首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gut-derived norepinephrine (NE) has been shown to play a critical role in producing hepatocellular dysfunction in early sepsis, but it is not known whether alpha2-adrenoceptor activation mediates this dysfunction. We infused normal male adult rats with NE, NE plus the specific alpha2-adrenergic antagonist rauwolscine (RW), or vehicle (normal saline) for 2 h. Hepatocellular function was determined by in vivo indocyanine green (ICG) clearance. An isolated perfused liver preparation was also used to assess hepatocellular function by in vitro ICG clearance; NE alone or with RW was added to the perfusate. Rats were subjected to sepsis by cecal ligation and puncture (CLP). At 1 h after CLP, RW was infused for 15 min. At 5 h after CLP, we measured hepatocellular function and serum tumor necrosis factor-alpha (TNF-alpha) levels. Intraportal NE infusion in normal rats produced hepatocellular dysfunction, which was prevented by RW and NE infusion. This is confirmed by findings with the isolated perfused liver preparation. RW administration in early sepsis maintained hepatocellular function and downregulated TNF-alpha production at 5 h after CLP. These results suggest that NE-induced hepatocellular dysfunction in early sepsis is mediated by alpha2-adrenoceptor activation, which appears to upregulate TNF-alpha production. Modulation of hepatic responsiveness to NE by alpha2-adrenergic antagonists should provide a novel approach for maintaining cell and organ functions during sepsis.  相似文献   

2.
Studies have shown that increased gut-derived norepinephrine (NE) release plays an important role in producing hepatocellular dysfunction at the early stage of sepsis. Although the gut has been demonstrated to be the major source of NE in sepsis, it remains unknown whether the increased NE is associated with up-regulation of intestinal NE biosynthesis enzymes such as tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH). To determine this, adult male rats were subjected to sepsis by cecal ligation and puncture (CLP) followed by fluid resuscitation. Small intestinal samples were harvested at 2 h (i.e., early sepsis) or 20 h (late sepsis) after CLP or sham-operation. Protein levels of TH and DBH were determined by Western blot analysis and immunohistochemistry. Their gene expression was assessed by RT-PCR technique. The results indicate that intestinal TH protein levels increased significantly at 2 and 20 h after CLP, while DBH was not altered under such conditions. Immunohistochemical examination shows that both TH and DBH were located in intestinal sympathetic nerve fibers and TH staining was markedly increased in septic animals. TH gene expression increased significantly at 2 h but not at 20 h after CLP, while DBH gene expression was not altered in sepsis. Thus, the increased TH gene and protein expression appears to be responsible for the increased gut-derived NE in sepsis.  相似文献   

3.
Although studies have shown that the gut is capable of being a cytokine-producing organ and that the proinflammatory cytokines TNF-alpha, IL-1beta, and IL-6 are upregulated following the onset of sepsis, it remains unknown whether the gut is indeed the major source of the increased cytokine production under such conditions. To determine this, male rats were subjected to cecal ligation and puncture (CLP, a model of polymicrobial sepsis) or sham operation followed by the administration of normal saline solution subcutaneously (i.e., fluid resuscitation). Systemic and portal blood samples were taken simultaneously at 2, 5, 10, or 20 h after CLP or sham operation. Plasma levels of TNF-alpha, IL-1beta, and IL-6 were determined using an enzyme-linked immunosorbent assay. In additional animals, the small intestine was harvested at 10 h after CLP or sham operation and examined for TNF-alpha, IL-1beta, and IL-6 gene expression by RT-PCR. The results indicate that the levels of TNF-alpha, IL-1beta, and IL-6 in both systemic and portal blood samples were significantly elevated during sepsis with the exception that the increase in IL-1beta was not significant at 2 h after CLP. However, there were no significant differences in the levels of those proinflammatory cytokines between systemic and portal blood at any points after the onset of sepsis. Moreover, there were no significant alterations in the proinflammatory cytokine gene expression in the small intestine at 10 h after CLP. Since the levels of TNF-alpha, IL-1beta, and IL-6 were not significantly increased in portal blood as compared to systemic blood and since there was no upregulation of gene expression for these cytokines, it appears that organs other than the gut are responsible for the upregulated proinflammatory cytokines during polymicrobial sepsis.  相似文献   

