首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Ileal pouch-anal anastomosis (IPAA) is an excellent surgical option for patients with chronic ulcerative colitis (CUC) requiring colectomy; however, persistent episodes of ileal pouch inflammation, or pouchitis, may result in debilitating postoperative complications. Because considerable evidence implicates substance P (SP) as an inflammatory mediator of CUC, we investigated whether SP participates in the pathophysiology of pouchitis. With the use of a rat model of IPAA that we developed, we showed that ileal pouch MPO levels and neurokinin 1 receptor (NK-1R) protein expression by Western blot analysis were significantly elevated 28 days after IPAA surgery. In situ hybridization and immunohistochemistry showed that the increase in NK-1R protein expression was localized to the lamina propria and epithelia of pouch ileum. The intraperitoneal administration of the NK-1R antagonist (NK-1RA) CJ-12,255 for 4 days, starting on day 28, was effective in reducing MPO levels. Starting on day 28, animals with IPAA were given 5% dextran sulfate sodium (DSS) in their drinking water for 4 days, which caused histological and physical signs of clinical pouchitis concomitant with significant increases in ileal pouch MPO concentrations as well as NK-1R protein expression by Western blot analysis. In situ hybridization and immunohistochemistry showed that the increase in NK-1R protein expression was especially evident in crypt epithelia of pouch ileum. When the NK-1RA was administered 1 day before starting DSS and continued for the duration of DSS administration, the physical signs of clinical pouchitis and the rise in MPO were prevented. These data implicate SP in the pathophysiology of pouchitis and suggest that NK-1RA may be of therapeutic value in the management of clinical pouchitis.  相似文献   

3.
4.
The effects of pleuran, beta-1,3 glucan isolated from Pleurotus ostreatus, were studied in a model of acute colitis induced by intracolonic administration of acetic acid. There was a reduction of the colonic damage score, colonic wet weight and wet/dry weight ratio 48 h after single luminal 2% pleuran suspension pretreatment. Similar results were obtained after repeated intraperitoneal administration of pleuran in doses of 30 and 100 mg/kg. Pleuran given orally as a 10% food component over 4 weeks was effective in reducing the extent of mucosal damage, but did not prevent the increase of myeloperoxidase in the injured colonic segment. In the segment without macroscopic evidence of inflammation, myeloperoxidase activity was significantly lower as documented by histological examination. The results indicate a possible role of this immunomodulator in the treatment of ulcerative colitis.  相似文献   

5.
Because neurotensin (NT) and its high-affinity receptor (NTR1) modulate immune responses, chloride secretion, and epithelial cell proliferation, we sought to investigate their role in the repair process that follows the development of mucosal injuries during a persistent inflammation. Colonic NT and NTR1, mRNA, and protein significantly increased only after dextran sodium sulfate (DSS)-induced inflammatory damage developed. Colitis-induced body weight loss, colonic myeloperoxidase activity, and histological damage were significantly enhanced by SR-48642 administration, a nonpeptide NTR1 antagonist, whereas continuous NT infusion ameliorated colitis outcome. To evaluate the NT and NTR1 role in tissue healing, mucosal inflammatory injury was established administering 3% DSS for 5 days. After DSS discontinuation, mice rapidly gained weight, ulcers were healed, and colonic NT, NTR1, and cyclooxygenase (COX)-2 mRNA levels were upregulated, whereas SR-48642 treatment caused a further body weight loss, ulcer enlargement, and a blunted colonic COX-2 mRNA upregulation. In a wound-healing model in vitro, NT-induced cell migration in the denuded area was inhibited by indomethacin but not by an antitransforming growth factor-beta neutralizing antibody. Furthermore, NT significantly increased COX-2 mRNA levels by 2.4-fold and stimulated PGE(2) release in HT-29 cells. These findings suggest that NT and NTR1 are part of the network activated after mucosal injuries and that NT stimulates epithelial restitution at least, in part, through a COX-2 dependent pathway.  相似文献   

