首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In maize ( Zea mays L. cv. LG 11) roots cultured in humid air, the presence of hairs was not related to root growth. However, maximum hair length and length of the hair zone could be correlated to the elongation rate of the primary root. Under the growth conditions used, the emergence of root hairs always took place in the extending zone. In more basal regions, rhizodermal cells could not give rise to root hairs. Results were similar for roots preincubated in a buffer solution.  相似文献   

2.
The lengths of roots and root hairs and the extent of root-induced processes affect phosphorus (P) uptake efficiency by plants. To assess the influence of variation in the lengths of roots and root hairs and rhizosphere processes on the efficiency of soil phosphorus (P) uptake, a pot experiment with a low-P soil and eight selected genotypes of cowpea (Vigna unguiculata (L) WALP) was conducted. Root length, root diameter and root hair length were measured to estimate the soil volume exploited by roots and root hairs. The total soil P was considered as a pool of Olsen-P, extractable with 0.5 M NaHCO3 at pH 8.5, and a pool of non-Olsen-P. Model calculations were made to estimate P uptake originated from Olsen-P in the root hair zone and the Olsen-P moving by diffusion into the root hair cylinder and non-Olsen-P uptake. The mean uptake rate of P and the mean rate of non-Olsen-P depletion were also estimated. The genotypes differed significantly in lengths of roots and root hairs, and in P uptake, P uptake rates and growth. From 6 to 85% of total P uptake in the soil volume exploited by roots and root hairs was absorbed from the pool of non-Olsen-P. This indicates a considerable activity of root-induced rhizosphere processes. Hence the large differences show that traits for more P uptake-efficient plants exist in the tested cowpea genotypes. This opens the possibility to breed for more P uptake-efficient varieties as a way to bring more sparingly soluble soil P into cycling in crop production and obtain capitalisation of soil P reserves.  相似文献   

3.
For pastures, root turnover can have an important influence on nutrient and carbon cycling, and plant performance. Turnover was calculated from mini‐rhizotron observations for chicory (Cichorium intybus), lucerne (Medicago sativa), perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) grown in the Manawatu, New Zealand. The species were combined factorially with four earthworm species treatments and a no‐earthworm control. Split plots compared the effects of not cutting and cutting the shoots at intervals. Observations were made c. 18 days apart for 2.5 years. This article concentrates on differences between plant species in root turnover in the whole soil profile to 40 cm depth. At this scale, earthworm effects were generally small and short lived. For ryegrass and white clover, root length and mass were linearly related (R2 = 0.82–0.99). For chicory and lucerne, the relationships were poorer (R2 = 0.38–0.77), so for those species length turnover may be a poor indicator of mass turnover. Standing root length, total growth and death generally decreased in the sequence ryegrass > lucerne > chicory = white clover. In length terms, scaled turnover (growth divided by average standing root length) generally followed the sequence lucerne > white clover > perennial ryegrass = chicory. Across species the scaled turnover rate averaged 3.4 per year or 0.9% per day. Cutting shoots reduced standing root length, growth and death, but increased scaled turnover. These results indicate fast and prolonged root turnover. For ryegrass and white clover, at least there is need to reappraise how to measure and model shoot : root ratios, dry matter production and carbon cycling.  相似文献   

4.
This paper reports a new barley mutant missing root hairs. The mutant was spontaneously discovered among the population of wild type (Pallas, a spring barley cultivar), producing normal, 0.8 mm long root hairs. We have called the mutant bald root barley (brb). Root anatomical studies confirmed the lack of root hairs on mutant roots. Amplified Fragment Length Polymorphism (AFLP) analyses of the genomes of the mutant and Pallas supported that the brb mutant has its genetic background in Pallas. The segregation ratio of selfed F2 plants, resulting from mutant and Pallas outcross, was 1:3 (–root hairs:+root hairs), suggesting a monogenic recessive mode of inheritance.In rhizosphere studies, Pallas absorbed nearly two times more phosphorus (P) than the mutant. Most of available inorganic P in the root hair zone (0.8 mm) of Pallas was depleted, as indicated by the uniform P depletion profile near its roots. The acid phosphatase (Apase) activity near the roots of Pallas was higher and Pallas mobilised more organic P in the rhizosphere than the mutant. The higher Apase activity near Pallas roots also suggests a link between root hair formation and rhizosphere Apase activity. Hence, root hairs are important for increasing plant P uptake of inorganic as well as mobilisation of organic P in soils.Laboratory, pot and field studies showed that barley cultivars with longer root hairs (1.10 mm), extracted more P from rhizosphere soil, absorbed more P in low-P field (Olsen P=14 mg P kg–1 soil), and produced more shoot biomass than shorter root hair cultivars (0.63 mm). Especially in low-P soil, the differences in root hair length and P uptake among the cultivars were significantly larger. Based on the results, the perspectives of genetic analysis of root hairs and their importance in P uptake and field performance of cereals are discussed.  相似文献   

