled to the synthesis of ATP from ADP and Pi.  相似文献   

18.
D C Chang 《Cell biophysics》1985,7(2):107-114
The transport mechanism of Na ions within the nerve cell was studied by measuring the radioactivity distribution profile of 22Na that had been intracellularly injected into the giant axon. Specifically, we tested whether or not the movement of Na ions is coupled with the process of "fast axonal transport." Results of our measurements indicate that the intracellular transport of Na+ and the fast axonal transport are two independent processes. Very few Na ions are irreversibly sequestered into the axoplasmic vesicles involved in axonal transport. The movement of Na+ inside the axon can be modeled by a one-dimension diffusion. The effective diffusion coefficient of the intracellular Na+ was determined in this study.  相似文献   

19.
The pig kidney cell line, LLC-PK1, exhibits rheogenic d-glucose coupled transepithelial Na+ transport that is inhibited by phlorizin. By measuring the difference in initial rates of influx of 86Rb+ with and without coupled Na+ transport, we can demonstrate an 86Rb+ uptake linked to Na+ transport. The simultaneous determination of phlorizin-inhibited Na coupled d-[3H]glucose uptake and 86Rb+ influx allows calculation of an Na+/Rb+ stoichiometry that is consistent with an electrogenic Na+ for Rb+ exchange.  相似文献   

20.
The nature of the energy source for phosphate transport was studied in strains of Escherichia coli in which either one of the two major systems (PIT, PST) for phosphate transport was present. In the PIT system, phosphate transport is coupled to the proton-motive force. The energy source for the PST system appears to be phosphate-bond energy, as has been found in other systems involving binding proteins. High concentration gradients of phosphate (between 100 and 500) are established by both systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号