首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phase-response curves (PRC) for light pulses in continuous darkness (DD) have been described in many mammals, especially in nocturnal rodents. The PRC for dark pulses in continuous light (LL), however, has been described in a few mammals only, in nocturnal for bat and for hamster and in diurnal for Octodon degus, suggesting that this PRC is mirror imaging the PRC for light pulses. Therefore, the effect of 1-h and 3-h lasting dark pulses on the circadian wheel-running activity rhythm of mice in continuous light was investigated and then the PRC for dark pulses in LL was drawn up. For comparison, the effect of 1-h lasting light pulses on the circadian wheel-running activity rhythm of mice in DD was examined and the PRC for light pulses in DD was constructed. It appeared that the PRC for dark pulses, to a certain degree, represents a mirror image of the PRC for light pulses in mice. However, the advance region of this PRC is longer than that of delay. The mechanism of dark pulses action is discussed.  相似文献   

2.
The phase-response curves (PRC) for light pulses in continuous darkness (DD) have been described in many mammals, especially in nocturnal rodents. The PRC for dark pulses in continuous light (LL), however, has been described in a few mammals only, in nocturnal for bat and for hamster and in diurnal for Octodon degus, suggesting that this PRC is mirror imaging the PRC for light pulses. Therefore, the effect of 1-h and 3-h lasting dark pulses on the circadian wheel-running activity rhythm of mice in continuous light was investigated and then the PRC for dark pulses in LL was drawn up. For comparison, the effect of 1-h lasting light pulses on the circadian wheel-running activity rhythm of mice in DD was examined and the PRC for light pulses in DD was constructed. It appeared that the PRC for dark pulses, to a certain degree, represents a mirror image of the PRC for light pulses in mice. However, the advance region of this PRC is longer than that of delay. The mechanism of dark pulses action is discussed.  相似文献   

3.
Down syndrome is a common disorder associated with intellectual disability in humans. Among a variety of severe health problems, patients with Down syndrome exhibit disrupted sleep and abnormal 24‐h rest/activity patterns. The transchromosomic mouse model of Down syndrome, Tc1, is a trans‐species mouse model for Down syndrome, carrying most of human chromosome 21 in addition to the normal complement of mouse chromosomes and expresses many of the phenotypes characteristic of Down syndrome. To date, however, sleep and circadian rhythms have not been characterized in Tc1 mice. Using both circadian wheel‐running analysis and video‐based sleep scoring, we showed that these mice exhibited fragmented patterns of sleep‐like behaviour during the light phase of a 12:12‐h light/dark (LD) cycle with an extended period of continuous wakefulness at the beginning of the dark phase. Moreover, an acute light pulse during night‐time was less effective in inducing sleep‐like behaviour in Tc1 animals than in wild‐type controls. In wheel‐running analysis, free running in constant light (LL) or constant darkness (DD) showed no changes in the circadian period of Tc1 animals although they did express subtle behavioural differences including a reduction in total distance travelled on the wheel and differences in the acrophase of activity in LD and in DD. Our data confirm that Tc1 mice express sleep‐related phenotypes that are comparable with those seen in Down syndrome patients with moderate disruptions in rest/activity patterns and hyperactive episodes, while circadian period under constant lighting conditions is essentially unaffected.  相似文献   

4.
Dopamine, the predominant retinal catecholamine, is a neurotransmitter and neuromodulator known to regulate light-adaptive retinal processes. Because dopamine influences several rhythmic events in the retina it is also a candidate for a retinal circadian signal. Using high performance liquid chromatography (HPLC), we have tested whether dopamine and its breakdown products are rhythmic in Royal College of Surgeons (RCS) rats with normal and dystrophic retinas. In both normal and mutant animals entrained to a 12-h light/12-h dark cycle, we found robust daily rhythms of dopamine and its two major metabolites. To address circadian rhythmicity of dopamine content, rats were entrained to light/dark cycles and released into constant darkness, using the circadian rhythm of wheel-running activity as a marker of each individual's circadian phase. Circadian rhythms of dopamine and metabolite content persisted in both wild type and retinally degenerate animals held for two weeks in constant darkness. Our results demonstrate for the first time clear circadian rhythms of dopamine content and turnover in a free-running mammal, and suggest that rods and cones are not required for dopamine rhythmicity.  相似文献   