5.
Summary The root characteristics and sulfur absorption of Trikkala sub-clover and Wimmera ryegrass were compared in a pot experiment in which plants were grown at two levels of sulfur supply (0 and 64 mgS/pot) for a period of 40 days after emergence.Ryegrass roots had a greater weight and root weight ratio, but a lower sulfur content than sub-clover roots at both levels of sulfur supply. Ryegrass roots were longer, had a greater length per unit weight, longer root hairs, and hence a larger volume and surface area than sub-clover roots. However, when the sulfur content in the whole plant was related to the root parameters, sub-clover absorbed a far greater amount of sulfur, irrespective of whether the content was expressed on the basis of the weight, length, volume or surface area of the roots.Sulfur application had relatively little effect on the morphology of roots of either species. However, whilst sulfur application increased the weight of both shoots and roots, it decreased the root weight ratio for sub-clover but not for ryegrass. Increasing sulfur supply reduced the total length of sub-clover roots but tended to increase the length of ryegrass roots. For both species, the length per unit weight of roots decreased, and the average root diameter increased, with increasing sulfur supply. Sulfur application decreased the volume and surface area of sub-clover roots, but increased these parameters in ryegrass roots.  相似文献   

6.
This paper discusses interspecific differences and phenotypic responses to nitrogen supply in various root parameters of five perennial grasses from contrasting habitats. The following root parameters were studied: root:shoot ratio, specific root length, specific root area, mean root diameter, frequency of fine roots, and the length and density of root hairs. Significant between-species variation was found in all of these features. Species from fertile sites had higher root:shoot ratios at high nitrogen supply than species from infertile habitats. All species growing at low nitrogen supply showed a significant increase in root:shoot ratio. Specific root length, specific root area, mean root diameter and frequency of fine roots were not affected significantly by nitrogen supply. Species from infertile sites responded to low nitrogen supply by a significant increase in root hair length and root hair density.  相似文献   

7.
Background and AimsRoot proliferation is a response to a heterogeneous nutrient distribution. However, the growth of root hairs in response to heterogeneous nutrients and the relationship between root hairs and lateral roots remain unclear. This study aims to understand the effects of heterogeneous nutrients on root hair growth and the trade-off between root hairs and lateral roots in phosphorus (P) acquisition.MethodsNear-isogenic maize lines, the B73 wild type (WT) and the rth3 root hairless mutant, were grown in rhizoboxes with uniform or localized supply of 40 (low) or 140 (high) mg P kg−1 soil.ResultsBoth WT and rth3 had nearly two-fold greater shoot biomass and P content under local than uniform treatment at low P. Significant root proliferation was observed in both WT and rth3 in the nutrient patch, with the WT accompanied by an obvious increase (from 0.7 to 1.2 mm) in root hair length. The root response ratio of rth3 was greater than that of WT at low P, but could not completely compensate for the loss of root hairs. This suggests that plants enhanced P acquisition through complementarity between lateral roots and root hairs, and thus regulated nutrient foraging and shoot growth. The disappearance of WT and rth3 root response differences at high P indicated that the P application reduced the dependence of the plants on specific root traits to obtain nutrients.ConclusionsIn addition to root proliferation, the root response to a nutrient-rich patch was also accompanied by root hair elongation. The genotypes without root hairs increased their investment in lateral roots in a nutrient-rich patch to compensate for the absence of root hairs, suggesting that plants enhanced nutrient acquisition by regulating the trade-off of complementary root traits.  相似文献   