6.
Goji berry (Lycium barbarum) exerts immune modulation and suppresses inflammation in vitro and in vivo. We hypothesized that Goji berry had beneficial effects on dextran sulfate sodium (DSS)-induced colitis in C57BL/6 mice through suppressing inflammation. Six-week-old male C57BL/6 mice were supplemented with a standard AIN-93G diet with or without 1% (w/w) Goji berry for 4 weeks. Then, colitis was induced by supplementing 3% DSS in drinking water for 7 days, followed by 7 days of remission period to mimic ulcerative colitis symptoms. Goji berry supplementation ameliorated DSS-induced body weight loss, diminished diarrhea and gross bleeding, and resulted in a significantly decreased disease activity index, as well as DSS-associated colon shortening. Moreover, 30% mortality rate caused by DSS-induced colitis was avoided because of Goji berry supplementation. Histologically, Goji berry ameliorated colonic edema, mucosal damage and neutrophil infiltration into colonic intestinal tissue in response to DSS challenge, which was associated with decreased expression of chemokine (C-X-C motif) ligand 1 and monocyte chemoattractant protein-1, as well as inflammatory mediators interleukin-6 and cyclooxygenase-2. In conclusion, Goji supplementation confers protective effects against DSS­induced colitis, which is associated with decreased neutrophil infiltration and suppressed inflammation. Thus, dietary Goji is likely beneficial to inflammatory bowel disease patients as a complementary therapeutic strategy.  相似文献   

7.
Xia XM  Wang FY  Zhou J  Hu KF  Li SW  Zou BB 《PloS one》2011,6(11):e27282
Ulcerative colitis is a gastrointestinal disorder characterized by local inflammation and impaired epithelial barrier. Previous studies demonstrated that CXC chemokine receptor 4 (CXCR4) antagonists could reduce colonic inflammation and mucosal damage in dextran sulfate sodium (DSS)-induced colitis. Whether CXCR4 antagonist has action on intestinal barrier and the possible mechanism, is largely undefined. In the present study, the experimental colitis was induced by administration of 5% DSS for 7 days, and CXCR4 antagonist AMD3100 was administered intraperitoneally once daily during the study period. For in vitro study, HT-29/B6 colonic cells were treated with cytokines or AMD3100 for 24 h until assay. DSS-induced colitis was characterized by morphologic changes in mice. In AMD3100-treated mice, epithelial destruction, inflammatory infiltration, and submucosal edema were markedly reduced, and the disease activity index was also significantly decreased. Increased intestinal permeability in DSS-induced colitis was also significantly reduced by AMD3100. The expressions of colonic claudin-1, claudin-3, claudin-5, claudin-7 and claudin-8 were markedly decreased after DSS administration, whereas colonic claudin-2 expression was significantly decreased. Treatment with AMD3100 prevented all these changes. However, AMD3100 had no influence on claudin-3, claudin-5, claudin-7 and claudin-8 expression in HT-29/B6 cells. Cytokines as TNF-α, IL-6, and IFN-γ increased apoptosis and monolayer permeability, inhibited the wound-healing and the claudin-3, claudin-7 and claudin-8 expression in HT-29/B6 cells. We suggest that AMD3100 acted on colonic claudin expression and intestinal barrier function, at least partly, in a cytokine-dependent pathway.  相似文献   

