首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
研究了放牧强度对多年生黑麦草人工草地蘖的形态、密度、草地生产率及组织转化的影响。结果表明,重牧条件下蘖密度大于轻牧,而轻牧的单株蘖重大于重牧。重牧划地净生产率大于轻牧,主要是由于轻和手条件下,草地的高的生长率被更高的枯死率所抵消。春夏之交,采用灵活的管理措施,转换放牧强度可以提高草地的生产率。  相似文献   

2.
Summary The effects of winter waterlogging and a subsequent drought on the growth of winter barley and winter wheat have been examined. We used lysimeters containing soil monoliths with facilities to control the water table and a mobile shelter to control rainfall. Winter wheat was grown on a clay and on a sandy loam, but winter barley only on the clay soil. Lysimeters were either freely-drained during the winter or waterlogged with the water table 10 cm below the soil surface from 2 December until 31 March (that could occur by rainfall with a return period of 2 to 3 years). The lysimeters then were either irrigated so that the soil moisture deficit did not exceed 84 mm, or subjected to drought by limiting rainfall (equivalent to a 1 in 10 dry year in the driest area of England) so that the deficits reached maximum values of 150 mm in the clay and 159 mm in the sandy loam by harvest.Winter waterlogging restricted tillering and restricted the number of ears for all crops; grain yield of the winter barley was decreased by 219 g/m2 (30%), and that of winter wheat by 170 g/m2 (24%) and 153 g/m2 (21% on the clay and sandy loam respectively.The drought treatment reduced the straw weight of winter barley by 75 g/m2 (12%) but did not significantly depress the grain yield. For winter wheat on the clay, where the soil was freely-drained during the winter, drought depressed total shoot weight by 344 g/m2 (17%) and grain weight by 137 g/m2 (17%), but after winter waterlogging, drought did not further depress total or grain weight. In contrast, the winter wheat on the sandy loam was not significantly affected by drought.From these results, which are discussed in relation to other experiments in the United Kingdom, it seems that winter waterlogging is likely to cause more variation in the yield of winter barley and winter wheat than drought.  相似文献   

3.
The uptake and transport of silicon by perennial ryegrass and wheat   总被引:5,自引:0,他引:5  
Summary In experiments with perennial ryegrass and wheat, silicon (Si) concentration in flowing solution culture was maintained constant at 0, 10 and 20 mgl−1 (ryegrass) or 0, 20 and 40 mgl−1 (wheat). Uptake and transport were measured in both species at frequent harvests over periods of up to 80 days. By the final harvests the initial differences in concentration between plants grown at high or low Si were largely eliminated. Much more Si was taken up by both species from the culture solution than was present in the transpiration stream. With ryegrass, the calculated cumulative amounts taken up through mass flow by plants grown at 10 or 20mgl−1 Si, represented less than 40 and 70 per cent, respectively, of the total Si uptake. Up to 94 per cent of the Si taken up by wheat was transported rapidly to the shoots; older leaves contained up to 11.8 per cent Si.  相似文献   

4.
Root penetration resistance and elongation of maize seedling roots were measured directly in undisturbed cores of two sandy loam soils. Root elongation rate was negatively correlated with root penetration resistance, and was reduced to about 50 to 60% of that of unimpeded controls by a resistance of between 0.26 and 0.47 MPa. Resistance to a 30° semiangle, 1 mm diameter penetrometer was between about 4.5 and 7.5 times greater than the measured root penetration resistance. However, resistance to a 5° semiangle, 1 mm diameter probe was approximately the same as the resistnace to root penetration after subtracting the frictional component of resistance. The diameter of roots grown in the undisturbed cores was greater than that of roots grown in loose soil, probably as a direct result of the larger mechanical impedance in the cores.  相似文献   

5.
Summary White clover and perennial ryegrass were grown separately, in pots maintained under controlled environment conditions, for a period of 7 months on ten soils. The proportion of the total soil content of each element taken up by the ryegrass, including that in roots, ranged from 0.88 to 2.18% for Cu, from 0.82 to 2.80% for Zn and from 0.25 to 3.15% for Mn. Uptake by the clover was within these ranges for Cu and Zn, but ranged from 0.10 to 1.71% for Mn.After adjustment for the effects of soil contamination, the ratio of root concentration: shoot concentration was always greater than 1 for both Cu and Zn, and for Cu, though not for Zn, it was considerably greater with ryegrass than with clover. For Mn, the ratio of root:shoot concentration was often greater than 1, and differences between clover and grass were not consistent.Concentrations of Cu and Zn in the shoots were always greater in the clover than in the grass, but concentrations of Mn were generally greater in the grass than the clover.  相似文献   