4.
Previous studies have shown that the gut is a major source of norepinephrine (NE) released in early sepsis and that gut-derived NE plays an important role in up-regulating TNF-alpha expression in Kupffer cells (KC) via an alpha(2)-adrenoceptor (alpha(2)-AR) pathway. However, it remains unknown whether NE affects the release of other inflammatory cytokines such as IL-1beta and IL-10 and, if so, whether alpha(2)-AR is also involved in such a process. To study this, a branch of the portal vein in normal adult male rats was cannulated under anesthesia. NE (20 muM in ascorbate saline), NE plus yohimbine (YHB, a specific alpha(2)-AR antagonist, 1 mM) or vehicle (0.1% ascorbate saline) was infused at a rate of 13 mul/min for 2 h. The above rate of NE infusion was used to increase the portal level of NE to approximately 20 nM, similar to that observed in sepsis. Blood samples were then collected and serum levels of IL-1beta and IL-10 were measured. In addition, the KC was isolated from normal rats and stimulated with either NE (20 nM) or NE plus YHB (1 muM). The gene expression of IL-1beta and IL-10 in KC and their supernatant levels were assessed. The results indicate that serum levels of IL-1beta and IL-10 increased significantly after the intraportal infusion of NE. Co-administration of NE and YHB, however, significantly attenuated IL-1beta and IL-10 production. Similarly, IL-1beta and IL-10 gene expression and release from KC were up-regulated by NE stimulation, whereas YHB attenuated both cytokines. Thus, gut-derived NE up-regulates IL-1beta and IL-10 expression and release in the liver through an alpha(2)-AR pathway. Since adenylate cyclase activator forskolin prevents the increase in NE-induced IL-1beta and IL-10, the up-regulatory effect of NE on those cytokines appears to be mediated, at least in part, by inhibition of adenylate cyclase and reduction in intracellular cyclic AMP levels.  相似文献   

5.
Although previous studies have demonstrated that plasma levels of the proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) increase during early sepsis, the precise mechanism responsible for its upregulation remains to be elucidated. Since recent studies have shown that the gut is an important source of norepinephrine (NE) release during early sepsis and enterectomy prior to the onset of sepsis attenuates TNF-alpha production, we hypothesized that gut-derived NE plays a major role in upregulating TNF-alpha via the activation of alpha(2)-adrenoceptors on Kupffer cells. To confirm that NE increases TNF-alpha synthesis and release, Kupffer cells were isolated from normal rats and incubated with NE (20 or 50 nM) or another alpha(2)-adrenergic agonist clonidine (50 nM) without addition of Escherichia coli endotoxin. Supernatant levels of TNF-alpha were then measured. In additional animals, intraportal infusion of NE (20 microM) with or without the specific alpha(2)-adrenergic antagonist yohimbine (1 mM) at a rate of 13 microl/min was carried out for 2 h. Plasma and Kupffer cell levels of TNF-alpha were assayed thereafter. Moreover, the effects of NE and yohimbine on TNF-alpha production was further examined using an isolated perfused liver preparation. The results indicate that both NE and clonidine increased TNF-alpha release by approximately 4-7-fold in the isolated cultured Kupffer cells. Similarly, intraportal infusion of NE in vivo or in isolated livers increased TNF-alpha synthesis and release which was inhibited by co-infusion of yohimbine. Furthermore, the increased cellular levels of TNF-alpha in Kupffer cells after in vivo administration of NE was also blocked by yohimbine. These results, taken together, suggest that gut-derived NE upregulates TNF-alpha production in Kupffer cells through an alpha(2)-adrenergic pathway, which appears to be responsible at least in part for the increased levels of circulating TNF-alpha observed during early sepsis as well as other pathophysiologic conditions such as trauma, hemorrhagic shock, or gut ischemia/reperfusion.  相似文献   