8.
Ellagic acid (EA), a naturally occurring plant phenol, has the antioxidant and anti-inflammatory activities. In the present study, we examined the effect of EA contained in microspheres on the ulcerative colitis induced experimentally in rats by dextran sulfate sodium (DSS). Experimental colitis was induced in male Fisher 344 rats by daily treatment with 3% DSS solution in drinking water for 7 days. EA of microspheres (mcEA: 1 approximately 10 mg/kg as EA contents) was administered p.o. twice daily for 6 days. In a preliminary study, we found that these microsphere capsules, when administered p.o., are effectively dissolved in the proximal to the ileo-cecal junction and distributed to the terminal ileum and the colon. The ulceration area, colon length, and mucosal myeloperoxidase (MPO) activity as well as thiobarbituric acid-reactive substances (TBARS) were measured on 7th day after the onset of DSS treatment. The DSS treatment for 7 days caused severe mucosal lesions in the colon, accompanied with the increases of MPO activity and TBARS as well as the decreases of body weight gain and colon length. Administration of mcEA reduced the severity of DSS-induced colitis in a dose-dependent manner, and a significant effect was observed at 10 mg/kg, the ED50 being 2.3 mg/kg. This mcEA treatment also significantly mitigated changes in various biochemical parameters in the colonic mucosa induced by DSS. Although plain EA (without using microspheres) was also effective in reducing the severity of DSS-induced colitis, this effect was much less potent as compared with that of mcEA; the ED50 was about 15 times higher than that of mcEA. In addition, a significant effect on DSS-induced colitis was also obtained by intra-rectal administration of superoxide dismutase, an anti-oxidative agent. These results suggest that EA prevents the ulcerative colitis induced by DSS, probably by radical scavenging and/or anti-oxidative actions. The microspheres used in this study may be useful for delivering an orally administered drug specifically to the colon.  相似文献   

9.
The vagus nerve inhibits the response to systemic administration of endotoxin, and we have recently extended this observation to show that the vagus attenuates acute experimental colitis in mice. The purpose of the present study was to determine whether there is a tonic counterinflammatory influence of the vagus on colitis maintained over several weeks. We assessed disease activity index, macroscopic and histological damage, myeloperoxidase (MPO) activity, and Th1 and Th2 cytokine profiles in chronic colitis induced by administration of dextran sodium sulfate (DSS) in drinking water for three cycles during 5 days with 11 days of rest between each cycle (DSS 3, 2, 2%) in healthy and vagotomized C57BL/6 mice and in mice deficient in macrophage-colony stimulating factor (M-CSF). A pyloroplasty was performed in vagotomized mice. Vagotomy accelerated the onset and the severity of inflammation during the first and second but not the third cycle. Although macroscopic scores were not significantly changed, histological scores as well as MPO activity and colonic tissue levels of IL-1alpha, TNF-alpha, IFN-gamma, and IL-18 but not IL-4 were significantly increased in vagotomized mice compared with sham-operated mice that received DSS. In control mice (without colitis), vagotomy per se did not affect any inflammatory marker. Vagotomy had no effect on the colitis in M-CSF-derived macrophage-deficient mice. These results indicate that the vagus protects against acute relapses on a background of chronic inflammation. Identification of the molecular mechanisms underlying the protective role of parasympathetic nerves opens a new therapeutic avenue for the treatment of acute relapses of chronic inflammatory bowel disease.  相似文献   

10.
Inflammatory bowel disease (IBD) encompasses a range of intestinal pathologies, the most common of which are ulcerative colitis (UC) and Crohn''s Disease (CD). Both UC and CD, when present in the colon, generate a similar symptom profile which can include diarrhea, rectal bleeding, abdominal pain, and weight loss.1 Although the pathogenesis of IBD remains unknown, it is described as a multifactorial disease that involves both genetic and environmental components.2There are numerous and variable animal models of colonic inflammation that resemble several features of IBD. Animal models of colitis range from those arising spontaneously in susceptible strains of certain species to those requiring administration of specific concentrations of colitis-inducing chemicals, such as dextran sulphate sodium (DSS). Chemical-induced models of gut inflammation are the most commonly used and best described models of IBD. Administration of DSS in drinking water produces acute or chronic colitis depending on the administration protocol.3 Animals given DSS exhibit weight loss and signs of loose stool or diarrhea, sometimes with evidence of rectal bleeding.4,5 Here, we describe the methods by which colitis development and the resulting inflammatory response can be characterized following administration of DSS. These methods include histological analysis of hematoxylin/eosin stained colon sections, measurement of pro-inflammatory cytokines, and determination of myeloperoxidase (MPO) activity, which can be used as a surrogate marker of inflammation.6The extent of the inflammatory response in disease state can be assessed by the presence of clinical symptoms or by alteration in histology in mucosal tissue. Colonic histological damage is assessed by using a scoring system that considers loss of crypt architecture, inflammatory cell infiltration, muscle thickening, goblet cell depletion, and crypt abscess.7 Quantitatively, levels of pro-inflammatory cytokines with acute inflammatory properties, such as interleukin (IL)-1β, IL-6 and tumour necrosis factor (TNF)-α,can be determined using conventional ELISA methods. In addition, MPO activity can be measured using a colorimetric assay and used as an index of inflammation.8In experimental colitis, disease severity is often correlated with an increase in MPO activity and higher levels of pro-inflammatory cytokines. Colitis severity and inflammation-associated damage can be assessed by examining stool consistency and bleeding, in addition to assessing the histopathological state of the intestine using hematoxylin/eosin stained colonic tissue sections. Colonic tissue fragments can be used to determine MPO activity and cytokine production. Taken together, these measures can be used to evaluate the intestinal inflammatory response in animal models of experimental colitis.  相似文献   