5.
The study employed electrical lesions of dorsal raphe nucleus (DRN) to determine the functional significance of those nuclei in the regulation of wheel-running activity rhythm in mice in light/dark (LD 12:12), constant light (LL), and constant dark (DD) conditions. The wheel-running records showed that raphe nucleus lesions resulted in few days' decrease in common activity and amplitude in LD. The activity phase was not compact but in fragmentary form, especially in DD condition. In some animals an earlier onset of activity after DRN lesion in LD was observed. In LL extension of the rhythm period occurred. Destruction of DRN only slightly modulates the wheel-running circadian rhythm in mice.  相似文献   

6.
Running wheels are widely used in studies on biological rhythms. In mice wheel diameters have ranged from 11 cm to 23 cm. We provided mice with running wheels of two different sizes: 15 cm diameter and 11 cm diameter. The amount of running in the 12-h light:12-h dark condition and the endogenous period of wheel running in constant darkness was determined over 40 days. On the 1st day in constant darkness all animals were exposed to a 15-min light pulse at circadian time 13. The animals in the small wheel ran significantly less both in 12 h light: 12 h dark and constant darkness, and showed a longer endogenous period in constant darkness compared to animals in the large wheel. Moreover, after the light pulse at circadian time 13, mice in the small wheel showed a significantly smaller phase delay in running wheel activity than mice in the larger wheels. The data suggest that the magnitude of a photic phase shift depends on the amount and timing of activity the animals display in relation to this stimulus. It can be concluded that technical features of the running wheel can influence the circadian period of wheel running.  相似文献   

7.
Melatonin and wheel-running rhythmicity and the effects of acute and chronic light pulses on these rhythms were studied in Clock(Delta19) mutant mice selectively bred to synthesize melatonin. Homozygous melatonin-proficient Clock(Delta19) mutant mice (Clock(Delta19/Delta19)-MEL) produced melatonin rhythmically, with peak production 2 h later than the wild-type controls (i.e., just before lights on). By contrast, the time of onset of wheel-running activity occurred within a 20-min period around lights off, irrespective of the genotype. Melatonin production in the mutants spontaneously decreased within 1 h of the expected time of lights on. On placement of the mice in continuous darkness, the melatonin rhythm persisted, and the peak occurred 2 h later in each cycle over the first two cycles, consistent with the endogenous period of the mutant. This contrasted with the onset of wheel-running activity, which did not shift for several days in constant darkness. A light pulse around the time of expected lights on followed by constant darkness reduced the expected 2-h delay of the melatonin peak of the mutants to approximately 1 h and advanced the time of the melatonin peak in the wild-type mice. When the Clock(Delta19/Delta19)-MEL mice were maintained in a skeleton photoperiod of daily 15-min light pulses, a higher proportion entrained to the schedule (57%) than melatonin-deficient mutants (9%). These results provide compelling evidence that mice with the Clock(Delta19) mutation express essentially normal rhythmicity, albeit with an underlying endogenous period of 26-27 h, and they can be entrained by brief exposure to light. They also raise important questions about the role of Clock in rhythmicity and the usefulness of monitoring behavioral rhythms compared with hormonal rhythms.  相似文献   