6.
Yeh CL  Hsu CS  Yeh SL  Chen WJ 《Cytokine》2005,31(5):329-334
Glutamine (Gln) has been demonstrated to have benefit in the modulation of systemic immunity in sepsis. However, the effects of Gln on local immunity and intra-lymphocyte cytokine expression have not been investigated in mice with gut-derived sepsis. This study evaluated the influence of a Gln-enriched diet on interleukin (IL)-6 expression in organs and Th1/Th2 type cytokine production within lymphocytes in septic mice. Male ICR mice were assigned to control and Gln groups. The control group was fed a semi-purified diet, while in the Gln group, Gln replaced part of the casein. After feeding the respective diets for 3 weeks, sepsis was induced by cecal ligation and puncture (CLP). Mice were sacrificed at 0, 6, 12 and 24h after CLP and their organs were harvested for further analysis. Results showed that IL-6 levels in the liver were decreased, whereas levels were increased in the lungs, kidneys and intestines with the progression of sepsis in both groups. Also, intra-lymphocyte interferon (IFN)-gamma expression decreased and IL-4 expression increased during sepsis. Compared to the control group, the Gln group had higher levels of IL-6 in the liver and lower levels in other organs at various time points. Lymphocyte IFN-gamma expression in the Gln group was higher, and IL-4 levels were lower than those of the control group after CLP. These results suggest that Gln supplementation decreased IL-6 production in non-hepatic organs, while reducing intra-lymphocyte IL-4 and enhancing IFN-gamma expressions. This change may reverse the Th2 type response to a more-balanced Th1/Th2 response during sepsis.  相似文献   

7.
Our previous studies have shown that norepinephrine (NE) upregulates proinflammatory cytokines by activating alpha(2)-adrenoceptor. Therefore, modulation of the sympathetic nervous system represents a novel treatment for sepsis. We have also shown that a novel stomach-derived peptide, ghrelin, is downregulated in sepsis and that its intravenous administration decreases proinflammatory cytokines and mitigates organ injury. However, it remains unknown whether ghrelin inhibits sympathetic activity through central ghrelin receptors [i.e., growth hormone secretagogue receptor 1a (GHSR-la)] in sepsis. To study this, sepsis was induced in male rats by cecal ligation and puncture (CLP). Ghrelin was administered through intravenous or intracerebroventricular injection 30 min before CLP. Our results showed that intravenous administration of ghrelin significantly reduced the elevated NE and TNF-alpha levels at 2 h after CLP. NE administration partially blocked the inhibitory effect of ghrelin on TNF-alpha in sepsis. GHSR-la inhibition by the administration of a GHSR-la antagonist, [d-Arg(1),d-Phe(5), d-Trp(7,9),Leu(11)]substance P, significantly increased both NE and TNF-alpha levels even in normal animals. Markedly elevated circulating levels of NE 2 h after CLP were also significantly decreased by intracerebroventricular administration of ghrelin. Ghrelin's inhibitory effect on NE release was completely blocked by intracerebroventricular injection of the GHSR-1a antagonist or a neuropeptide Y (NPY)/Y(1) receptor antagonist. However, ghrelin's downregulatory effect on TNF-alpha release was only partially diminished by these agents. Thus ghrelin has sympathoinhibitory properties that are mediated by central ghrelin receptors involving a NPY/Y1 receptor-dependent pathway. Ghrelin's inhibitory effect on TNF-alpha production in sepsis is partially because of its modulation of the overstimulated sympathetic nerve activation.  相似文献   

8.
Studies have indicated that gammadelta T lymphocytes play an important role in the regulation of immune function and the clearance of intracellular pathogens. We have recently reported that intraepithelial lymphocytes (IEL), which are rich in gammadelta T cells, within the small intestine illustrated a significant increase in apoptosis and immune dysfunction in mice subjected to sepsis. However, the contribution of gammadelta T cells to the host response to polymicrobial sepsis remains unclear. In this study, we initially observed that after sepsis induced by cecal ligation and puncture (CLP), there was an increase in small intestinal IEL CD8+gammadelta+ T cells in control gammadelta+/+ mice. Importantly, we subsequently found an increased early mortality in mice lacking gammadelta T cells (gammadelta-/- mice) after sepsis. This was associated with decreases in plasma TNF-alpha, IL-6, and IL-12 levels in gammadelta-/- mice compared with gammadelta+/+ mice after sepsis. In addition, even though in vitro LPS-stimulated peritoneal macrophages showed a reduction in IL-6 and IL-12 release after CLP, these cytokines were less suppressed in macrophages isolated from gammadelta-/- mice. Alternatively, IL-10 release was not different between septic gammadelta+/+ and gammadelta-/- mice. Whereas T helper (Th)1 cytokine release by anti-CD3-stimulated splenocytes was significantly depressed in septic gammadelta+/+ mice, there was no such depression in gammadelta-/- mice. However, gammadelta T cell deficiency had no effect on Th2 cytokine release. These findings suggest that gammadelta T cells may play a critical role in regulating the host immune response and survival to sepsis, in part by alteration of the level of IEL CD8+gammadelta+ T cells and through the development of the Th1 response.  相似文献   