6.
7.
This study investigated the ability of perennial ryegrass to accumulate silicon and the factors that may influence plant silicon accumulation. Plants were grown in the greenhouse in two soil types, peat:sand mix and Hagerstown-silt-loam, amended with two commercially available sources of silicon, calcium silicate slag and wollastonite at 0, 0.5, 1, 2, 5 and 10 t/ha. Shoot tissue of nine-week-old perennial ryegrass plants was analyzed for silicon content (%) and found to reach a dry matter concentration of up to 4% in this study. Silicon accumulation in perennial ryegrass was influenced by the soil type and source, and was higher in plants grown in low-silicon peat:sand mix compared to Hagerstown-silt-loam. Silicon content (%) in the plants consistently increased with increasing rates of silicon in all four soil and source combinations. Acetic acid (HAc) extractable silicon and Ca increased in both soil types when amended with either of the silicon sources. Effects of silicon sources on soil pH varied with soil type. This study indicates that soil type, source of silicon, and rate of silicon application are important factors influencing the uptake of silicon by perennial ryegrass which is a widely used turfgrass species in golf courses, sports fields, and residential lawns in the United States.  相似文献   

8.
Summary Winter oats were grown outdoors in lysimeters containing monoliths of a sandy loam soil. The soil was either freely-drained throughout the experiment or waterlogged to the soil surface from mid-January until mid-April. After the start of waterlogging the oxygen flux density decreased most rapidly nearer the soil surface and in the upper 50 cm declined to zero. At 80 cm depth the oxygen flux density at the end of the waterlogging still had not diminished to zero. While the soil was waterlogged root growth was negligible in the 20–50 cm zone of the soil profile, whereas below that depth root growth continued, reaching 95 cm by the end of the treatment. During the latter part of the waterlogging period root growth resumed in the upper 10 cm, and in the upper 2.5 cm was greater than in the freelydrained treatment.At the end of the waterlogging period, the total root length and shoot dry weights were 77 and 60% of those in the freely-drained treatment, tillering was restricted and leaf area index diminished. However, by anthesis, root length and shoot weights of the plants that had been waterlogged were only 10 and 12% less respectively than for the freely-drained plants. At harvest, total dry matter and grain yields were only 9% less, the latter largely through fewer grains per panicle.  相似文献   

9.
10.
Summary A greenhouse study was carried out on an Nsukka sandy loam Ultisol having low soil moisture retention capacity to investigate the soil moisture regime and irrigation frequency required for optimum growth, yield, nutrient uptake and water use efficiency of maize (Zea mays L.) and cowpeas (Vigna unguiculata L. Walp). Four irrigation amounts (400 cm3, 300 cm3, 200 cm3 and 100 cm3 equivalent to 100, 75, 50 and 25% of field capacity, respectively) and four irrigation frequencies (daily, 2-day, 3-day and 4-day intervals) were tested in a factorial randomized design with three replications.Growth of maize was best when irrigation with water equivalent to 75% field capacity at daily interval but the optimum yields and nutrient uptake of both crops as well as cowpea nodulation were obtained when irrigating with water equivalent to 100% field capacity at daily or 2-day interval. The optimum water use efficiency was, however, achieved when irragating with amount equivalent to 100% field capacity at a 2-day interval. Irrigation with water equivalent to 50 or 25% field capacity at any interval resulted in various degrees of moisture stress which manifested in poor crop performance.  相似文献   

11.
12.
The effects of nitrate (NO3-) supply on shoot morphology, vertical distribution of shoot and root biomass and total nitrogen (N) acquisition by two perennial ryegrass (Lolium perenne L.) cultivars (AberElan and Preference) and two white clover (Trifolium repens L.) cultivars (Grasslands Huia and AberHerald) were studied in flowing nutrient culture. Cultivars were grown from seed as monocultures and the clovers inoculated with Rhizobium. The 6-week measurement period began on day 34 (grasses) and day 56 (clovers) when the NO3- supply was adjusted to either 2 mmol m-3 (low nitrogen, LN) or 50 mmol m-3 (high nitrogen, HN). These treatments were subsequently maintained automatically. Plants were harvested at intervals to measure their morphology and N content. Cultivars of both species differed significantly in several aspects of their response to NO3- supply. In the grasses, the LN treatment increased the root : shoot ratio of AberElan but did not affect the distribution of root length in the root profile. In contrast, this treatment changed the root distribution of Preference compared with HN, resulting in a larger proportion of root length being distributed further down the root profile. The morphology of white clover Grasslands Huia was for the most part unaffected by the level of NO3- supply. In contrast, AberHerald exhibited different growth strategies, with LN plants increasing their stolon weight per unit length at the expense of leaf production, leaf area and stolon length, whereas HN plants showed reduced stolon thickness, greater leaf area production and stolon length per plant. Cultivars with different morphological/physiological strategies in response to NO3- supply may be of value in the construction of 'compatible mixtures' aimed at reducing oscillations in sward clover content by extending the range of conditions that allow balanced coexistence of species to occur.  相似文献   

