首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Autoantibodies present in the serum of patients with a variety of inflammatory diseases have proven useful as diagnostic markers and as probes with which to elucidate biochemical and signaling pathways. The mechanisms governing the generation of autoantibodies remain elusive, constituting a critical missing link in our understanding of rheumatologic illnesses. Several lines of experimentation in recent years have strongly implicated events surrounding cell death in this process. This review will address the potential role played by death-specific modifications of autoantigens in bypassing tolerance to highly conserved autoantigens, including nucleic acids, lipids, and proteins.  相似文献   

3.
J. S. Percy  A. S. Russell 《CMAJ》1975,112(11):1320-1328
Improved laboratory investigative techniques now foster an increased clinical interest in and awareness of the rheumatologic disease. This review is a discussion of the relevance of laboratory tests used in the more common rheumatologic disorders and of their role in both the diagnosis and assessment of these diseases from the standpoint of the practising clinician.  相似文献   

4.
Misfolded proteins, endoplasmic reticulum stress and neurodegeneration   总被引:18,自引:0,他引:18  
The accumulation of misfolded proteins (e.g. mutant or damaged proteins) triggers cellular stress responses that protect cells against the toxic buildup of such proteins. However, prolonged stress due to the buildup of these toxic proteins induces specific death pathways. Dissecting these pathways should be valuable in understanding the pathogenesis of, and ultimately in designing therapy for, neurodegenerative diseases that feature misfolded proteins.  相似文献   

5.
Cohen J  Schulten K 《Biophysical journal》2007,93(10):3591-3600
Recent advances in computational biology have made it possible to map the complete network and energy profile of gas migration pathways inside proteins. Although networks of O(2) pathways have already been characterized for a small number of proteins, the general properties and locations of these pathways have not been previously compared between proteins. In this study, maps of the O(2) pathways inside 12 monomeric globins were computed. It is found that, despite the conserved tertiary structure fold of the studied globins, the shape and topology of O(2) pathway networks exhibit a large variability between different globins, except when two globins are nearly identical. The locations of the O(2) pathways are, however, found to be correlated with the location of large hydrophobic residues, and a similar correlation is observed in two unrelated protein families: monomeric globins and copper-containing amine oxidases. The results have implications for the evolution of gas pathways in proteins and for protein engineering applications involving modifications of these pathways.  相似文献   

6.
Proper subcellular localization is critical for proteins to perform their roles in cellular functions. Proteins are transported by different cellular sorting pathways, some of which take a protein through several intermediate locations until reaching its final destination. The pathway a protein is transported through is determined by carrier proteins that bind to specific sequence motifs. In this article, we present a new method that integrates protein interaction and sequence motif data to model how proteins are sorted through these sorting pathways. We use a hidden Markov model (HMM) to represent protein sorting pathways. The model is able to determine intermediate sorting states and to assign carrier proteins and motifs to the sorting pathways. In simulation studies, we show that the method can accurately recover an underlying sorting model. Using data for yeast, we show that our model leads to accurate prediction of subcellular localization. We also show that the pathways learned by our model recover many known sorting pathways and correctly assign proteins to the path they utilize. The learned model identified new pathways and their putative carriers and motifs and these may represent novel protein sorting mechanisms. Supplementary results and software implementation are available from http://murphylab.web.cmu.edu/software/2010_RECOMB_pathways/.  相似文献   

7.
The known roles for calcium-binding proteins in developmental signaling pathways are reviewed. Current information on the calcium-binding characteristics of three classes of cell-surface developmental signaling proteins (EGF-domain proteins, cadherins and integrins) is presented together with an overview of the intra-cellular pathways downstream of these surface receptors. The developmental roles delineated to date for the universal intracellular calcium sensor, calmodulin, and its targets, and for calcium-binding regulators of the cytoskeleton are also reviewed.© Kluwer Academic Publishers  相似文献   