9.
Although studies indicatethat a shift from a Th1 to a Th2 response contributes to a markedsuppression of cell-mediated immunity during sepsis, the mechanism bywhich this occurs remains unknown. Given that the mitogen-activatedprotein kinase (MAPK) p38 plays a critical role in the activation andfunction of immune cells, the aim of this study was to determine thecontribution of MAPK p38 activation to the immune dysfunction seen inpolymicrobial sepsis. To study this, polymicrobial sepsis was inducedin C3H/HeN male mice by cecal ligation and puncture (CLP). Spleniclymphocytes and purified T cells were harvested 24 h post-CLP,pretreated with the specific MAPK p38 inhibitor SB-203580, and thenstimulated with a monoclonal antibody against the T cell marker CD3.The results indicate that interleukin (IL)-2 release is markedlydepressed while the release of the immunosuppressive mediator, IL-10,as well as mRNA levels of IL-10 and IL-4, are augmented after CLP. Inhibition of MAPK p38 suppressed in vitro IL-10 levels as well asIL-10 and IL-4 gene expression while restoring the release of IL-2. Todetermine whether these in vitro findings could be translated to an invivo setting, mice were given 100 mg of SB-203580/kg body wt or salinevehicle (intraperitoneal) at 12 h post-CLP. Examination of ex vivolymphocyte responsiveness indicated that, as with the in vitro finding,septic mouse Th1 responsiveness was restored. In light of our recentfinding that delayed in vivo SB-203580 treatment also improved survivalafter CLP, we believe that these results not only illustrate the roleof MAPK p38 in the induction of immunosuppressive agents in sepsis butdemonstrate that SB-203580 administration after the initialproinflammatory state of sepsis significantly prevents the morbidityfrom sepsis.

  相似文献   

10.
Although studies have indicated that calcitonin gene-related peptide (CGRP), a potent vasodilatory peptide, is upregulated after endotoxic shock, it remains controversial whether this peptide increases during sepsis and, if so, whether the gut is a significant source of CGRP under such conditions. To study this, polymicrobial sepsis was induced by cecal ligation and puncture (CLP) followed by fluid resuscitation. Plasma levels of CGRP were measured at 2, 5, and 10 h after CLP (i.e., early, hyperdynamic sepsis) and at 20 h after CLP (late, hypodynamic sepsis). The results indicate that plasma CGRP did not increase at 2--5 h but increased by 177% at 10 h after CLP (P < 0.05). At 20 h after the onset of sepsis, however, the elevated plasma CGRP returned to the sham level. To determine the source of the increased plasma CGRP, the liver, spleen, small intestine, lungs, and heart were harvested, and tissue CGRP was assayed at 10 h after CLP in additional animals. Only the small intestine showed a significant increase in tissue levels of CGRP (by 129%, P < 0.05). Determination of portal vs. systemic levels of CGRP indicates that portal CGRP was 65.7 +/- 22.7% higher than the systemic level at 10 h after CLP, whereas portal CGRP in sham-operated rats was only 4.9 +/- 2.1% higher. Immunohistochemistry examination revealed that CGRP-positive stainings increased in the intestinal tissue but not in the liver at 10 h after the onset of sepsis. The distribution of CGRP stainings was associated with intestinal nerve fibers. These results, taken together, demonstrate that upregulation of CGRP occurs transiently during the progression of sepsis (at the late phase of the hyperdynamic sepsis), and the gut appears to be a major source of such an increase in circulating levels of this peptide.  相似文献   

11.
The transient receptor potential vanilloid 1 (TRPV1) is primarily localized to sensory nerve fibers and is associated with the stimulation of pain and inflammation. TRPV1 knockout (TRPV1KO) mice show enhanced LPS-induced sepsis compared with wild type (WT). This implies that TRPV1 may have a key modulatory role in increasing the beneficial and reducing the harmful components in sepsis. We investigated immune and inflammatory mechanisms in a cecal ligation and puncture (CLP) model of sepsis over 24 h. CLP TRPV1KO mice exhibited significant hypothermia, hypotension, and organ dysfunction compared with CLP WT mice. Analysis of the inflammatory responses at the site of initial infection (peritoneal cavity) revealed that CLP TRPV1KO mice exhibited: 1) decreased mononuclear cell integrity associated with apoptosis, 2) decreased macrophage tachykinin NK(1)-dependent phagocytosis, 3) substantially decreased levels of nitrite (indicative of NO) and reactive oxygen species, 4) increased cytokine levels, and 5) decreased bacteria clearance when compared with CLP WT mice. Therefore, TRPV1 deletion is associated with impaired macrophage-associated defense mechanisms. Thus, TRPV1 acts to protect against the damaging impact of sepsis and may influence the transition from local to a systemic inflammatory state.  相似文献   