8.
Serotonin (5-HT) can act presynaptically at 5-HT1B receptors on retinal terminals in the suprachiasmatic nucleus (SCN) to inhibit glutamate release, thereby modulating the effects of light on circadian behavior. 5-HT1B receptor agonists (1) inhibit light-induced phase shifts of circadian activity rhythms, (2) attenuate light-induced Fos expression in the SCN, and (3) reduce the amplitude of optic nerve-evoked excitatory postsynaptic currents in SCN neurons in vitro. To determine whether functional disruption of the 5-HT1B presynaptic receptors would result in an amplified response of the SCN to light, the period (tau) of the circadian rhythm of wheel-running activity was estimated under several different conditions in 5-HT1B receptor knockout (KO) mice and genetically matched wild-type animals. Under constant light (LL) conditions, the tau of 5-HT1B receptor KO mice was significantly greater than the tau of wild-type mice. A quantitative analysis of the wheel-running activity revealed no differences between wild-type and KO mice in either total activity or the temporal distribution of activity under LL conditions, suggesting that the observed increase in tau was not a function of reduced activity. Under constant dark conditions, the period of the circadian rhythm of wheel-running activity of wild-type and 5-HT1B receptor KO mice was similar. In addition, no differences were noted between wild-type and 5-HT1B receptor KO mice in the rate of reentrainment to a 6 h phase advance in the 12:12 light:dark cycle or in phase shifts in response to a 10 min light pulse presented at circadian time 16. The enhanced response of the SCN circadian clock of the 5-HT1B receptor KO mice to LL conditions is consistent with the hypothesis that the endogenous activation of 5-HT1B presynaptic receptors modulates circadian behavior by attenuating photic input to the SCN.  相似文献   

9.
Neurons of the brain's biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) generate circadian rhythms of physiology (core body temperature, hormone secretion, locomotor activity, sleep/wake, and heart rate) with distinct temporal phasing when entrained by the light/dark (LD) cycle. The neuropeptide vasoactive intestinal polypetide (VIP) and its receptor (VPAC2) are highly expressed in the SCN. Recent studies indicate that VIPergic signaling plays an essential role in the maintenance of ongoing circadian rhythmicity by synchronizing SCN cells and by maintaining rhythmicity within individual neurons. To further increase the understanding of the role of VPAC2 signaling in circadian regulation, we implanted telemetric devices and simultaneously measured core body temperature, spontaneous activity, and heart rate in a strain of VPAC2-deficient mice and compared these observations with observations made from mice examined by wheel-running activity. The study demonstrates that VPAC2 signaling is necessary for a functional circadian clock driving locomotor activity, core body temperature, and heart rate rhythmicity, since VPAC2-deficient mice lose the rhythms in all three parameters when placed under constant conditions (of either light or darkness). Furthermore, although 24-h rhythms for three parameters are retained in VPAC2-deficient mice during the LD cycle, the temperature rhythm displays markedly altered time course and profile, rising earlier and peaking ~4-6 h prior to that of wild-type mice. The use of telemetric devices to measure circadian locomotor activity, temperature, and heart rate, together with the classical determination of circadian rhythms of wheel-running activity, raises questions about how representative wheel-running activity may be of other behavioral parameters, especially when animals have altered circadian phenotype.  相似文献   

10.
Summary The effects of restricted feeding schedules on the circadian rhythms of wheel-running of Dasyurus viverrinus were examined under a light/dark cycle and in constant darkness (experiment 1) and in constant light (experiment 2). The results of the 2 experiments showed that: (1) in contrast to the light/dark cycle, restricted feeding is only a weak zeitgeber for the wheel-running activity rhythms of D. viverrinus; (2) restricted feeding elicits meal anticipatory activity in D. viverrinus comparable to that elicited by restricted feeding in the rat; (3) transient cycles of the anticipatory activity free-run with a period different to that of the main component of activity for several cycles after the termination of restricted feeding; and (4) activity suggestive of beating between 2 oscillators occurs during restricted feeding and after the termination of restricted feeding. Taken together the latter 3 observations suggest that the activity rhythms of D. viverrinus are controlled by at least 2 separate circadian oscillators.  相似文献   