11.
Neuropeptide Y (NPY), a 36-amino acid peptide, is widely expressed in the central and peripheral nervous system. NPY is involved in the regulation of several physiological processes, including energy balance, food intake, and nociception. Recently, we showed that activation of the NPY Y1 receptor is required for cutaneous neurogenic inflammation. Because neurogenic inflammation could participate in colitis, the aim of this study was to investigate the role of the NPY Y1 receptor in acute colitis using mice genetically deficient of NPY Y1 receptor. In addition, the Y1 receptor antagonist H409/22, was also investigated. Animals received 5% dextran sulfate sodium (DSS) in drinking water for 7 days. One group of animals also received the Y1 receptor antagonist, administered intraperitoneally twice daily. Disease activity was assessed daily for 7 days in all groups. DSS induced colitis in all animals resulting in weight loss, diarrhea, epithelial damage, crypt shortening, and inflammatory infiltration. However, clinical manifestation of the disease was markedly attenuated in Y1 null mutant mice as well as in mice receiving the Y1 antagonist. Histological analysis showed that tissue damage and ulceration were less severe in Y1-deficient animals. Consistent with the clinical and histological data, capsaicin-induced plasma extravasation was significantly reduced in the gut of Y1 null mutant animals compared with treated wild-type animals. These data indicate that NPY and Y1 receptor are involved in intestinal inflammation and suggest that inhibition of NPY Y1 receptor signaling may provide a novel therapeutic approach in the treatment of colonic inflammation.  相似文献   

12.
We have previously shown that the receptor for substance P (SP), neurokinin-1 receptor (NK-1R), is a marker of human mucosal but not peripheral mononuclear cells. In the present study, we investigate NK-1R expression in the human colonic mucosa in vivo, particularly in the epithelial cells. We investigate the influence of proinflammatory Th1 cytokines and SP on expression and function of NK-1R in colonic epithelial cells in vitro. Using in situ hybridization to detect NK-1R mRNA, and immunohistochemistry to detect NK-1R protein, colonic epithelial cells were found to express NK-1R in vivo. In contrast, colon epithelial cell lines (Caco-2, HT29, SW620, T84) were negative for NK-1R mRNA and protein. However, stimulation with a proinflammatory cytokine cocktail containing IFN-gamma, TNF-alpha, and IL-1beta, caused induction of NK-1R expression. Expression of NK-1R in human colonic epithelial cells in vivo may therefore reflect cytokine conditioning by the mucosal microenvironment. SP did not alter ion transport in monolayers of cytokine-treated T84 cells. While SP stimulated epithelial ion transport in colonic mucosae ex vivo, this was not a direct effect of SP on the epithelial cells, and appeared to be neurally mediated. However, SP (10(-10)-10(-8) M) elicited a dose-dependent proliferative effect on cytokine-stimulated, but not unstimulated, SW620 cells. Proliferation of the epithelial cells in response to SP was mediated specifically via cytokine-induced NK-1R, since an NK-1R-specific antagonist (Spantide 1) completely blocked SP-mediated proliferation in the cytokine-treated cells. Our results therefore demonstrate that proinflammatory cytokines induce expression of NK-1R in human colonic epithelial cell lines, and that SP induces proliferation of the epithelial cells via cytokine-induced NK-1R.  相似文献   