12.
Myocardial dysfunction is a major consequence of septic shock and contributes to the high mortality of sepsis. We have previously reported that glucan phosphate (GP) significantly increased survival in a murine model of cecal ligation and puncture (CLP)-induced sepsis. In the present study, we examined the effect of GP on cardiac dysfunction in CLP-induced septic mice. GP was administered to ICR/HSD mice 1 h before induction of CLP. Sham surgically operated mice served as control. Cardiac function was significantly decreased 6 h after CLP-induced sepsis compared with sham control. In contrast, GP administration prevented CLP-induced cardiac dysfunction. Macrophage migration inhibitory factor (MIF) has been implicated as a major factor in cardiomyocyte apoptosis and cardiac dysfunction during septic shock. CLP increased myocardial MIF expression by 88.3% (P < 0.05) and cardiomyocyte apoptosis by 7.8-fold (P < 0.05) compared with sham control. GP administration, however, prevented CLP-increased MIF expression and decreased cardiomyocyte apoptosis by 51.2% (P < 0.05) compared with untreated CLP mice. GP also prevented sepsis-caused decreases in phospho-Akt, phospho-GSK-3beta, and Bcl-2 levels in the myocardium of septic mice. These data suggest that GP treatment attenuates cardiovascular dysfunction in fulminating sepsis. GP administration also activates the phosphoinositide 3-kinase/Akt pathway, decreases myocardial MIF expression, and reduces cardiomyocyte apoptosis.  相似文献   

13.
This study investigated the effect of dietary fish oil on systemic inflammation and hepatic injury in mice with polymicrobial sepsis. Male ICR mice were assigned to a control group (C, n=30) and a fish oil group (FO, n=30). Mice in the C group were fed a semi-purified diet with 10% soybean oil, and those in the FO group were fed a fish oil diet (2.5% fish oil+7.5% soybean oil; w/w). Three weeks later, sepsis was induced by cecal ligation and puncture (CLP), and mice were sacrificed at 0, 6 and 24 h after CLP, respectively. Results showed that compared with C group, the FO group had lower plasma levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-10, and nitrite at 6 and 24 h after CLP. Also, peritoneal lavage fluid concentrations of TNF-α and prostaglandin (PG) E2 were significantly lower at 24 h in the FO than in the C group. The FO group had lower myeloperoxidase activities at 6 h after CLP in various organs. Plasma aminotransferase and alanine aminotransferase activities revealed significantly decreased in the FO group. The DNA-binding activity of peroxisome proliferators-activated receptor gamma (PPARγ) and mRNA expression of I kappaB alpha (IκBα) were up-regulated while nuclear factor (NF)-κB p65 DNA-binding activity, inducible nitric oxide synthase protein expression and the concentration of nitrotyrosine were significantly decreased in the FO group in liver after CLP. These results indicate that dietary fish oil administration may attenuate systemic inflammation and up-regulate hepatic PPARγ DNA-binding activity, which may consequently have ameliorated liver injury in these septic mice.  相似文献   