8.
Suboptimal phosphorus availability is a primary constraint for terrestrial plant growth and crop productivity. Root hairs are subcellular extensions from the root epidermis that play an important role in the uptake of immobile nutrients such as phosphorus by increasing soil exploration. The objective of this study was to identify quantitative trait loci for root hair length and plasticity in response to phosphorus stress in maize. Using a cigar roll culture system in a controlled environment, root traits including root hair length, tap root length, root thickness, and root biomass were evaluated in 169 recombinant inbred lines derived from a cross between B73 and Mo17. These parents have contrasting adaptation to low phosphorus availability in the field. The parents segregated for the length of individual root hairs under low phosphorus. Average root hair length (RHL) of RI lines ranged from 0.6 to 3.5 mm with an average of 2.0 mm under fertile conditions, and RHL was increased from 0% to 185% under phosphorus stress. Using composite interval mapping with a LOD threshold of 3.27, one QTL was associated with RHL plasticity, three QTL with RHL under high fertility, and one QTL with root hair length under low phosphorus. These QTL accounted for 12.7%, 31.9%, and 9.6% of phenotypic variation, respectively. No QTL were detected for taproot thickness and root biomass. Six QTL were associated with 53.1% of the total variation for seed phosphorus in the population. Root biomass plasticity was significantly correlated with RHL induced by low phosphorus, taproot length plasticity, and seed phosphorus reserves. Our results suggest that genetic variation in root hair length and plasticity may be an appropriate target for marker aided selection to improve the phosphorus efficiency of maize.  相似文献   

9.
Ma  Zhong  Walk  Thomas C.  Marcus  Andrew  Lynch  Jonathan P. 《Plant and Soil》2001,236(2):221-235
Low phosphorus availability regulates root hair growth in Arabidopsis by (1) increasing root hair length, (2) increasing root hair density, (3) decreasing the distance between the root tip and the point at which root hairs begin to emerge, and (4) increasing the number of epidermal cell files that bear hairs (trichoblasts). The coordinated regulation of these traits by phosphorus availability prompted us to speculate that they are synergistic, that is, that they have greater adaptive value in combination than they do in isolation. In this study, we explored this concept using a geometric model to evaluate the effect of varying root hair length (short, medium, and long), density (0, 24, 48, 72, 96, and 120 root hairs per mm of root length), tip to first root hair distance (0.5, 1, 2, and 4 mm), and number of trichoblast files (8 vs. 12) on phosphorus acquisition efficiency (PAE) in Arabidopsis. SimRoot, a dynamic three-dimensional geometric model of root growth and architecture, was used to simulate the growth of Arabidopsis roots with contrasting root hair parameters at three values of phosphorus diffusion coefficient (D e=1×10–7, 1×10–8, and 1×10–9 cm2 s–1) over time (20, 40, and 60 h). Depzone, a program that dynamically models nutrient diffusion to roots, was employed to estimate PAE and competition among root hairs. As D e decreased from 1×10–7 to 1×10–9 cm2 s–1, roots with longer root hairs and higher root hair densities had greater PAE than those with shorter and less dense root hairs. At D e=1×10–9 cm2 s–1, the PAE of root hairs at any given density was in the order of long hairs > medium length hairs > short hairs, and the maximum PAE occurred at density = 96 hairs mm–1 for both long and medium length hairs. This was due to greater competition among root hairs when they were short and dense. Competition over time decreased differences in PAE due to density, but the effect of length was maintained, as there was less competition among long hairs than short hairs. At high D e(1×10–7 cm2 s–1), competition among root hairs was greatest among long hairs and lowest among short hairs, and competition increased with increasing root hair densities. This led to a decrease in PAE as root hair length and density increased. PAE was also affected by the tip to first root hair distance. At low D e values, decreasing tip to first root hair distance increased PAE of long hairs more than that of short hairs, whereas at high D e values, decreasing tip to first root hair distance increased PAE of root hairs at low density but decreased PAE of long hairs at very high density. Our models confirmed the benefits of increasing root hair density by increasing the number of trichoblast files rather than decreasing the trichoblast length. The combined effects of all four root hair traits on phosphorus acquisition was 371% greater than their additive effects, demonstrating substantial morphological synergy. In conclusion, our data support the hypothesis that the responses of root hairs to low phosphorus availability are synergistic, which may account for their coordinated regulation.  相似文献   

10.
A field isolate of Bradyrhizobium japonicum which failed to attach polarly or firmly to soybean roots was compared with the laboratory isolate I-110 for its relative rate of growth, piliation, attachment and nodulation. Both isolates grew at a comparable rate in yeast extract-gluconate medium as well as in soybean root exudate, produced comparable amounts of soybean lectin binding polysaccharide, infected through curled root hairs and developed effective nodules. Approximately 5% of cells in cultures of 110 possessed pili but none were detected in cultures of 1007 by electron microscopy. Light microscopic observations of root hairs from roots exposed to 1007 and 110 inoculum showed no polarly attached cells of 1007 and approximately 100 cells of 110 polarly attached per mm root hair length. Plate counting of firmly bound cells released by sonication indicated that the number of 1007 cells firmly adhering was at least 1000-fold lower than the number of 110 cells attached. The significance of polar, firm and weak attachment in the initiation of symbiotic interactions is discussed.Dedicated to the menory of Harry E. Calvert  相似文献   

