首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Biochemical evidence from the preceding paper indicated that [3H]N- acetylmannosamine may be used as a fairly specific precursor for the sialic acid residues of glycoproteins (and perhaps glycolipids) in radioautographs of rat liver and duodenum. In order to study the site of incorporation of this label in cell types of various tissues, we gave 40-g rats and 15-g Swiss albino mice a single intravenous injection of 8 mCi of [3H]N-acetylmannosamine and sacrificed them after 2 and 10 min. To trace the subsequent migration of the labeled glycoproteins, we injected 40-g rats with 4 mCi of [3H]N- acetylmannosamine and sacrificed them after 20 and 30 min, 1, 4, and 24 h, and 3 and 9 d. Light microscope radioautographic analysis revealed that in a great variety of cell types the label was initially localized to the Golgi region. Electron microscope radioautographic analysis of duodenal villous columnar and goblet cells, pancreatic acinar cells and Paneth cells, from rats and mice sacrificed 10 min after injection, showed that the silver grains were localized over Golgi saccules (and adjacent secretion granules). In kidney proximal and distal tubule cells reaction was initially localized to the Golgi apparatus in some areas of the kidney cortex whereas in other areas it was more diffuse. In all cells, the proportion of silver grains over the Golgi apparatus decreased with time after injection while an increasing number of grains appeared over secretion products in secretory cells or over the plasma membrane in other cell types. Lysosomes also became increasingly labeled at later time intervals. The above results suggest that in most cell types sialic acid residues are incorporated into glycoproteins (and perhaps glycolipids), primarily in the Golgi apparatus. With time, these newly synthesized molecules migrate to secretion products, to the plasma membrane, or to the lysosomes.  相似文献   

2.
Internalization of 125I-labelled atrial natriuretic peptide ([ 125I]ANP) by rat adrenal glomerulosa cells in vivo was investigated by means of an ultrastructural autoradiographic approach. One to 30 min after IV injection of [125I]ANP, silver grains were found, at the light microscope level, over all glomerulosa cells; coinjection of 20 micrograms of unlabelled ANP inhibited this binding by 64%. At the electron microscope level, the time-course study indicated maximal silver grain densities in plasma membranes 1 min after IV injection; grains were detected in mitochondria (external membranes and matrix) 2 min after injection, with maximal labelling at 15 min. The cytoplasmic matrix was labelled only 30 min after injection. During the time-course, labelling of nuclei, Golgi apparatus, and lysosomes was minimal. The data suggest that after binding to plasma membranes ANP is rapidly internalized and distributed within glomerulosa cells. The association of radioactivity with mitochondria suggests that ANP may have intracellular sites of action complementary to those on plasma membranes.  相似文献   

3.
The role of the Golgi apparatus in wall formation of vegetative cells of a marine chrysophyte, Pleurochrysis scherffelii, is described. Wall fragments are synthesized within the cisternae of the Golgi apparatus. A single Golgi apparatus is always located at the cell periphery, and the distended cisternae are oriented toward the cell surface. A highly-ordered body found near the inflated cisternae is associated with spherical, membrane-bounded bodies which may be involved in the progressive degeneration of cisternal membranes which release wall fragments. Protoplast movement has been detected by time-lapse cinephotomicrography and is correlated at the ultrastructural level with change in positions of the Golgi cisternae. Wall-synthesizing capacity is greatest during transverse wall formation. Senescent cells lack a Golgi apparatus with inflated cisternae. In addition, wall fragments are not present in the Golgi cisternae at this stage. Zoosporogenesis results in a temporary loss of the wall-forming capacity of the Golgi apparatus; this activity then resumes with the formation of a different morphological entity, the scale. Preliminary quantitative measurements of the turnover capacity of the Golgi apparatus have been made. From these data it has been determined that between 41 and 82 Golgi generations are required to synthesize the cell wall of an actively growing cell; this estimate indicates that approximately one cisterna is produced every 2 min, provided the cell generation time is 3 days. The time-lapse cinephotomicrographic data confirm that the rate of production of Golgi cisternae is at least one cisterna every 2 min.  相似文献   