14.
15.
Organ dysfunction is a major concern in sepsis pathophysiology and contributes to its high mortality rate. Neutrophil extracellular traps (NETs) have been implicated in endothelial damage and take part in the pathogenesis of organ dysfunction in several conditions. NETs also have an important role in counteracting invading microorganisms during infection. The aim of this study was to evaluate systemic NETs formation, their participation in host bacterial clearance and their contribution to organ dysfunction in sepsis. C57Bl/6 mice were subjected to endotoxic shock or a polymicrobial sepsis model induced by cecal ligation and puncture (CLP). The involvement of cf-DNA/NETs in the physiopathology of sepsis was evaluated through NETs degradation by rhDNase. This treatment was also associated with a broad-spectrum antibiotic treatment (ertapenem) in mice after CLP. CLP or endotoxin administration induced a significant increase in the serum concentrations of NETs. The increase in CLP-induced NETs was sustained over a period of 3 to 24 h after surgery in mice and was not inhibited by the antibiotic treatment. Systemic rhDNase treatment reduced serum NETs and increased the bacterial load in non-antibiotic-treated septic mice. rhDNase plus antibiotics attenuated sepsis-induced organ damage and improved the survival rate. The correlation between the presence of NETs in peripheral blood and organ dysfunction was evaluated in 31 septic patients. Higher cf-DNA concentrations were detected in septic patients in comparison with healthy controls, and levels were correlated with sepsis severity and organ dysfunction. In conclusion, cf-DNA/NETs are formed during sepsis and are associated with sepsis severity. In the experimental setting, the degradation of NETs by rhDNase attenuates organ damage only when combined with antibiotics, confirming that NETs take part in sepsis pathogenesis. Altogether, our results suggest that NETs are important for host bacterial control and are relevant actors in the pathogenesis of sepsis.  相似文献   

16.
Kim JY  Lee SM 《Life sciences》2004,75(16):2015-2026
The aim of this study was to investigate the effects of ascorbic acid on hepatic vasoregulatory gene expression during polymicrobial sepsis. Rats were subjected to polymicrobial sepsis by cecal ligation and puncture (CLP). Rats received either vehicle (n = 10) or ascorbic acid (AA, 100 mg/kg, n = 10) intravenously immediately after the CLP procedure. Serum aminotransferase levels and hepatic lipid peroxides markedly increased 24 h after CLP and this increase was attenuated by AA treatment. The hepatic concentrations of reduced glutathione decreased in CLP animals. This decrease was inhibited by AA. CLP significantly increased the mRNA level of ET-1 (p < 0.01) and ETB receptor (p < 0.01) in livers; an increase that was prevented by AA treatment. There were no significant changes in ETA mRNA expression among any of the experimental groups. There were significant increases in the mRNA expression of nitric oxide synthases (p < 0.01) and heme oxygenase-1 (p < 0.01) in livers from CLP animals. This increase was prevented by AA treatment. The expression of tumor necrosis factor-alpha and cyclooxygenase-2 mRNAs significantly increased 4.9-fold (p < 0.01) and 4.4-fold (p < 0.01) in livers from CLP animals, respectively. This increase was attenuated by AA treatment. Our data suggest that AA reduces oxidative stress and lipid peroxidation, regulates the hepatic vasoregulatory gene expression in polymicrobial sepsis and thus it could reduce hepatic microvascular dysfunction during sepsis.  相似文献   

17.
In sepsis, toll-like receptor (TLR)-4 modulates the migration of neutrophils to infectious foci, favoring bacteremia and mortality. In experimental sepsis, organ dysfunction and cytokines released by activated macrophages can be reduced by gastrin-releasing peptide (GRP) receptor (GRPR) antagonist RC-3095. Here we report a link between GRPR and TLR-4 in experimental models and in sepsis patients. RAW 264.7 culture cells were exposed to lipopolysaccharide (LPS) or tumor necrosis factor (TNF)-α and RC-3095 (10 ng/mL). Male Wistar rats were subjected to cecal ligation and puncture (CLP), and RC-3095 was administered (3 mg/kg, subcutaneously); after 6 h, we removed the blood, bronchoalveolar lavage, peritoneal lavage and lung. Human patients with a clinical diagnosis of sepsis received a continuous infusion with RC-3095 (3 mg/kg, intravenous) over a period of 12 h, and plasma was collected before and after RC-3095 administration and, in a different set of patients with systemic inflammatory response syndrome (SIRS) or sepsis, GRP plasma levels were determined. RC-3095 inhibited TLR-4, extracellular-signal–related kinase (ERK)-1/2, Jun NH2-terminal kinase (JNK) and Akt and decreased activation of activator protein 1 (AP-1), nuclear factor (NF)-κB and interleukin (IL)-6 in macrophages stimulated by LPS. It also decreased IL-6 release from macrophages stimulated by TNF-α. RC-3095 treatment in CLP rats decreased lung TLR-4, reduced the migration of cells to the lung and reduced systemic cytokines and bacterial dissemination. Patients with sepsis and systemic inflammatory response syndrome have elevated plasma levels of GRP, which associates with clinical outcome in the sepsis patients. These findings highlight the role of GRPR signaling in sepsis outcome and the beneficial action of GRPR antagonists in controlling the inflammatory response in sepsis through a mechanism involving at least inhibition of TLR-4 signaling.  相似文献   

