首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A soluble and active form of recombinant human ST6Gal I was expressed in Escherichia coli. The gene encoding the soluble form of ST6Gal I lacking the membrane and cytosolic regions was introduced into a bacterial expression vector, pMAL-p2X, fused in frame with a maltose-binding protein (MBP) tag. Low-temperature cultivation at 13C during IPTG-induction significantly improved both solubility and MBP-tagging of the recombinant enzyme expressed in bacteria. The supernatant prepared by disruption of the cells demonstrated sialic acid transfer activity to both an oligosaccharide and a glycoprotein, asialofetuin, indicating that the enzyme expressed in bacteria is soluble and active. The MBP-tagged enzyme was efficiently purified by a combination of cation-exchange column and amylase-conjugated agarose column chromatography. The purified recombinant enzyme exerted enzymatic activity even in the absence of detergents in the reaction mixture. Acceptor substrate specificity of the enzyme was marginally different from that of rat liver ST6Gal I. These observations suggest that membrane and cytosolic regions of ST6Gal I may affect the properties of the enzyme. The purified recombinant enzyme was applied to convert desialylated fetuin to resialylated fetuin. Lectin blotting demonstrated that resialylated fetuin possesses a single Neu5Ac 2-6 residue. The resialylated fetuin efficiently blocked hemagglutination induced by influenza virus strain A/Memphis/1/71 (H3N2), indicating that resialylated carbohydrate chains on the protein are so active as to competitively inhibit virus-receptor interaction. In conclusion, soluble recombinant ST6Gal I obtained using our bacterial expression system is a valuable tool to investigate the molecular mechanisms of biological and pathological interactions mediated via carbohydrates. Published in 2005.The authors contributed equally to this work.  相似文献   

2.
Summary The production of human gamma interferon as intracellular inclusion bodies in Escherichia coli, which simplified the purification process, is described. An expression plasmid carrying lipoprotein and the tryptophane promoters in tandem was used. Preparation of highly pure interferon was achieved using high resolution chromatography after denaturation and renaturation steps. Structural characteristics of this protein were verified by mass spectrometric analysis. Additional control tests have shown the suitability of the final product for clinical purposes. Offprint requests to: L. Perez  相似文献   

3.
Site-directed variants of alpha 1-antitrypsin (alpha 1AT) expressed in a recombinant strain of Escherichia coli have been isolated with an overall process yield of 50% following tangential flow ultrafiltration, anion-exchange, immobilized metal affinity, and hydrophobic interaction chromatography. The primary structure of the purified variants including the integrity of the N- and C-termini has been verified by electrospray mass spectrometry of the intact molecules (44 kDa) for two of the variants (alpha 1AT Leu-358 and alpha 1AT Ala-357, Arg-358). Complementary classical peptide mapping and automated amino acid sequencing have verified 75% of the primary sequence of alpha 1AT Ala-357, Arg-358. Isoelectric focusing in an immobilized pH gradient revealed some microheterogeneity which proved to be reproducible from one purification batch to another. The isolated variants of alpha 1AT did not show any signs of proteolytic degradation during the purification process and proved to be fully active against their target proteases. The described process also allowed the complete removal of endotoxins from the preparations, opening the possibility to evaluate these novel protease inhibitors for their in vivo efficacy in different animal models of human disease.  相似文献   

4.
In the malaria vector Anopheles gambiae, tryptophan 2,3-dioxygenase (TDO) is the only enzyme able to initiate l-tryptophan degradation through the kynurenine pathway. TDO converts l-tryptophan to N-formylkynurenine by catalyzing the heme-dependent oxidative opening of the substrate indole ring. Despite the central role exerted by kynurenines in the physiology of living organisms, only a few insect TDOs have been subjected to biochemical characterization in vitro. We performed a RT-PCR-based analysis of the tissue distribution of TDO mRNA in A. gambiae that revealed a ubiquitous expression of the gene, thus further underlining the importance of the enzyme in the mosquito biology. We developed an expression/purification procedure yielding pure and active recombinant A. gambiae TDO. Spectral analyses showed that the enzyme was purified in its heme-ferric form that was subsequently used to determining the Michaelis-Menten constants of the TDO catalyzed reaction in the presence of reducing agents. The screening of a number of compounds as potential TDO modulators showed that several kynurenines and other Tryptophan-derived molecules interfere with the enzyme activity in vitro. Our study could contribute to understanding TDO regulation in vivo and to the identification of inhibitors to be used to alter Tryptophan homeostasis in the malaria vector.  相似文献   