11.
Background and AimsAn increase in root hair length and density and the development of arbuscular mycorrhiza symbiosis are two alternative strategies of most plants to increase the root–soil surface area under phosphorus (P) deficiency. Across many plant species, root hair length and mycorrhization density are inversely correlated. Root architecture, rooting density and physiology also differ between species. This study aims to understand the relationship among root hairs, arbuscular mycorrhizal fungi (AMF) colonization, plant growth, P acquisition and mycorrhizal-specific Pi transporter gene expression in maize.MethodsUsing nearly isogenic maize lines, the B73 wild type and the rth3 root hairless mutant, we quantified the effect of root hairs and AMF infection in a calcareous soil under P deficiency through a combined analysis of morphological, physiological and molecular factors.Key ResultsWild-type root hairs extended the rhizosphere for acid phosphatase activity by 0.5 mm compared with the rth3 hairless mutant, as measured by in situ zymography. Total root length of the wild type was longer than that of rth3 under P deficiency. Higher AMF colonization and mycorrhiza-induced phosphate transporter gene expression were identified in the mutant under P deficiency, but plant growth and P acquisition were similar between mutant and the wild type. The mycorrhizal dependency of maize was 33 % higher than the root hair dependency.ConclusionsThe results identified larger mycorrhizal dependency than root hair dependency under P deficiency in maize. Root hairs and AMF inoculation are two alternative ways to increase Pi acquisition under P deficiency, but these two strategies compete with each other.  相似文献   

12.
Root hairs are unicellular extensions of specialized epidermis cells. Under limiting conditions, they significantly increase the water and nutrient uptake capacity of plants by enlarging their root surface. Thus far, little is known about the initiation and growth of root hairs in the monocot model species maize. To gain a first insight into the protein composition of these specialized cells, the 2573 most abundant proteins of maize root hairs attached to four-day-old primary roots of the inbred line B73 were identified by combining 1DE with nanoLC-MS/MS in a shotgun proteomic experiment. Among the identified proteins, homologues of 252 proteins have been previously associated with root hair formation and development in other species. Comparison of the root hair reference proteome of the monocot species maize with the previously published root hair proteome of the dicot species soybean revealed conserved, but also unique, protein functions in root hairs of these two major groups of flowering plants.  相似文献   

13.
We characterized the response of root hair density to phosphorus (P) availability in Arabidopsis thaliana. Arabidopsis plants were grown aseptically in growth media with varied phosphorus concentrations, ranging from 1 mmol m3 to 2000 mmol m3 phosphorus. Root hair density (number of root hairs per mm of root length) was analysed starting at 7 d of growth. Root hair density was highly regulated by phosphorus availability, increasing significantly in roots exposed to low-phosphorus availability. The initial root hairs produced by the radicle were not sensitive to phosphorus availability, but began to respond after 9 d of growth. Root hair density was about five times greater in low phosphorus (1 mmol m3) than in high phosphorus (1000 mmol m3) media. Root hair density decreased logarithmically in response to increasing phosphorus concentrations within that range. Root hair density also increased in response to deficiencies of several other nutrients, but not as strongly as to low phosphorus. Indoleacetic acid (IAA), the auxin transport inhibitor 2-(p-chlorophenoxy)-2-methylpropionic acid (CMPA), the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), and the ethylene synthesis inhibitor amino-oxyacetic acid (AOA) all increased root hair density under high phosphorus but had very little effect under low phosphorus. Low phosphorus significantly changed root anatomy, causing a 9% increase in root diameter, a 31% decrease in the cross-sectional area of individual trichoblasts, a 40% decrease in the cross-sectional area of individual atrichoblasts, and 45% more cortical cells in cross-section. The larger number of cortical cells and smaller epidermal cell size in low phosphorus roots increased the number of trichoblast files from eight to 12. Two-thirds of increased root hair density in low phosphorus roots was caused by increased likelihood of trichoblasts to form hairs, and 33% of the increase was accounted for by changes in low phosphorus root anatomy resulting in an increased number of trichoblast files. These results show that phosphorus availability can fundamentally alter root anatomy, leading to changes in root hair density, which are presumably important for phosphorus acquisition.  相似文献   