13.
The aim of this study is to examine the anti-inflammatory effect of Euphorbia supina (ES) ethanol extract in dextran sulfate sodium (DSS)-induced experimental colitis model. ES was per orally administered at different doses of 4 or 20 mg/kg body weight with 5% DSS in drinking water for 7 days. Twenty mg/kg of ES administration regulated body weight decrease, recovered colon length shortening, and increased disease activity index score and myeloperoxidase level in DSS-induced colitis. Histological features showed that 20 mg/kg of ES administration suppressed edema, mucosal damage, and the loss of crypts induced by DSS. Furthermore, ES suppressed the expressions of COX-2, iNOS, NF-kB, IkBα, pIkBα in colon tissue. These findings demonstrated a possible effect of amelioration of ulcerative colitis and could be clinically applied.  相似文献   

14.
This study aimed to 1) assess whether substance P (SP) acts via neurokinin (NK)-1 and NK-2 receptors to stimulate neurogenic inflammation (indicated by formation of ICAM-1 expression and oxidative stress) following oil smoke exposure (OSE) in rats; and 2) determine if pretreatment with antioxidants ameliorates the deleterious effects of OSE. Rats were pretreated with NK-1 receptor antagonist CP-96345, NK-2 receptor antagonist SR-48968, vitamin C, or catechins. OSE was for 30-120 min. Rats were killed 0-8 h later. Total lung resistance (RL), airway smooth muscle activity (ASMA), lung ICAM-1 expression, neurogenic plasma extravasation (via India ink and Evans blue dye), bronchoalveolar lavage fluid SP concentrations, and reactive oxygen species formation [via lucigenin- and luminal-amplified chemiluminescence (CL)] were assessed. Lung histology was performed. SP concentrations increased significantly in nonpretreated rats following OSE in a dose-dependent manner. RL and total ASMA increased over time after OSE. Vitamin C and catechin pretreatments were associated with significantly reduced lucigenin CL 2 and 4 h after OSE. Pretreatment with catechins significantly reduced luminal CL counts 4 and 8 h after OSE. Evans blue levels were significantly reduced following 60 and 120 min of OSE in catechin- and CP-96345-pretreated rats. ICAM-1 protein expression was significantly decreased in all pretreatment groups after OSE. Thickening of the alveolar capillary membrane, focal hemorrhaging, interstitial pneumonitis, and peribronchiolar inflammation were apparent in OSE lungs. These findings suggest that SP acts via the NK-1 receptor to provoke neurogenic inflammation, oxidative stress, and ICAM-1 expression after OSE in rats.  相似文献   

15.
The primary aim of this study was to determine whether the oral administration of AD-lico?, a functional extract from Glycyrrhiza inflata in combination with 5-aminosalicylic acid (5-ASA) could ameliorate the inflammatory symptoms in dextran sulfate sodium (DSS)-induced colitis in rodents. This DSS rodent model is used to study drug candidates for colitis, as part of the spectrum of diseases falling under the inflammatory bowel disease (IBD) category. Here, with oral AD-lico? administration, there was a substantial disruption of the colonic architectural changes due to DSS and a significant reduction in colonic myeloperoxidase (MPO) activity, a marker of colitis. In the same samples, there were also reduced levels of colonic and serum IL-6 in the oral AD-lico? treated rats. This study also addressed the possible mechanisms for AD-lico? mediated changes on colonic inflammation markers. These included the observations that AD-lico? dampened the IL-6 proinflammatory-signaling pathway in THP-1 human monocytic cells and reduced the TNFα-mediated upregulation of surface adhesion molecule ICAM-1 in human umbilical vein endothelial cells (HUVECs). Finally, it was shown that AD-lico? could be combined with 5-ASA in reducing the inflammatory markers for colorectal sites affected by colitis, a first study of its kind for a combination therapy.  相似文献   