5.
The side-chain asymmetry of physiological porphyrins is produced by the cooperative action of hydroxymethylbilane synthase and uroporphyrinogen (uro'gen) III synthase. Although the role of uro'gen III synthase is essential for the chemistry of porphyrin biosynthesis, many aspects, structural as well as mechanical, of uro'gen III synthase have yet to be studied. We report here an expression system in Escherichia coli and a purification procedure for human uro'gen III synthase. The enzyme in the lysate was unstable, but we found that glycerol prevents the activity loss in the lysate. The purified enzyme showed remarkable thermostability, particularly when kept in phosphate buffer containing DTT or EDTA, indicating that the enzyme activity may depend on its oxidation state. Examination of the relationship between the number of Cys residues that are accessible to 5,5'-dithiobis(2-nitrobenzoic acid) and the remaining activity during heat inactivation showed that a particular Cys residue is involved in activity loss. From the crystal structure of human uro'gen III synthase [Mathews et al. (2001) EMBO J. 20, 5832-5839], this Cys residue was considered to be Cys73, which is buried deep inside the enzyme, suggesting that Cys73 of human uro'gen III synthase plays an important role in enzyme activity.  相似文献   

6.
7.
The full-length normal and T24 mutant human H-ras proteins and two truncated derivatives of the T24 mutant were expressed efficiently in Escherichia coli. The proteins accumulated to 1 to 5% of total cellular protein, and each was specifically recognized by anti-ras monoclonal antibodies. The two full-length proteins as well as a carboxyl-terminal truncated derivative (deleted for 23 amino acid residues) were soluble upon cell lysis and were purified to 90% homogeneity without the use of denaturants. In contrast, an amino-terminal truncated ras derivative (deleted for 22 amino acid residues) required treatment with urea for its solubilization. The guanine nucleotide binding activity of these four proteins was assessed by a combination of ligand binding on proteins blots, immunoprecipitation, and standard filter binding procedures. The full-length proteins showed similar binding kinetics and a stoichiometry approaching 1 mol of GTP bound per mol of protein. The showed similar binding kinetics and a stoichiometry approaching 1 mol of GTP bound per mol of protein. The carboxyl-terminal truncated protein also bound GTP, but to a reduced extent, whereas the amino-terminal truncated protein did not have binding activity. Apparently, the carboxyl-terminal domain of ras, although important for transforming function, does not play a critical role in GTP binding.  相似文献   

8.
Li M  He S 《Journal of biotechnology》2006,122(3):334-340
Human interleukin (IL)-29 is the latest member of the class II cytokine family. However, as a result of lacking efficient method to generate relatively large quantity of IL-29, little is known of its functions in man. In the present study, an Escherichia coli expression system for the rapid expression of the human IL-29 gene was developed. It involved of cloning IL-29 gene into the pET-44 Ek/LIC vector, which allowed expression of IL-29 with a fusion tag consisting of the NusA protein, polyhistidine and S peptide (Nus-His-S-tag), and introducing a thrombin recognition site between the fusion tag and IL-29. The expressed fusion protein was purified by S-protein agarose affinity chromatography, and the fusion tag was removed from recombinant IL-29 by cleavage with thrombin. The purified IL-29 appeared a single band on SDS-PAGE, and the yield of IL-29 was 60 mg from 1 l of bacterial culture. N-terminal sequencing confirmed the identity of the purified protein. The recombinant IL-29 showed specific antiviral activity that was comparable to the commercially available IFN alfa-2b preparation.  相似文献   