18.
Using a murine model of sepsis, we found that the balance of tissue pro- to anti-inflammatory cytokines directly correlated with severity of infection and mortality. Sepsis was induced in C57BL/6 mice by cecal ligation and puncture (CLP). Liver tissue was analyzed for levels of IL-1beta, IL-1 receptor antagonist (IL-1ra), tumor necrosis factor (TNF)-alpha, and soluble TNF receptor 1 by ELISA. Bacterial DNA was measured using quantitative real-time PCR. After CLP, early predominance of proinflammatory cytokines (6 h) transitioned to anti-inflammatory predominance at 24 h. The elevated anti-inflammatory cytokines were mirrored by increased tissue bacterial levels. The degree of anti-inflammatory response compared with proinflammatory response correlated with the bacterial concentration. To modulate the timing of the anti-inflammatory response, mice were treated with IL-1ra before CLP. This resulted in decreased proinflammatory cytokines, earlier bacterial load, and increased mortality. These studies show that the initial tissue proinflammatory response to sepsis is followed by an anti-inflammatory response. The anti-inflammatory phase is associated with increased bacterial load and mortality. These data suggest that it is the timing and magnitude of the anti-inflammatory response that predicts severity of infection in a murine model of sepsis.  相似文献   

19.
This study examined the role of nitric oxide (NO) on the expression of the hepatic vasoregulatory gene during polymicrobial sepsis. Aminoguanidine (AG, 100 mg/kg) or Nomega-nitro-L-arginine methyl ester (L-NAME, 100 mg/kg) was injected intraperitoneally at 0, 3, 6, 10, and 20 h after a cecal ligation and puncture (CLP). The heart rate increased 24 h after the CLP, and this increase was attenuated by L-NAME and further attenuated by AG. The mean arterial pressure in the CLP animals did not change significantly 24 h after the onset of sepsis but was increased after the L-NAME injection. Sepsis increased the serum aminotransferase levels, which were attenuated by AG but augmented by L-NAME. CLP increased the mRNA level of the ET-1 and ETB receptors in the liver. This increase was prevented by AG but augmented by L-NAME. The level of iNOS and HO-1 mRNA expression were increased by CLP, which was prevented by both AG and L-NAME. The level of TNF-alpha and COX-2 mRNA expression increased after CLP, and was attenuated by AG. These results show that iNOS and eNOS are regulated differently in sepsis. While eNOS appears to have a protective role in liver microcirculation, the strong upregulation of iNOS might contribute to a microvascular dysfunction and hepatic injury.  相似文献   

20.
Sepsis frequently occurs after hemorrhage, trauma, burn, or abdominal surgery and is a leading cause of morbidity and mortality in severely ill patients. We performed experiments to delineate intestinal molecular and functional motility consequences of polymicrobial sepsis in the clinically relevant cecal ligation and puncture (CLP) sepsis model. CLP was performed on male Sprague-Dawley rats. Gastrointestinal transit, colonic in vivo pressure recordings, and in vitro muscle contractions were recorded. Histochemistry was performed for macrophages, monocytes, and neutrophils. Inflammatory gene expressions were quantified by real-time RT-PCR. CLP delayed gastrointestinal transit, decreased colonic pressures, and suppressed in vivo circular muscle contractility of the jejunum and colon over a 4-day period. A leukocytic infiltrate of monocytes and neutrophils developed over 24 h. Real-time RT-PCR demonstrated a significant temporal elevation in IL-6, IL-1beta, monocyte chemoattractant protein-1, and inducible nitric oxide synthase, with higher expression levels of IL-6 and inducible nitric oxide synthase in colonic extracts compared with small intestine. Polymicrobial CLP sepsis induces a complex inflammatory response within the intestinal muscularis with the recruitment of leukocytes and elaboration of mediators that inhibit intestinal muscle function. Differences were elucidated between endotoxin and CLP models of sepsis, as well as a heterogeneous regional response of the gastrointestinal tract to CLP. Thus the intestine is not only a source of bacteremia but also an important target of bacterial products with major functional consequences to intestinal motility and the generation of cytokines, which participate in the development of multiple organ failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号