14.
Arabidopsis thaliana root hairs grow longer and denser in response to low-phosphorus availability. In addition, plants with the root hair response acquire more phosphorus than mutants that have root hairs that do not respond to phosphorus limiting conditions. The purpose of this experiment was to determine the efficiency of root hairs in phosphorus acquisition at high- and low-phosphorus availability. Root hair growth, root growth, root respiration, plant phosphorus uptake, and plant phosphorus content of 3-wk-old wild-type Arabidopsis (WS) were compared to two root hair mutants (rhd6 and rhd2) under high (54 mmol/m) and low (0.4 mmol/m) phosphorus availability. A cost-benefit analysis was constructed from the measurements to determine root hair efficiency. Under high-phosphorus availability, root hairs did not have an effect on any of the parameters measured. Under low-phosphorus availability, wild-type Arabidopsis had greater total root surface area, shoot biomass, phosphorus per root length, and specific phosphorus uptake. The cost-benefit analysis shows that under low phosphorus, wild-type roots acquire more phosphorus for every unit of carbon respired or unit of phosphorus invested into the roots than the mutants. We conclude that the response of root hairs to low-phosphorus availability is an efficient strategy for phosphorus acquisition.  相似文献   

15.
Background and AimsRhizosheaths are defined as the soil adhering to the root system after it is extracted from the ground. Root hairs and mucilage (root exudates) are key root traits involved in rhizosheath formation, but to better understand the mechanisms involved their relative contributions should be distinguished.MethodsThe ability of three species [barley (Hordeum vulgare), maize (Zea mays) and Lotus japonicus (Gifu)] to form a rhizosheath in a sandy loam soil was compared with that of their root-hairless mutants [bald root barley (brb), maize root hairless 3 (rth3) and root hairless 1 (Ljrhl1)]. Root hair traits (length and density) of wild-type (WT) barley and maize were compared along with exudate adhesiveness of both barley and maize genotypes. Furthermore, root hair traits and exudate adhesiveness from different root types (axile versus lateral) were compared within the cereal species.Key ResultsPer unit root length, rhizosheath size diminished in the order of barley > L. japonicus > maize in WT plants. Root hairs significantly increased rhizosheath formation of all species (3.9-, 3.2- and 1.8-fold for barley, L. japonicus and maize, respectively) but there was no consistent genotypic effect on exudate adhesiveness in the cereals. While brb exudates were more and rth3 exudates were less adhesive than their respective WTs, maize rth3 bound more soil than barley brb. Although both maize genotypes produced significantly more adhesive exudate than the barley genotypes, root hair development of WT barley was more extensive than that of WT maize. Thus, the greater density of longer root hairs in WT barley bound more soil than WT maize. Root type did not seem to affect rhizosheath formation, unless these types differed in root length.ConclusionsWhen root hairs were present, greater root hair development better facilitated rhizosheath formation than root exudate adhesiveness. However, when root hairs were absent root exudate adhesiveness was a more dominant trait.  相似文献   

16.
Summary Observation of soil grown roots of rye-grass shows that an approximately cylindrical volume of soil, the root hair cylinder, is densely occupied by root hairs. Estimates are given of the concentration of labile and solution potassium within the root hair cylinder during experiments measuring potassium uptake from two soils by single roots. Calculations, using a diffusion model, suggest that labile potassium concentrations may be reduced to between 99.3 and 53 per cent of the initial, depending on the diffusion characteristics of the soil and nutrient demand by the root. Of the total potassium absorbed by a root in 4 days, the proportion which is supplied from within the root hair cylinder is small (0.8 to 6.3 per cent) indicating that diffusion to the root from the soil outside the root hair cylinder is of paramount importance. When root demand is high, diffusion appears to limit uptake to between 71 and 59 per cent of that which roots of comparable physiology would be expected to absorb from stirred solution of the same concentration. Nevertheless, the presence of root hairs is calculated to have enhanced uptake by up to 77 per cent compared with roots without hairs because they virtually increase the root diameter. Diffusion does not appear to be a limiting factor when root demand is low and hairs can then add little to the efficiency of the root system in potassium absorption.  相似文献   