9.
An immunosorbent assay system to detect genetically engineered IL-6 receptor (IL-6R) was established, whereby soluble IL-6 receptor (sIL-6R) was detected in the culture medium when sIL-6R cDNA was transfected into COS1 cells. A stably transformed Chinese hamster ovary (CHO) cell line constitutively expressing sIL-6R has been established. The recombinant sIL-6R was purified to homogeneity by sequential filtration and chromatography of the culture medium. The recombinant sIL-6R augmented the sensitivity of M1 cells to IL-6 in growth inhibition assay in a dose-dependent manner. Furthermore, a radioisotope immunosorbent assay (RIA) utilizing recombinant sIL-6R was established which could detect IL-6 in a quantity as low as 10 ng/ml.  相似文献   

10.
The adenosine A(2a) receptor belongs to the seven transmembrane helix G-protein-coupled receptor family, is abundant in striatum, vasculature and platelets and is involved in several physiological processes such as blood pressure regulation and protection of cells during anoxia. For structural and biophysical studies we have expressed the human adenosine A(2a) receptor (hA2aR) at high levels inserted into the Escherichia coli inner membrane, and established a purification scheme. Expression was in fusion with the periplasmic maltose-binding protein to levels of 10-20 nmol of receptor per L of culture, as detected with the specific antagonist ligand [(3)H]ZM241385. As the receptor C-terminus was proteolyzed upon solubilization, a protease-resistant but still functional receptor was created by truncation to Ala316. Addition of the sterol, cholesteryl hemisuccinate, allowed a stable preparation of functional hA2aR solubilized in dodecylmaltoside to be obtained, and, increased the stability of the receptor solubilized in other alkylmaltosides. Purification to homogeneity was achieved in three steps, including ligand affinity chromatography based on the antagonist xanthine amine congener. The purified hA2aR fusion protein bound [(3)H]ZM241385 with a K(d) of 0.19 nm and an average B(max) of 13.7 nmol x mg(-1) that suggests 100% functionality. Agonist affinities for the purified solubilized receptor were higher than those for the membrane-bound form. Sufficient pure, functional hA2aR can now be prepared regularly for structural studies.  相似文献   

11.
The human 11beta-hydroxylase (hCYP11B1) is responsible for the conversion of 11-deoxycortisol into the major mammalian glucocorticoid, cortisol. The reduction equivalents needed for this reaction are provided via a short electron transfer chain consisting of a [2Fe-2S] ferredoxin and a FAD-containing reductase. On the biochemical and biophysical level, little is known about hCYP11B1 because it is very unstable for analyses performed in vitro. This instability is also the reason why it has not been possible to stably express it so far in Escherichia coli and subsequently purify it. In the present study, we report on the successful and reproducible purification of recombinant hCYP11B1 coexpressed with molecular chaperones GroES/GroEL in E. coli. The protein was highly purified to apparent homogeneity, as observed by SDS/PAGE. Upon mass spectrometry, the mass-to-charge ratio (m/z) of the protein was estimated to be 55 761, which is consistent with the value 55 760.76 calculated for the form lacking the translational initiator Met. The functionality of hCYP11B1 was analyzed using different methods (substrate conversion assays, stopped-flow, Biacore). The results clearly demonstrate that the enzyme is capable of hydroxylating its substrates at position 11-beta. Moreover, the determined NADPH coupling percentage for the hCYP11B1 catalyzed reactions using either 11-deoxycortisol or 11-deoxycorticosterone as substrates was approximately 75% in both cases. Biacore and stopped-flow measurements indicate that hCYP11B1 possesses more than one binding site for its redox partner adrenodoxin, possibly resulting in the formation of more than one productive complexes. In addition, we performed CD measurements to obtain information about the structure of hCYP11B1.  相似文献   

12.
The high-level expression of human interleukin-1 beta in Escherichia coli is described. The protein contributes about 12% of the total cell protein and is associated with the soluble cytoplasmic fraction of the cell. A method for the purification of the protein is given which is based on anion- and cation-exchange chromatographies. The isolated protein, shown to be homogeneous by several analytical methods, has been characterized by amino acid analysis, N- and C-terminal sequence analysis and analytical centrifugation. The protein is biologically active as demonstrated by two different in vitro assays, namely, the mononuclear cell factor (IL-1/MCF) assay and lymphocyte activating factor (IL-1/LAF) assay. The specific activities determined with the IL-1/MCF and IL-1/LAF assays, are 2 X 10(7) and 4 X 10(7) units mg-1, respectively.  相似文献   