8.
Trends in increased tuberculosis infection and a fatality rate of approximately 23% have necessitated the search for alternative biomarkers using newly developed postgenomic approaches. Here we provide a systematic analysis of Mycobacterium tuberculosis (Mtb) by directly profiling its gene products. This analysis combines high-throughput proteomics and computational approaches to elucidate the globally expressed complements of the three subcellular compartments (the cell wall, membrane, and cytosol) of Mtb. We report the identifications of 1044 proteins and their corresponding localizations in these compartments. Genome-based computational and metabolic pathways analyses were performed and integrated with proteomics data to reconstruct response networks. From the reconstructed response networks for fatty acid degradation and lipid biosynthesis pathways in Mtb, we identified proteins whose involvements in these pathways were not previously suspected. Furthermore, the subcellular localizations of these expressed proteins provide interesting insights into the compartmentalization of these pathways, which appear to traverse from cell wall to cytoplasm. Results of this large-scale subcellular proteome profile of Mtb have confirmed and validated the computational network hypothesis that functionally related proteins work together in larger organizational structures.  相似文献   

9.
Protein sorting by tyrosine-based signals: adapting to the Ys and wherefores   总被引:24,自引:0,他引:24  
The endocytic and secretory pathways of eukaryotic cells consist of an array of membrane-bound compartments, each of which contains a characteristic cohort of transmembrane proteins. Understanding how these proteins are targeted to and maintained within their appropriate compartments will be crucial for unravelling the mysteries of organelle biogenesis and function. A common event in the sorting of many transmembrane proteins is the interaction between a sorting signal in the cytosolic domain of the targeted protein and a component of an organellar protein coat. Here, we summarize recent findings on the mechanism of sorting by one type of signal, characterized by the presence of a critical tyrosine (Y) residue, and attempt to integrate these findings into a hypothetical model for protein sorting in the endocytic and late (post-Golgi) secretory pathways.  相似文献   

10.
The SNARE proteins are required for membrane fusion during intracellular vesicular transport and for its specificity. Only the unique combination of SNARE proteins (cognates) can be bound and can lead to membrane fusion, although the characteristics of the possible specificity of the binding combinations encoded in the SNARE sequences have not yet been determined. We discovered by whole genome sequence analysis that sequence motifs (conserved sequences) in the SNARE motif domains for each protein group correspond to localization sites or transport pathways. We claim that these motifs reflect the specificity of the binding combinations of SNARE motif domains. Using these motifs, we could classify SNARE proteins from 48 organisms into their localization sites or transport pathways. The classification result shows that more than 10 SNARE subgroups are kingdom specific and that the SNARE paralogs involved in the plasma membrane-related transport pathways have developed greater variations in higher animals and higher plants than those involved in the endoplasmic reticulum-related transport pathways throughout eukaryotic evolution.  相似文献   

11.
Recent microarray experiments suggested that Burkholderia xenovorans LB400, a potent polychlorinated biphenyl (PCB)-degrading bacterium, utilizes up to three apparently redundant benzoate pathways and a C(1) metabolic pathway during biphenyl and benzoate metabolism. To better characterize the roles of these pathways, we performed quantitative proteome profiling of cells grown on succinate, benzoate, or biphenyl and harvested during either mid-logarithmic growth or the transition between the logarithmic and stationary growth phases. The Bph enzymes, catabolizing biphenyl, were approximately 16-fold more abundant in biphenyl- versus succinate-grown cells. Moreover, the upper and lower bph pathways were independently regulated. Expression of each benzoate pathway depended on growth substrate and phase. Proteins specifying catabolism via benzoate dihydroxylation and catechol ortho-cleavage (ben-cat pathway) were approximately an order of magnitude more abundant in benzoate- versus biphenyl-grown cells at the same growth phase. The chromosomal copy of the benzoyl-coenzyme A (CoA) (box(C)) pathway was also expressed during growth on biphenyl: Box(C) proteins were approximately twice as abundant as Ben and Cat proteins under these conditions. By contrast, proteins of the megaplasmid copy of the benzoyl-CoA (box(M)) pathway were only detected in transition-phase benzoate-grown cells. Other proteins detected at increased levels in benzoate- and biphenyl-grown cells included general stress response proteins potentially induced by reactive oxygen species formed during aerobic aromatic catabolism. Finally, C(1) metabolic enzymes were present in biphenyl-grown cells during transition phase. This study provides insights into the physiological roles and integration of apparently redundant catabolic pathways in large-genome bacteria and establishes a basis for investigating the PCB-degrading abilities of this strain.  相似文献   