4.
Albumin was isolated immunologically from various subcellular fractions from livers of adult male rats receiving an intraperitoneal injection of [3H]leucine to investigate the kinetics and pathway of subcellular transfer of newly synthesized albumin during secretion. At appropriate time intervals, livers were excised and fractionated into endoplasmic reticulum and Golgi apparatus. Golgi apparatus were further subfractionated into cisternae and secretory vesicles. In endoplasmic reticulum fractions, labeled albumin appeared within 7.5 min of injection of isotope, followed by a rapid decline in specific activity. Albumin in Golgi apparatus was labeled and concentrated in secretory vesicles over 25 min. The radioactivity in albumin per mg total protein was highest in secretory vesicles and insignificant in the cisternal fraction. Labeled albumin was present in serum by 30 min and radioactivity in serum albumin reached a plateau within 60–90 min after injection of isotope. Results provide evidence for the migration of albumin from its site of synthesis on endoplasmic reticulum membrane-bound polyribosomes to its site of secretion into the circulation via the Golgi apparatus. The pathway of albumin transport to secretory vesicles is suggested to involve peripheral elemenst of the Golgi apparatus. Secretory vesicle formation and maturation required 20 to 30 min for completion, via a mechanism whereby the inner spaces of the central saccules may be bypassed.  相似文献   

5.
Brefeldin A (BFA) causes disassembly of the Golgi apparatus and blocks protein transport to this organelle from the endoplasmic reticulum. However, there still remains considerable ambiguity regarding the involvement of the Golgi apparatus in glycerolipid transport pathways. We examined the effects of BFA upon the intracellular translocation of phosphatidylcholine in alveolar type II cells, that synthesize, transport, store and secrete large amounts of phospholipid for regulated exocytosis. BFA at concentrations as high as 10 microg/ml failed to alter the assembly of phosphatidylcholine into lamellar bodies, the specialized storage organelles for pulmonary surfactant. The same concentration of BFA was also ineffective at altering the secretion of newly synthesized phosphatidylcholine from alveolar type II cells. In contrast, concentrations of the drug of 2.5 microg/ml completely arrested newly synthesized lysozyme secretion from the same cells, indicating that BFA readily blocked protein transport processes in alveolar type II cells. The disassembly of the Golgi apparatus in alveolar type II cells following BFA treatment was also demonstrated by showing the redistribution of the resident Golgi protein MG-160 to the endoplasmic reticulum. These results indicate that intracellular transport of phosphatidylcholine along the secretory pathway in alveolar type II cells proceeds via a BFA insensitive route and does not require a functional Golgi apparatus.  相似文献   

6.
The synthesis and secretion of apolipoprotein B-100 (apoB-100) have been studied in a human hepatoma cell line, the Hep G2 cells. The time needed for the synthesis of apoB-100 was estimated to be 14 min, which corresponds to a translation rate of approximately 6 amino acids/s. ApoB-100 was compared with albumin and alpha 2-macroglobulin as to the distribution between the membrane and the luminal content in the endoplasmic reticulum (ER) and the Golgi apparatus. The results suggested that apoB-100 approximately followed the distribution of these secretory proteins in the Golgi, while the ratios between the percent membrane-bound apoB-100 and percent membrane-bound albumin or alpha 2-macroglobulin were 3-4:1 in the ER. This may suggest that apoB-100 occurs in a membrane-associated form in ER prior to the integration in the lipoproteins. Pulse-chase studies combined with subcellular fractionation was used to investigate the kinetics for the intracellular transfer of apoB-100. A 3-min pulse of [35S]methionine was followed by an increase in apoB-100 radioactivity in the ER during the first 10-15 min of chase. The following 10-15 min of chase were characterized by linear decrease in apoB-100 radioactivity with a decay rate of approximately 6%/min. The residence kinetics for apoB-100 in the ER differed from that of transferrin and probably also from that of albumin. By comparing the time for the pulse maximum in ER with that in the denser Golgi fractions the time needed for the transfer between ER and Golgi could be estimated to be 10 min. The time needed for the secretion of newly synthesized apoB-100 was estimated to be 30 min. This indicates that the transfer of the protein through the Golgi apparatus to the extracellular space requires 20 min.  相似文献   