13.
As a potential anti-tumor protein, tumor necrosis factor-related apoptosis-inducing ligand(TRAIL) has drawn considerable attention. This report presented the purification and characterization ofsoluble TRAIL, expressed as inclusion bodies in E. coli. sTRAIL inclusion bodies were solubilized andrefolded at a high concentration up to 0.9 g/L by a simple dilution method. Refolded protein was purifiedto electrophoretic homogeneity by a single-step immobilized metal affinity chromatography. The purifiedsTRAIL had a strong cytotoxic activity against human pancreatic tumor cell line 1990, with EDs0 about 1.5mg/L. Circular dichroism and fluorescence spectrum analysis showed that the refolded sTRAIL had astructure similar to that of native protein with 13-sheet secondary structure. This efficient procedure ofsTRAIL renaturation may be useful for the mass production of this therapeutically important protein.  相似文献   

14.
MiAMP1 is a low-molecular-weight, cysteine-rich, antimicrobial peptide isolated from the nut kernel of Macadamia integrifolia. A DNA sequence encoding MiAMP1 with an additional ATG start codon was cloned into a modified pET vector under the control of the T7 RNA polymerase promoter. The pET vector was cotransformed together with the vector pSB161, which expresses a rare arginine tRNA. The peptide was readily isolated in high yield from the insoluble fraction of the Escherichia coli extract. The purified peptide was shown to have an identical molecular weight to the native peptide by mass spectroscopy indicating that the N-terminal methionine had been cleaved. Analysis by NMR spectroscopy indicated that the refolded recombinant peptide had a similar overall three-dimensional structure to that of the native peptide. The peptide inhibited the growth of phytopathogenic fungi in vitro in a similar manner to the native peptide. To our knowledge, MiAMP1 is the first antimicrobial peptide from plants to be functionally expressed in E. coli. This will permit a detailed structure-function analysis of the peptide and studies of its mode of action on phytopathogens.  相似文献   

15.
CD28 and CTLA-4 are homologous cell surface proteins expressed by T cells. CD28 is constitutively expressed by most T cells, whereas CTLA-4 is expressed by activated T cells. Both proteins are ligands for the costimulatory molecules CD80 and CD86 expressed by activated B cells, macrophages, and dendritic cells. A fusion protein comprising the CTLA-4 extracellular domain joined to a human immunoglobulin heavy chain constant region (CTLA4Ig) binds CD80 and CD-86 with high affinity and inhibits CD80/CD86-dependent immune responses in vitro and in vivo. Attempts at producing the CTLA-4 extracellular domain as an unfused protein have met with limited success. Here we describe the expression and purification of the CTLA-4 extracellular domain as a nonfused protein in Escherichia coli. The 12.5-kDa CTLA-4 extracellular domain was insoluble when expressed in E. coli and required denaturation, reduction, and refolding steps to become soluble and assume its proper conformation. The protein refolded into a mixture of monomers, disulfide-linked dimers, and higher order disulfide-linked aggregates. sCTLA-4 dimers were the predominant refold form when air was used as the oxidizing agent during the refold procedure. Purified sCTLA-4 dimers were 10- to 50-fold more potent than sCTLA-4 monomers at inhibiting T cell activation using a CD80-dependent in vitro bioassay.  相似文献   

16.
Thrombopoietin receptor (TPOR) is a member of the cytokine receptor superfamily expressed primarily on hematopoietic cells. TPOR plays an important role in regulating platelet production. Due to its low expression level in human tissue, studies on the biochemical and biophysical properties of TPOR have been limited. In the present study, an extracellular domain of recombinant human TPOR (rh TPOR-EN) was expressed in Escherichia coli as inclusion bodies. Purification was achieved by metal chelated chromatography under denaturing condition and was refolded by gel filtration chromatography. Far UV circular dichroism spectroscopy and surface plasmon resonance experiments were performed to demonstrate that the protein was in a refolded state and could bind with its ligand. Thus, a production and purification scheme was developed by which sufficient quantities of rh TPOR-EN can be made available for biochemical and biophysical characterizations.  相似文献   