12.
We report here probable nutrient-sensing signal transduction pathways in Aspergillus nidulans, a model filamentous fungus, based on sequence homology studies with known Saccharomyces cerevisiae and Schizosaccharomyces pombe proteins. Specifically, we identified A. nidulans homologs for yeast proteins involved in (1) filamentation-invasion, (2) cAMP-PKA, (3) pheromone response, (4) cell integrity and (5) TOR signaling pathways. We have also studied autophagy, one of the most important cellular responses regulated by TOR signaling. The Basic Local Alignment Search Tool program "blastp" was used to assess the homology of proteins. We note that by using a highly conservative approach, 70% of the S. cerevisiae signal transduction proteins (107 proteins out of 153 proteins studied) have significant homologs in A. nidulans. Using a slightly less conservative approach, we are able to identify homologs for as high as 91% of the S. cerevisiae signal transduction proteins (139 proteins out of 153 proteins studied). The filamentation-invasion, cell integrity and TOR signaling pathways showed greatest similarity with S. cerevisiae, while the cAMP-PKA and pheromone response pathways showed greater similarity with S. pombe. Based on these results, probable pathways in A. nidulans were constructed using well-established S. cerevisiae and S. pombe models.  相似文献   

13.
Members of the intersectin (ITSN) family of scaffold proteins consist of multiple modular domains, each with distinct ligand preferences. Although ITSNs were initially implicated in the regulation of endocytosis, subsequent studies have revealed a more complex role for these scaffold proteins in regulation of additional biochemical pathways. In this study, we performed a high throughput yeast two-hybrid screen to identify additional pathways regulated by these scaffolds. Although several known ITSN binding partners were identified, we isolated more than 100 new targets for the two mammalian ITSN proteins, ITSN1 and ITSN2. We present the characterization of several of these new targets which implicate ITSNs in the regulation of the Rab and Arf GTPase pathways as well as regulation of the disrupted in schizophrenia 1 (DISC1) interactome. In addition, we demonstrate that ITSN proteins form homomeric and heteromeric complexes with each other revealing an added level of complexity in the function of these evolutionarily conserved scaffolds.  相似文献   

14.
The translocation of secretory and membrane proteins across the endoplasmic reticulum (ER) membrane is mediated by co-translational (via the signal recognition particle (SRP)) and post-translational mechanisms. In this study, we investigated the relative contributions of these two pathways in trypanosomes. A homologue of SEC71, which functions in the post-translocation chaperone pathway in yeast, was identified and silenced by RNA interference. This factor is essential for parasite viability. In SEC71-silenced cells, signal peptide (SP)-containing proteins traversed the ER, but several were mislocalized, whereas polytopic membrane protein biogenesis was unaffected. Surprisingly trypanosomes can interchangeably utilize two of the pathways to translocate SP-containing proteins except for glycosylphosphatidylinositol-anchored proteins, whose level was reduced in SEC71-silenced cells but not in cells depleted for SRP68, an SRP-binding protein. Entry of SP-containing proteins to the ER was significantly blocked only in cells co-silenced for the two translocation pathways (SEC71 and SRP68). SEC63, a factor essential for both translocation pathways in yeast, was identified and silenced by RNA interference. SEC63 silencing affected entry to the ER of both SP-containing proteins and polytopic membrane proteins, suggesting that, as in yeast, this factor is essential for both translocation pathways in vivo. This study suggests that, unlike bacteria or other eukaryotes, trypanosomes are generally promiscuous in their choice of mechanism for translocating SP-containing proteins to the ER, although the SRP-independent pathway is favored for glycosylphosphatidylinositol-anchored proteins, which are the most abundant surface proteins in these parasites.  相似文献   

15.
16.
PML and PML nuclear bodies: implications in antiviral defence   总被引:1,自引:0,他引:1  
Everett RD  Chelbi-Alix MK 《Biochimie》2007,89(6-7):819-830
  相似文献   