11.
The related neuropeptides vasoactive intestinal peptide (VIP) and peptide histidine isoleucine (PHI) are expressed at high levels in the neurons of the suprachiasmatic nucleus (SCN), but their function in the regulation of circadian rhythms is unknown. To study the role of these peptides on the circadian system in vivo, a new mouse model was developed in which both VIP and PHI genes were disrupted by homologous recombination. In a light-dark cycle, these mice exhibited diurnal rhythms in activity which were largely indistinguishable from wild-type controls. In constant darkness, the VIP/PHI-deficient mice exhibited pronounced abnormalities in their circadian system. The activity patterns started approximately 8 h earlier than predicted by the previous light cycle. In addition, lack of VIP/PHI led to a shortened free-running period and a loss of the coherence and precision of the circadian locomotor activity rhythm. In about one-quarter of VIP/PHI mice examined, the wheel-running rhythm became arrhythmic after several weeks in constant darkness. Another striking example of these deficits is seen in the split-activity patterns expressed by the mutant mice when they were exposed to a skeleton photoperiod. In addition, the VIP/PHI-deficient mice exhibited deficits in the response of their circadian system to light. Electrophysiological analysis indicates that VIP enhances inhibitory synaptic transmission within the SCN of wild-type and VIP/PHI-deficient mice. Together, the observations suggest that VIP/PHI peptides are critically involved in both the generation of circadian oscillations as well as the normal synchronization of these rhythms to light.  相似文献   

12.
We examined the effects of pinealectomy and blinding (bilateral ocular enucleation) on the circadian locomotor activity rhythm in the Japanese newt, Cynops pyrrhogaster. The pinealectomized newts were entrained to a light-dark cycle of 12 h light and 12 h darkness. After transfer to constant darkness they showed residual rhythmicity for at least several days which was gradually disrupted in prolonged constant darkness. Blinded newts were also entrained to a 12 h light/12 h dark cycle. In subsequent constant darkness they showed free-running rhythms of locomotor activity. However, the freerunning periods noticeably increased compared with those observed in the previous period of constant darkness before blinding. In blinded newts entrained to the light/dark cycle the activity rhythms were gradually disrupted after pinealectomy even in the presence of the light/dark cycle. These results suggest that both the pineal and the eyes are involved in the newt's circadian system, and also suggest that the pineal of the newt acts as an extraretinal photoreceptor which mediates the entrainment of the locomotor activity rhythm.Abbreviations circadian period - DD constant darkness - LD cycle, light-dark cycle - LD 12:12 light-dark cycle of 12 h light and 12 h darkness  相似文献   

13.
Behavioral responses of Vipr2-/- mice to light   总被引:1,自引:0,他引:1  
Vasoactive intestinal polypeptide and its receptor, VPAC2, play important roles in the functioning of the dominant circadian pacemaker, located in the hypothalamic suprachiasmatic nuclei (SCN). Mice lacking VPAC2 receptors (Vipr2-/-) show altered circadian rhythms and impaired synchronization to environmental lighting cues. However, light can increase phosphoprotein and immediate early gene expression in the Vipr2-/- SCN demonstrating that the circadian clock is readily responsive to light in these mice. It is not clear whether these neurochemical responses to light can be transduced to behavioral changes as seen in wild-type (WT) animals. In this study we investigated the diurnal and circadian wheel-running profile of WT (C57BL/6J) and Vipr2-/- mice under a 12-h light:12-h complete darkness (LD) lighting schedule and in constant darkness (DD) and used 1-h light pulses to shift the activity of mice in DD. Unlike WT mice, Vipr2-/- mice show grossly altered locomotor patterns making the analysis of behavioral responses to light problematic. However, analyses of both the onset and the offset of locomotor activity reveal that in a subset of these mice, light can reset the offset of behavioral rhythms during the subjective night. This suggests that the SCN clock of Vipr2-/- mice and the rhythms it generates are responsive to photic stimulation and that these responses can be integrated to whole animal behavioral changes.  相似文献   