17.
Q Z Ye  L L Johnson  D J Hupe  V Baragi 《Biochemistry》1992,31(45):11231-11235
Human stromelysin is a member of the matrix metalloproteinase family involved in connective tissue degradation. The stromelysin catalytic domain (SCD) lacking both propeptide and C-terminal fragment was expressed in Escherichia coli in soluble and insoluble forms. The insoluble SCD was refolded to the active form in high yield. The protein showed remarkable thermal stability and was able to cleave a thiopeptolide substrate and its natural substrate proteoglycan. The stable and active 20-kDa protein provides an opportunity to elucidate the structure as well as the mechanism of catalysis and inhibition for matrix metalloproteinases.  相似文献   

18.
Sigma receptors once considered as a class of opioid receptors are now regarded as unique orphan receptors, distinguished by the ability to bind various pharmacological agents such as the progesterone (steroid), haloperidol (anti-psychotic), and drugs of abuse such as cocaine and methamphetamine. The sigma-1 receptor is a 223 amino acid protein, proposed to have two transmembrane segments. We have developed a scheme for the purification of the guinea pig sigma-1 receptor following overexpression in Escherichia coli as a maltose binding protein (MBP) fusion and extraction with Triton X-100. Affinity chromatography using an amylose column and Ni2+ affinity column was used to purify the sigma-1 receptor. The sigma-1 receptor purified by this method is a 26 kDa polypeptide as assessed by SDS-PAGE, binds sigma ligands with high affinity and can be specifically photoaffinity labeled with the sigma-1 receptor photoprobe, [125I]-iodoazidococaine. Ligand binding using [3H]-(+)-pentazocine indicated that approximately half of the purified protein in Triton X-100 bound to radioligand. The MBP-sigma-1 receptor and the sigma-1 receptor in 0.5% triton were maximally stable for approximately two weeks at -20 degrees C in buffer containing 30% glycerol.  相似文献   

19.
An optimized procedure has been developed for production andpurification of the human interferon a receptor (IFNAR) expressed inE. coli as fusion protein with glutathione S-transferase (GST).Expression induced at 30° cell disruption performed at pH = 9.0in presence of detergents reduced the inclusion body formation andgenerated up to 20% of the fusion protein in the soluble form. Therecombinant IFNAR, recovered in soluble andrenaturated forms, wasable to block the antiviral and antiproliferative activities of IFNaB.  相似文献   

20.
A recombinant cDNA of rat liver NADPH-cytochrome P-450 reductase (CPR), which lacks the N-terminal hydrophobic region, was amplified by PCR and cloned. The N-truncated cDNA named tCPR was ligated into a pBAce vector and expressed. The tCPR protein expressed in Escherichia coli was recovered into the soluble fraction of the cell lysate and purified to homogeneity by three sequential purification procedures; (I) anion-exchange chromatography on a DEAE-cellulose (DE-52) column, (II) affinity chromatography on 2('),5(')-ADP Sepharose 4B, and (III) chromatography on a hydroxyapatite column. The average yield was 47mg per liter of culture medium. The absorption spectrum of the purified tCPR protein was identical to that of a native full-length CPR purified from rat liver, indicating that tCPR also possesses one molecule each of FAD and FMN. The tCPR protein was able to reduce cytochrome c and was also able to assist heme degradation by a soluble form of rat heme oxygenase-1. However, it failed to support the O-deethylation of 7-ethoxycoumarin by cytochrome P-450 1A1, indicating that the presence of the N-terminal hydrophobic domain is necessary for CPR to interact with cytochrome P-450. Previously, to prepare a soluble form of CPR, full-length CPR was treated with proteinases that selectively removed the N-terminal domain. With the expression system established in this study, however, the soluble and biologically active tCPR protein can be readily prepared in large amounts. This expression system will be useful for mechanistic as well as structural studies of CPR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号