7.
3H-fucose was injected into the vitreous body of the eye(s) of 250-gm rats, which were then killed by means of an intracardiac perfusion with glutaraldehyde after intervals of 10 min, 1 and 4 hr, and 1 and 7 days. The eyes were removed and further fixed, and pieces of retina were processed for light and electron microscope radioautography. Light microscope radioautography showed that the pigment epithelial cells actively incorporated 3H-fucose label. The intensity of reaction peaked at 4 hr after injection of the label and then slowly declined. Quantitative electron microscope radioautography revealed that, at 10 min after 3H-fucose injection, over 70% of the label was localized to the Golgi apparatus, indicating that fucose residues are added to newly synthesized glycoproteins principally at this site. With time the proportion of label associated with the Golgi apparatus decreased, but that assigned to the infolded basal plasma membrane, the apical microvilli, and various apical lysosomes increased. These results indicate that in retinal pigment epithelial cells newly synthesized glycoproteins continuously migrate from the Golgi apparatus to lysosomes and to various regions of the plasma membrane. In this case, the membrane glycoproteins may play specific roles in receptor functions of the basal plasma membrane or phagocytic activities at the apical surface. Very little label migrated to Bruch's membrane, indicating either a very slow turnover or a paucity of fucose-containing glycoproteins at this site.  相似文献   

8.
Pulse-chase analysis of folded and misfolded insulin precursor (IP) expressed in Saccharomyces cerevisiae was performed to establish the requirements for intracellular transport and the influence of the secretory pathway quality control mechanisms on secretion. Metabolic labelling of the IP expressed in S. cerevisiae showed that the effect of a leader was to stabilise the IP in the endoplasmic reticulum (ER), and facilitate intracellular transport of the fusion protein and rapid secretion. The first metabolically labelled IP appeared in the culture supernatant within 2-4 min of chase, and most of the secreted IP appeared within the first 15 min of chase. After enzymatic removal of the leader in a late Golgi apparatus compartment, the IP followed one of two routes: (1) to the plasma membrane and hence to the culture supernatant, or (2) to a Golgi or post-Golgi compartment from which secretion was restricted. Combined secretion and intracellular retention of the IP reflected either saturation of a Golgi or post-Golgi compartment and secretion as a consequence of overexpression, or competition between secretion and intracellular retention. IP which was misfolded, either due to amino acid substitution or because disulphide bond formation had been prevented with dithiothreitol (DTT), was transported from the ER to the Golgi apparatus but then retained in a Golgi or post-Golgi compartment and not exported to the culture supernatant.  相似文献   

9.
N. Harris  R. R. D. Croy 《Planta》1985,165(4):522-526
The major albumin protein in storage parenchyma tissue of developing peas has been localised at an ultrastructural level by immunocytochemistry. Tissue was fixed in buffered aldehyde and embedded in LR White resin which was polymerised by addition of catalyst. Sections were labelled by the indirect method of absorption of Protein A-gold to specifically bound antibodies. This method gives high levels of specific labelling on sections which retain good ultrastructural preservation and have high contrast after conventional staining. The albumin is located throughout the cytoplasm although no labelling was found associated with the endoplasmic reticulum, Golgi apparatus, vacuoles-protein bodies or other organelles.Abbreviation PMA pea major albumin protein  相似文献   

10.
The incorporation of [3H]fucose in the somatotrophic and gonadotrophic cells of the rat adenohypophysis has been studied by electron microscope autoradiography to determine the site of synthesis of glycoproteins and to follow the migration of newly synthesized glycoproteins. The pituitaries were fixed 5 min, 20 min, 1 h, and 4 h after the in vivo injection of [3H]fucose and autoradiographs analyzed quantitatively. At 5 min after [3H]fucose administration, 80–90% of the silver grains were localized over the Golgi apparatus in both somatotrophs and gonadotrophs. By 20 min, the Golgi apparatus was still labeled and some radioactivity appeared over granules. At 1 h and 4 h, silver grains were found predominantly over secretory granules. The kinetic analysis showed that in both protein-secreting cells (somatotrophs) and glycoprotein-secreting cells (gonadotrophs), the glycoproteins have their synthesis completed in the Golgi apparatus and migrate subsequently to the secretory granules. It is concluded from these in vivo studies that glycoproteins which are not hormones are utilized for the formation of the matrix and/or of the membrane of the secretory granules. The incorporation of [3H]fucose in gonadectomy cells (hyperstimulated gonadotrophs) was also studied in vitro after pulse labeling of pituitary fragments in medium containing [3H]fucose. The incorporation of [3H]fucose was localized in both the rough endoplasmic reticulum (ER) and the Golgi apparatus. Later, the radioactivity over granules increased while that over the Golgi apparatus decreased. The concentration of silver grains over the dilated cisternae of the rough ER was not found to be modified at the longest time intervals studied.  相似文献   