17.
Members of the newly discovered regulator of G protein signaling (RGS) families of proteins have a common RGS domain. This RGS domain is necessary for conferring upon RGS proteins the capacity to regulate negatively a variety of Galpha protein subunits. However, RGS proteins are more than simply negative regulators of signaling. RGS proteins can function as effector antagonists, and recent evidence suggests that RGS proteins can have positive effects on signaling as well. Many RGS proteins possess additional C- and N-terminal modular protein-binding domains and motifs. The presence of these additional modules within the RGS proteins provides for multiple novel regulatory interactions performed by these molecules. These regions are involved in conferring regulatory selectivity to specific Galpha-coupled signaling pathways, enhancing the efficacy of the RGS domain, and the translocation or targeting of RGS proteins to intracellular membranes. In other instances, these domains are involved in cross-talk between different Galpha-coupled signaling pathways and, in some cases, likely serve to integrate small GTPases with these G protein signaling pathways. This review discusses these C- and N-terminal domains and their roles in the biology of the brain-enriched RGS proteins. Methods that can be used to investigate the function of these domains are also discussed.  相似文献   

18.
Mitochondria provide the main source of energy to eukaryotic cells, oxidizing fats and sugars to generate ATP. Mitochondrial fatty acid β-oxidation (FAO) and oxidative phosphorylation (OXPHOS) are two metabolic pathways which are central to this process. Defects in these pathways can result in diseases of the brain, skeletal muscle, heart and liver, affecting approximately 1 in 5000 live births. There are no effective therapies for these disorders, with quality of life severely reduced for most patients. The pathology underlying many aspects of these diseases is not well understood; for example, it is not clear why some patients with primary FAO deficiencies exhibit secondary OXPHOS defects. However, recent findings suggest that physical interactions exist between FAO and OXPHOS proteins, and that these interactions are critical for both FAO and OXPHOS function. Here, we review our current understanding of the interactions between FAO and OXPHOS proteins and how defects in these two metabolic pathways contribute to mitochondrial disease pathogenesis.  相似文献   

19.
【背景】随着沙门菌对氟喹诺酮类药物的耐药性不断增强,对其耐药机理的研究显得尤为迫切和重要,蛋白质组学分析将为沙门菌的耐药机理研究提供新的靶点和方向。【目的】对鼠伤寒沙门菌诱导获得耐药性前后进行蛋白质组学分析,为深入研究沙门菌耐药机理奠定基础。【方法】用环丙沙星对鼠伤寒沙门菌ATCC13311进行耐药性诱导,利用串联质谱标签法(Tandem mass tag,TMT)对其耐药性进行差异蛋白的筛选和生物信息学分析,并选取15个差异蛋白进行平行反应监测(Parallel reaction monitoring,PRM)靶向蛋白验证。【结果】筛选出318个差异表达蛋白,其中上调159个,下调159个,涉及的KEGG通路主要包括细菌趋药性、ABC转运蛋白、双组分系统等;PRM定量到13个验证蛋白且变化趋势与TMT一致。【结论】通过TMT定量结合PRM靶向验证对鼠伤寒沙门菌耐药前后进行蛋白质组学分析,筛选出多个差异蛋白和代谢通路,包括外排泵相关蛋白、外膜蛋白、双组分相关蛋白及通路、细菌趋化性相关蛋白及通路等,为沙门菌氟喹诺酮类耐药机理的深入研究奠定了基础。  相似文献   

20.
The majority of the proteome in eukaryotic cells is targeted to organelles. To maintain protein homeostasis (proteostasis), distinct protein quality control (PQC) machineries operate on organelles, where they detect misfolded proteins, orphaned and mis-localized proteins and selectively target these proteins into different ubiquitin-dependent or -independent degradation pathways. Thereby, PQC prevents proteotoxic effects that would disrupt organelle integrity and cause cellular damage that leads to diseases. Here, we will discuss emerging mechanisms for PQC machineries at the Golgi apparatus, the central station for the sorting and the modification of proteins that traffic to the endo-lysosomal system, or along the secretory pathway to the PM and to the extracellular space. We will focus on Golgi PQC pathways that (1) retrieve misfolded and orphaned proteins from the Golgi back to the endoplasmic reticulum, (2) extract these proteins from Golgi membranes for proteasomal degradation, (3) or selectively target these proteins to lysosomes for degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号