16.
Inflammatory bowel diseases (IBDs) such as Crohn’s disease and ulcerative colitis are chronic inflammatory disorders of the intestinal tract with excessive production of cytokines, adhesion molecules, and reactive oxygen species. Although nitric oxide (NO) is reported to be involved in the onset and progression of IBDs, it remains controversial as to whether NO is toxic or protective in experimental colitis. We investigated the effects of oral nitrite as a NO donor on dextran sulfate sodium (DSS)-induced acute colitis in mice. Mice were fed DSS in their drinking water with or without nitrite for up to 7 days. The severity of colitis was assessed by disease activity index (DAI) observed over the experimental period, as well as by the other parameters, including colon lengths, hematocrit levels, and histological scores at day 7. DSS treatment induced severe colitis by day 7 with exacerbation in DAI and histological scores. We first observed a significant decrease in colonic nitrite levels and increase in colonic TNF-α expression at day 3 after DSS treatment, followed by increased colonic myeloperoxidase (MPO) activity and increased colonic expressions of both inducible NO synthase (iNOS) and heme oxygenase-1 (HO-1) at day 7. Oral nitrite supplementation to colitis mice reversed colonic nitrite levels and TNF-α expression to that of normal control mice at day 3, resulting in the reduction of MPO activity as well as iNOS and HO-1 expressions in colonic tissues with clinical and histological improvements at day 7. These results suggest that oral nitrite inhibits inflammatory process of DSS-induced experimental colitis by supplying nitrite-derived NO instead of impaired colonic NOS activity.  相似文献   

17.
Glucagon-like peptide-2 (GLP-2) is an important regulator of nutritional absorptive capacity with anti-inflammatory actions. We hypothesized that GLP-2 reduces intestinal mucosal inflammation by activation of vasoactive intestinal polypeptide (VIP) neurons of the submucosal plexus. Ileitis or colitis was induced in rats by injection of trinitrobenzene sulfonic acid (TNBS), or colitis was induced by administration of dextran sodium sulfate (DSS) in drinking water. Subsets of animals received (1-33)-GLP-2 (50 mug/kg sc bid) either immediately or 2 days after the establishment of inflammation and were followed for 3-5 days. The involvement of VIP neurons was assessed by concomitant administration of GLP-2 and the VIP antagonist [Lys(1)-Pro(2,5)-Arg(3,4)-Tyr(6)]VIP and by immunohistochemical labeling of GLP-2-activated neurons. In all models, GLP-2 treatment, whether given immediately or delayed until inflammation was established, resulted in significant improvements in animal weights, mucosal inflammation indices (myeloperoxidase levels, histological mucosal scores), and reduced levels of inflammatory cytokines (IFN-gamma, TNF-alpha, IL-1beta) and inducible nitric oxide synthase, with increased levels of IL-10 in TNBS ileitis and DSS colitis. Reduced rates of crypt cell proliferation and of apoptosis within crypts in inflamed tissues were also noted with GLP-2 treatment. These effects were abolished with coadministration of GLP-2 and the VIP antagonist. GLP-2 was shown to activate neurons and to increase the number of cells expressing VIP in the submucosal plexus of the ileum. These findings suggest that GLP-2 acts as an anti-inflammatory agent through activation of enteric VIP neurons, independent of proliferative effects. They support further studies to examine the role of neural signaling in the regulation of intestinal inflammation.  相似文献   

18.
VSL#3 probiotics can be effective on induction and maintenance of the remission of clinical ulcerative colitis. However, the mechanisms are not fully understood. The aim of this study was to examine the effects of VSL#3 probiotics on dextran sulfate sodium (DSS)-induced colitis in rats. Acute colitis was induced by administration of DSS 3.5 % for 7 days in rats. Rats in two groups were treated with either 15 mg VSL#3 or placebo via gastric tube once daily after induction of colitis; rats in other two groups were treated with either the wortmannin (1 mg/kg) via intraperitoneal injection or the wortmannin + VSL#3 after induction of colitis. Anti-inflammatory activity was assessed by myeloperoxidase (MPO) activity. Expression of inflammatory related mediators (iNOS, COX-2, NF-κB, Akt, and p-Akt) and cytokines (TNF-α, IL-6, and IL-10) in colonic tissue were assessed. TNF-α, IL-6, and IL-10 serum levels were also measured. Our results demonstrated that VSL#3 and wortmannin have anti-inflammatory properties by the reduced disease activity index and MPO activity. In addition, administration of VSL#3 and wortmannin for 7 days resulted in a decrease of iNOS, COX-2, NF-κB, TNF-α, IL-6, and p-Akt and an increase of IL-10 expression in colonic tissue. At the same time, administration of VSL#3 and wortmannin resulted in a decrease of TNF-α and IL-6 and an increase of IL-10 serum levels. VSL#3 probiotics therapy exerts the anti-inflammatory activity in rat model of DSS-induced colitis by inhibiting PI3K/Akt and NF-κB pathway.  相似文献   