11.
The cation-independent mannose-6-phosphate (Man-6-P) receptor is involved in the targeting of newly synthesized lysosomal hydrolases. To investigate the intracellular distribution of this receptor, a conjugate of lactoperoxidase coupled to asialoorosomucoid was used to catalyze its iodination within the endosomes of human hepatoma (HepG2) cells. The 215-kD, cation-independent Man-6-P receptor was iodinated by this procedure as shown by pentamannosyl-6-phosphate-Sepharose affinity chromatography and by immunoprecipitation of labeled cell extracts. The amount of this receptor detected in endosomes was found to be unchanged after inhibition of protein synthesis with cycloheximide. If the Man-6-P receptor accumulates in the Golgi apparatus in the absence of lysosomal hydrolase synthesis, it should have been correspondingly depleted from endosomes after a period of cycloheximide treatment, because these pools of receptor are in rapid equilibrium. Therefore, these data suggest that newly synthesized ligands are not required for the transport of the cation-independent Man-6-P receptor from the Golgi apparatus to endosomes.  相似文献   

12.
Cell polarization is a process of coordinated cellular rearrangements that prepare the cell for migration. GM1 is synthesized in the Golgi apparatus and localized in membrane microdomains that appear at the leading edge of polarized cells, but the mechanism by which GM1 accumulates asymmetrically is unknown. The Golgi apparatus itself becomes oriented toward the leading edge during cell polarization, which is thought to contribute to plasma membrane asymmetry. Using quantitative image analysis techniques, we measure the extent of polarization of the Golgi apparatus and GM1 in the plasma membrane simultaneously in individual cells subject to a wound assay. We find that GM1 polarization starts just 10 min after stimulation with growth factors, while Golgi apparatus polarization takes 30 min. Drugs that block Golgi polarization or function have no effect on GM1 polarization, and, conversely, inhibiting GM1 polarization does not affect Golgi apparatus polarization. Evaluation of Golgi apparatus and GM1 polarization in single cells reveals no correlation between the two events. Our results indicate that Golgi apparatus and GM1 polarization are controlled by distinct intracellular cascades involving the Ras/Raf/MEK/ERK and the PI3K/Akt/mTOR pathways, respectively. Analysis of cell migration and invasion suggest that MEK/ERK activation is crucial for two dimensional migration, while PI3K activation drives three dimensional invasion, and no cumulative effect is observed from blocking both simultaneously. The independent biochemical control of GM1 polarity by PI3K and Golgi apparatus polarity by MEK/ERK may act synergistically to regulate and reinforce directional selection in cell migration.  相似文献   

13.
We have used monospecific antisera to two lysosomal membrane glycoproteins, lgp120 and a similar protein, lgp110, to compare the biosynthesis and intracellular transport of lysosomal membrane components, plasma membrane proteins, and lysosomal enzymes. In J774 cells and NRK cells, newly synthesized lysosomal membrane and plasma membrane proteins (the IgG1/IgG2b Fc receptor or influenza virus hemagglutinin) were transported through the Golgi apparatus (defined by acquisition of resistance to endo-beta-N-acetylglucosaminidase H) with the same kinetics (t1/2 = 11-14 min). In addition, immunoelectron microscopy of normal rat kidney cells showed that lgp120 and vesicular stomatitis virus G-protein were present in the same Golgi cisternae demonstrating that lysosomal and plasma membrane proteins were not sorted either before or during transport through the Golgi apparatus. To define the site at which sorting occurred, we compared the kinetics of transport of lysosomal and plasma membrane proteins and a lysosomal enzyme to their respective destinations. Newly synthesized proteins were detected in dense lysosomes (lgp's and beta-glucuronidase) or on the cell surface (Fc receptor or hemagglutinin) after the same lag period (20-25 min), and accumulated at their final destinations with similar kinetics (t1/2 = 30-45 min), suggesting that these two lgp's are not transported to the plasma membrane before reaching lysosomes. This was further supported by measurements of the transport of membrane-bound endocytic markers from the cell surface to lysosomes, which exhibited additional lag periods of 5-15 min and half-times of 1.5-2 h. The time required for transport of newly synthesized plasma membrane proteins to the cell surface, and for the transport of plasma membrane markers from the cell surface to lysosomes would appear too long to account for the rapid transport of lgp's from the Golgi apparatus to lysosomes. Thus, the observed kinetics suggest that lysosomal membrane proteins are sorted from plasma membrane proteins at a post-Golgi intracellular site, possibly the trans Golgi network, before their delivery to lysosomes.  相似文献   