14.
We report on a battery of behavioral screening tests that successfully identified several neurobehavioral mutants among a large-scale ENU-mutagenized mouse population. Large numbers of ENU-mutagenized mice were screened for abnormalities in central nervous system function based on abnormal performance in a series of behavior tasks. We developed and used a high-throughput screen of behavioral tasks to detect behavioral outliers. Twelve mutant pedigrees, representing a broad range of behavioral phenotypes, have been identified. Specifically, we have identified two open-field mutants (one displaying hyperlocomotion, the other hypolocomotion), four tail-suspension mutants (all displaying increased immobility), one nociception mutant (displaying abnormal responsiveness to thermal pain), two prepulse inhibition mutants (displaying poor inhibition of the startle response), one anxiety-related mutant (displaying decreased anxiety in the light/dark test), and one learning-and-memory mutant (displaying reduced response to the conditioned stimulus). These findings highlight the utility of a set of behavioral tasks used in a high-throughput screen to identify neurobehavioral mutants. Further analysis (i.e., behavioral and genetic mapping studies) of mutants is in progress with the ultimate goal of identification of novel genes and mouse models relevant to human disorders as well as the identification of novel therapeutic targets.  相似文献   

15.
Organisms are believed to have evolved circadian clocks as adaptations to deal with cyclic environmental changes, and therefore it has been hypothesized that evolution in constant environments would lead to regression of such clocks. However, previous studies have yielded mixed results, and evolution of circadian clocks under constant conditions has remained an unsettled topic of debate in circadian biology. In continuation of our previous studies, which reported persistence of circadian rhythms in Drosophila melanogaster populations evolving under constant light, here we intended to examine whether circadian clocks and the associated properties evolve differently under constant light and constant darkness. In this regard, we assayed activity-rest, adult emergence and oviposition rhythms of D. melanogaster populations which have been maintained for over 19 years (~330 generations) under three different light regimes – constant light (LL), light–dark cycles of 12:12 h (LD) and constant darkness (DD). We observed that while circadian rhythms in all the three behaviors persist in both LL and DD stocks with no differences in circadian period, they differed in certain aspects of the entrained rhythms when compared to controls reared in rhythmic environment (LD). Interestingly, we also observed that DD stocks have evolved significantly higher robustness or power of free-running activity-rest and adult emergence rhythms compared to LL stocks. Thus, our study, in addition to corroborating previous results of circadian clock evolution in constant light, also highlights that, contrary to the expected regression of circadian clocks, rearing in constant darkness leads to the evolution of more robust circadian clocks which may be attributed to an intrinsic adaptive advantage of circadian clocks and/or pleiotropic functions of clock genes in other traits.  相似文献   

16.
InD. melanogaster, the observation of greater pupation height under constant darkness than under constant light has been explained by the hypothesis that light has an inhibitory effect on larval wandering behaviour, preventing larvae from crawling higher up the walls of culture vials prior to pupation. If this is the only role of light in affecting pupation height, then various light : dark regimes would be predicted to yield pupation heights intermediate between those seen in constant light and constant darkness. We tested this hypothesis by measuring pupation height under various light : dark regimes in four laboratory populations ofDrosophila melanogaster. Pupation height was the greatest in constant darkness, intermediate in constant light, and the least in a light/dark regime of LD 14:14 h. The results clearly suggest that there is more to light regime effects on pupation height than mere behavioural inhibition of wandering larvae, and that circadian organization may play some role in determining pupation height, although the details of this role are not yet clear. We briefly discuss these results in the context of the possible involvement of circadian clocks in life-history evolution.  相似文献   

17.
An outstanding unresolved issue in chronobiology is how the level of locomotor activity influences length of the free-running, endogenous circadian period (tau). To address this issue, the authors studied a novel model, 4 replicate lines of laboratory house mice (Mus domesticus) that had been selectively bred for high wheel-running activity (S) and their 4 unselected control (C) lines. Previous work indicates that S mice run approximately twice as many revolutions/day and exhibit an altered dopaminergic function as compared with C mice. The authors report that S mice have a tau shorter by about 0.5 h as compared with C mice. The difference in tau was significant both under constant light (control lines: tau = 25.5 h; selected: tau = 24.9 h) and under constant dark (control lines: 23.7 h; selected: 23.4 h). Moreover, the difference remained statistically significant even when the effects of running speed and time spent running were controlled in ANCOVA. Thus, something more fundamental than just intensity or duration of wheel-running activity per se must underlie the difference in tau between the S and C lines. However, despite significant difference in total wheel-running activity between females and males, tau did not differ between the sexes. Similarly, among individuals within lines, tau was not correlated with wheel-running activity measured as total revolutions per day. Instead, tau tended to decrease with average running speed but increase with time spent running. Finally, within individuals, an increase in time spent running resulted in decreased tau in the next few days, but changes in running speed had no statistically significant effect. The distinctions between effects of duration versus intensity of an activity, as well as between the among- versus within-individual correlations, are critical to understanding the relation between locomotor activity and pace of the circadian clock.  相似文献   