19.
Cho JY  Chang HJ  Lee SK  Kim HJ  Hwang JK  Chun HS 《Life sciences》2007,80(10):932-939
beta-Caryophyllene (BCP), a naturally occurring plant sesquiterpene, was examined for anti-inflammatory activity in a mouse model of experimental colitis induced by dextran sulfate sodium (DSS). Colitis was induced by exposing male BALB/c mice to 5% DSS in drinking water for 7 days. BCP in doses of 30 and 300 mg/kg was administered orally once a day, beginning concurrently with exposure to DSS. The body weight and colon length were measured, and histological damage and myeloperoxidase (MPO) activity as well as inflammatory cytokines were assessed in both serum and colonic tissue after 7 days of treatment with DSS. The DSS treatment damaged the colonic tissue, increased MPO activity and inflammatory cytokines, lowered the body weight, and shortened the length of the colon. Oral administration of BCP at 300 mg/kg significantly suppressed the shortening of colon length and slightly offset the loss of body weight. BCP treatment (300 mg/kg) also significantly reduced the inflammation of colon and reversed the increase in MPO activity that had been induced by exposure to DSS. Further, BCP significantly suppressed the serum level of IL-6 protein (a 55% reduction) as well as the level of IL-6 mRNA in the tissue. These results demonstrate that BCP ameliorates DSS-induced experimental colitis, and may be useful in the prevention and treatment of colitis.  相似文献   

20.

Objective

Infiltration of activated immune cells and increased cytokine production define the immunophenotype of gastrointestinal (GI) inflammation. In addition, intestinal inflammation is accompanied by alteration in the numbers of serotonin (5-hydroxytryptamine; 5-HT) synthesizing enterochromaffin (EC) cells and in 5-HT amount. It has been established that EC cells express interleukin (IL)-13 receptor, additionally IL-13 has been implicated in the pathogenesis of ulcerative colitis. In this study, we investigated the role of IL-13 mediated 5-HT signaling in pathogenesis of colitis.

Methodology

Colitis was induced in IL-13 deficient (IL-13−/−) and wild-type (WT) mice with dextran sulfate sodium (DSS) and dinitrobenzene sulfonic acid (DNBS), as well as in IL-13−/− mice given recombinant mouse IL-13 (rmIL-13) and 5-hydroxytryptamine (5-HTP), the direct precursor of 5-HT.

Principal Findings and Conclusion

Elevated colonic IL-13 levels were observed in WT mice receiving DSS in comparison to control. IL-13−/− mice administered DSS exhibited significantly reduced severity of colitis compared to WT mice as reflected by macroscopic and histological damage assessments. Following DSS administration, significantly lower pro-inflammatory cytokine production and fewer infiltrating macrophages were observed in IL-13−/− mice compared to WT. The reduced severity of colitis observed in IL-13−/− mice was also accompanied by down-regulation of EC cell numbers and colonic 5-HT content. In addition, increasing colonic 5-HT content by administration of rmIL-13 or 5-HTP exacerbated severity of DSS colitis in IL-13−/− mice. IL-13−/− mice also exhibited reduced severity of DNBS-induced colitis. These results demonstrate that IL-13 plays a critical role in the pathogenesis of experimental colitis and 5-HT is an important mediator of IL-13 driven intestinal inflammation. This study revealed important information on immune-endocrine axis in gut in relation to inflammation which may ultimately lead to better strategy in managing various intestinal inflammatory conditions including inflammatory bowel disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号