14.
The endoplasmic reticulum and Golgi apparatus play key roles in regulating the folding, assembly, and transport of newly synthesized proteins along the secretory pathway. We find that the divalent cation manganese disrupts the Golgi apparatus and endoplasmic reticulum (ER). The Golgi apparatus is fragmented into smaller dispersed structures upon manganese treatment. Golgi residents, such as TGN46, beta1,4-galactosyltransferase, giantin, and GM130, are still segregated and partitioned correctly into smaller stacked fragments in manganese-treated cells. The mesh-like ER network is substantially affected and peripheral ER elements are collapsed. These effects are consistent with manganese-mediated inhibition of motor proteins that link membrane organelles along the secretory pathway to the cytoskeleton. This divalent cation thus represents a new tool for studying protein secretion and membrane dynamics along the secretory pathway.  相似文献   

15.
The endoplasmic reticulum (ER) and Golgi were labeled by green fluorescent protein chimeras and observed by time-lapse confocal microscopy during the rapid cell cycles of sea urchin embryos. The ER undergoes a cyclical microtubule-dependent accumulation at the mitotic poles and by photobleaching experiments remains continuous through the cell cycle. Finger-like indentations of the nuclear envelope near the mitotic poles appear 2-3 min before the permeability barrier of the nuclear envelope begins to change. This permeability change in turn is approximately 30 s before nuclear envelope breakdown. During interphase, there are many scattered, disconnected Golgi stacks throughout the cytoplasm, which appear as 1- to 2-microm fluorescent spots. The number of Golgi spots begins to decline soon after nuclear envelope breakdown, reaches a minimum soon after cytokinesis, and then rapidly increases. At higher magnification, smaller spots are seen, along with increased fluorescence in the ER. Quantitative measurements, along with nocodazole and photobleaching experiments, are consistent with a redistribution of some of the Golgi to the ER during mitosis. The scattered Golgi coalesce into a single large aggregate during the interphase after the ninth embryonic cleavage; this is likely to be preparatory for secretion of the hatching enzyme during the following cleavage cycle.  相似文献   

16.
本实验用电镜放射自显影技术,在注射~3H-岩藻糖后30分钟和1、4、8、24小时示踪大鼠精子细胞合成糖蛋白的情况以及新合成糖蛋白的去路。实验结果表明: 1.在注射~3H-岩藻糖后30分钟到1小时,放射自显影标记最初出现在高尔基体上。岩藻糖分子首先在高尔基体的外周(皮质)部位掺入糖蛋白,随后,新合成的糖蛋白并不直接转运到别处,而在高尔基体中央(髓质)部位作短暂贮存。说明中央部位在功能上是高尔基体的一个重要组成部分。2.~3H-岩藻糖不仅掺入高尔基期和顶帽期精子细胞的高尔基体,而且掺入顶体期精子细胞的高尔基体,说明顶体期的高尔基体仍有合成糖蛋白的功能。3.新合成糖蛋白的去路,在精子细胞发育的不同阶段是不一样的。在高尔基期和顶帽期精子细胞中,新合成的糖蛋白  相似文献   

17.
The sites of synthesis of proteins and their subsequent migration in rat liver have been studied during a 75 min period after labeling of liver-slice proteins by exposure to leucine-H3 for 2 min. Incorporation of the label into protein began after 1 min and was maximal by 4 min. Electron microscopic radioautography showed that synthesis of proteins in hepatocytes occurs mainly on ribosomes, particularly those in rough endoplasmic reticulum and, to some extent, in nuclei and mitochondria. Most of the newly formed proteins leave the endoplasmic reticulum in the course of 40 min, and concurrently labeled proteins appear in Golgi bodies, smooth membranes, microbodies, and lysosomes. A likely pathway for the secretion of some or all plasma proteins is from typical rough endoplasmic reticulum to a zone of reticulum which is partially coated with ribosomes, to the Golgi apparatus, and thence to the cell periphery. The formation of protein by reticuloendothelial cells was measured and found to be about 5% of the total protein formed by the liver.  相似文献   