18.
The term masking refers to immediate responses to stimuli that override the influence of the circadian timekeeping system on behavior and physiology. Masking by light and darkness plays an important role in shaping an organism's daily pattern of activity. Nocturnal animals generally become more active in response to darkness (positive masking) and less active in response to light (negative masking), and diurnal animals generally have opposite patterns of response. These responses can vary as a function of light intensity as well as time of day. Few studies have directly compared masking in diurnal and nocturnal species, and none have compared rhythms in masking behavior of diurnal and nocturnal species. Here, we assessed masking in nocturnal mice (Mus musculus) and diurnal grass rats (Arvicanthis niloticus). In the first experiment, animals were housed in a 12:12 light-dark (LD) cycle, with dark or light pulses presented at 6 Zeitgeber times (ZTs; with ZT0 = lights on). Light pulses during the dark phase produced negative masking in nocturnal mice but only at ZT14, whereas light pulses resulted in positive masking in diurnal grass rats across the dark phase. In both species, dark pulses had no effect on behavior. In the 2nd experiment, animals were kept in constant darkness or constant light and were presented with light or dark pulses, respectively, at 6 circadian times (CTs). CT0 corresponded to ZT0 of the preceding LD cycle. Rhythms in masking responses to light differed between species; responses were evident at all CTs in grass rats but only at CT14 in mice. Responses to darkness were observed only in mice, in which there was a significant increase in activity at CT 22. In the 3rd experiment, animals were kept on a 3.5:3.5-h LD cycle. Surprisingly, masking was evident only in grass rats. In mice, levels of activity during the light and dark phases of the 7-h cycle did not differ, even though the same animals had responded to discrete photic stimuli in the first 2 experiments. The results of the 3 experiments are discussed in terms of their methodological implications and for the insight they offer into the mechanisms and evolution of diurnality.  相似文献   

19.
Estradiol influences the level and distribution of daily activity, the duration of the free-running period, and the behavioral phase response to light pulses. However, the mechanisms by which estradiol regulates daily and circadian rhythms are not fully understood. We tested the hypothesis that estrogens modulate daily activity patterns via both classical and “non-classical” actions at the estrogen receptor subtype 1 (ESR1). We used female transgenic mice with mutations in their estrogen response pathways; ESR1 knock-out (ERKO) mice and “non-classical” estrogen receptor knock-in (NERKI) mice. NERKI mice have an ESR1 receptor with a mutation in the estrogen-response-element binding domain, allowing only actions via “non-classical” genomic and second messenger pathways. Ovariectomized female NERKI, ERKO, and wildtype (WT) mice were given a subcutaneous capsule with low- or high-dose estradiol and compared with counterparts with no hormone replacement. We measured wheel-running activity in a light:dark cycle and constant darkness, and the behavioral phase response to light pulses given at different points during the subjective day and night. Estradiol increased average daily wheel-running, consolidated activity to the dark phase, and shortened the endogenous period in WT, but not NERKI and ERKO mice. The timing of activity onset during entrainment was advanced in all estradiol-treated animals regardless of genotype suggesting an ESR1-independent mechanism. We propose that estradiol modifies period, activity level, and distribution of activity via classical actions of ESR1 whereas an ESR1 independent mechanism regulates the phase of rhythms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号