17.
根毛和共生真菌增加了吸收面积,提高了植物获取磷等土壤资源的能力。由于野外原位观测根表微观结构较为困难,吸收细根、根毛、共生真菌如何相互作用并适应土壤资源供应,缺乏相应的数据和理论。该研究以受磷限制的亚热带森林为对象,选取了21种典型树种,定量了根毛存在情况、属性变异,分析了根毛形态特征与共生真菌侵染率、吸收细根功能属性之间的关系,探讨了根表结构对低磷土壤的响应和适应格局。结果表明:1)在亚热带森林根毛不是普遍存在的, 21个树种中仅发现7个树种存有根毛, 4个为丛枝菌根(AM)树种, 3个为外生菌根(ECM)树种。其中,马尾松(Pinus massoniana)根毛出现率最高,为86%;2)菌根类型是理解根-根毛-共生真菌关系的关键,AM树种根毛密度与共生真菌侵染率正相关,但ECM树种根毛直径与共生真菌侵染率负相关; 3) AM树种根毛长度和根毛直径、ECM树种根毛出现率与土壤有效磷含量呈负相关关系。该研究揭示了不同菌根类型树种根毛-共生真菌-根属性的格局及相互作用,为精细理解养分获取策略奠定了基础。  相似文献   

18.
Information on the response of root growth and morphology to soil strength is useful for testing suitability of existing and new tillage methods and/or for selecting plants suitable for a specific site with or without tillage. Although there is extensive published information on the root growth-soil strength relationships for annual agricultural plants, such information is scarce for woody, perennial tree species. The purpose of this study is to examine growth and morphology of the root systems of 17-day-old eucalypt seedlings with respect to variation in soil strength. Soil strength in this study was varied by compaction of a well-aggregated clay soil to bulk densities of 0.7–1.0 Mg m-3 whilst maintaining adequate water availability and aeration for plant growth. Lengths and tip-diameters of primary and lateral roots were measured on the excavated root systems of seedlings.With increase in bulk density and also soil strength (expressed as penetrometer resistance), total length of primary and lateral roots decreased. There were 71 and 31% reduction in the lengths of primary and lateral roots respectively with an increase in penetrometer resistance from 0.4 to 4.2 MPa. This indicated primary roots to be more sensitive to high soil strength than the lateral roots. Average length of lateral roots and diameters of both primary and lateral root tips increased with an increase in soil strength as well. There was greater abundance of lateral roots (no. of lateral roots per unit length of primary root) and root hairs with increased soil strength. The observed root behaviour to variable soil strength is discussed in the context of compensatory growth of roots and overall growth of plants.  相似文献   

19.
不同灌溉方式对玉米根毛生长发育的影响   总被引:9,自引:0,他引:9  
在盆栽条件下,采用分根装置,在光学显微镜和电子显微镜下对均匀灌水、固定部分根区灌水和根系分区交替灌水3种方式下各1/2根区的根毛发育状况进行观察并采样照相,研究不同根区根毛的生长发育特征.结果表明:处理40 d时,固定部分根区灌水条件下,非灌水区的根毛有明显退化脱落现象,退化区所占比例为20.96%,明显大于其他根区;灌水区的根系发黄,有腐烂斑,且根分枝有退化现象,根毛密集区的密集程度不如非灌水区,但根毛退化区所占比例小(15.72%),退化程度轻.均匀灌水根系的根毛发育状况与固定灌水的灌水区类似.交替灌水条件下,先灌水区和后灌水区根毛密集区的密集程度均较高,根毛退化脱落区分别占9.77%和10.38%,明显小于均匀灌水和固定灌水.说明采用交替灌水方式可促进根系根毛的生长发育,而持续湿润或干燥不利于根系根毛的生长发育.  相似文献   

20.
Low phosphorus availability stimulates root hair elongation in many plants, which may have adaptive significance in soil phosphorus acquisition. We investigated the effect of low phosphorus on the elongation of Arabidopsis thaliana root hairs. Arabidopsis thaliana plants were grown in plant culture containing high (1000 mmol m?3) or low (1 mmol m?3) phosphorus concentrations, and root hair elongation was analysed by image analysis. After 15d of growth, low-phosphorus plants developed root hairs averaging 0.9 mm in length while high-phosphorus plants of the same age developed root hairs averaging 0.3 mm in length. Increased root hair length in low-phosphorus plants was a result of both increased growth duration and increased growth rate. Root hair length decreased logarithmically in response to increasing phosphorus concentration. Local changes in phosphorus availability influenced root hair growth regardless of the phosphorus status of the plant. Low phosphorus stimulated root hair elongation in the hairless axr2 mutant, exogenously applied IAA stimulated root hair elongation in wild-type high-phosphorus plants and the auxin antagonist CM PA inhibited root hair elongation in low-phosphorus plants. These results indicate that auxin may be involved in the low-phosphorus response in root hairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号