18.
The internalization of plasma membrane components labelled with ConA and peroxidase was investigated in monolayer cultures of rat liver cells. After the labelling procedure, the cells were reincubated with PBS free of both ConA and peroxidase for different time periods between 5 min and 3 h at 37 °C. Ligand-induced redistribution of ConA-binding sites finally resulted in a cap with uropod formation after 2–3 h of reincubation. Simultaneously with redistribution, the cell surface label disappeared through internalization, and a membrane recycling into the Golgi apparatus could be observed. Besides the lamellar Golgi apparatus which exhibited a labelling of the cisternae as a consequence of the membrane recycling, the hypertrophied unlabelled Golgi apparatus could be detected in the same cell. Furthermore, many vesicles formed by the hypertrophied Golgi apparatus were found between them and the plasma membrane and in close proximity to the plasma membrane. Fusion of the vesicles with the plasma membrane could be observed. These morphological findings indicate the possibility that the membrane internalization and the membrane recycling simultaneously effect an enhancement of membrane biogenesis and exocytosis, thus compensating for the membrane removal by internalization.  相似文献   

19.
To elucidate intracellular maturation and secretion of acid phosphatase of Saccharomyces cerevisiae we prepared a monoclonal antibody that recognizes specifically the protein moiety of this cell surface glycoprotein. With this antibody membranes and soluble fractions of wild-type cells, grown in low-phosphate medium in the presence and absence of tunicamycin, were examined by the immunoblot technique. Similarly, secretory mutants, blocked at distinct steps in the secretory pathway at the restrictive temperature as well as a strain harboring several copies of the structural gene PHO5 for repressible acid phosphatase, were analyzed. The data suggest the following sequence of events in acid phosphatase maturation and secretion: three unglycosylated precursors with molecular masses of 60 kDa, 58 kDa and 56 kDa are synthesized into membranes of the endoplasmic reticulum, where these are core glycosylated in a membrane-bound form. They appear on sodium dodecyl sulfate gels as bands with molecular masses of 76 kDa and 80 kDa. Owing to a rate-limiting maturation step, occurring after core glycosylation, they can accumulate in a membrane-bound form. At the Golgi apparatus outer carbohydrate chains are attached to the core and the enzyme appears in a soluble form, indicating a release of acid phosphatase from the membrane between the endoplasmic reticulum and the Golgi. Pulse-chase experiments suggest that the time for acid phosphatase synthesis and its transport to the Golgi is about 5 min.  相似文献   

20.
The subcellular localization of the post-translational processing steps which occur in the conversion of pro-adrenocorticotropic hormone (ACTH)/endorphin into beta-endorphin-sized molecules in rat intermediate pituitary has been studied. Primary cell cultures were incubated in radioactively labeled amino acids, and a subcellular fraction containing secretory granules was separated from a subcellular fraction containing rough endoplasmic reticulum and Golgi apparatus by centrifugation of homogenates on gradients on Percoll (Pharmacia Fine Chemicals). The radiolabeled beta-endorphin-related material in the granule and rough endoplasmic reticulum/Golgi apparatus fractions was quantitated by immunoprecipitation and sodium dodecyl sulfate polyacrylamide gel electrophoresis. A pulse-chase labeling experiment demonstrated that newly synthesized beta-endorphin-related material first appeared in the rough endoplasmic reticulum/Golgi apparatus fraction and after longer incubations (chase) appeared in the secretory granule fraction. After 2 h of chase incubation, about 85% of the beta-endorphin-related material synthesized during the 30-min pulse incubation had been transferred from the rough endoplasmic reticulum/Golgi apparatus to the secretory granule fraction. The conversion of most of the newly synthesized pro-ACTH/endorphin into beta-lipotropin occurred in the rough endoplasmic reticulum/Golgi apparatus fraction, whereas the conversion of most of the beta-lipotropin into beta-endorphin-sized molecules occurred in the secretory granule fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号