13.
Summary Ammonium nitrate fertilizer, labelled with15N, was applied in spring to winter wheat growing in undisturbed monoliths of clay and sandy loam soil in lysimeters; the rates of application were respectively 95 and 102 kg N ha−1 in the spring of 1976 and 1975. Crops of winter wheat, oilseed rape, peas and barley grown in the following 5 or 6 years were treated with unlabelled nitrogen fertilizer at rates recommended for maximum yields. During each year of the experiments the lysimeters were divided into treatments which were either freelydrained or subjected to periods of waterlogging. Another labelled nitrogen application was made in 1980 to a separate group of lysimeters with a clay soil and a winter wheat crop to study further the uptake of nitrogen fertilizer in relation to waterlogging. In the first growing season, shoots of the winter wheat at harvest contained 46 and 58% of the fertilizer nitrogen applied to the clay and sandy loam soils respectively. In the following year the crops contained a further 1–2% of the labelled fertilizer, and after 5 and 6 years the total recoveries of labelled fertilizer in the crops were 49 and 62% on the clay and sandy loam soils respectively. In the first winter after the labelled fertilizer was applied, less than 1% of the fertilizer was lost in the drainage water, and only about 2% of the total nitrogen (mainly nitrate) in the drainage water from both soils was derived from the fertilizer. Maximum annual loss occurred the following year but the proportion of tracer nitrogen in drainage was nevertheless smaller. Leaching losses over the 5 and 6 years from the clay and sandy loam soil were respectively 1.3 and 3.9% of the original application. On both soils the percentage of labelled nitrogen to the total crop nitrogen content was greater after a period of winter waterlogging than for freely-drained treatments. This was most marked on the clay soil; evidence points to winter waterlogging promoting denitrification and the consequent loss of soil nitrogen making the crop more dependent on spring fertilizer applications.  相似文献   

14.
Summary Changes in the abundance and form of endoplasmic reticulum in the three major cell types of the maize root cap were investigated by stereological and stereometric techniques. Quantification from thin sections was by the modification and application of standard morphometric procedures. This revealed dramatic increases in both the volume fraction and surface densities of endoplasmic reticulum as the meristem cells differentiate into starch and secretory cells. A stereometric technique for analysing thick sections was used to assess changes in the types of endoplasmic reticulum as cells differentiate through the root cap. This procedure showed that the proportions of cisternal endoplasmic reticulum to tubular endoplasmic reticulum was highest in the peripheral secretory cells. Electron opacity of the endomembrane system was enhanced by selective staining with zinc iodide and osmium tetroxide (ZIO).  相似文献   

15.
Background and Aims: Perennial ryegrass (Lolium perenne) is one of the key forageand amenity grasses throughout the world. In the UK it accountsfor 70 % of all agricultural land use with an estimated farmgate value of £6 billion per annum. However, in termsof the genetic resources available, L. perenne has lagged behindother major crops in Poaceae. The aim of this project was thereforethe construction of a microsatellite-enriched genomic libraryfor L. perenne to increase the number of genetic markers availablefor both marker-assisted selection in breeding programmes andgene isolation. Methods: Primers for 229 non-redundant microsatellite markers were designedand used to screen two L. perenne genotypes, one amenity andone forage. Of the 229 microsatellites, 95 were found to showpolymorphism between amenity and forage genotypes. A selectionof microsatellite primers was selected from these 95 and usedto screen two mapping populations derived from intercrossingand backcrossing the two forage and amenity grass genotypes. Key Results and Conclusions: The utility of the resulting genetic maps for analysis of thegenetic control of target traits was demonstrated by the mappingof genes associated with heading date to linkage groups 4 and7.  相似文献   

16.
P. E. Pilet  D. Ney 《Planta》1978,144(1):109-110
A method using optical microfibers permitted localized exposure of the cap or the elongating part of growing maize (Zea mays L.) roots to white light. When the cap was illuminated, a strong and very rapid inhibition of the elongation rate of the roots was found. When the light microbeam was directed at the elongating region, the roots continued to grow at the same rate as before the illumination.  相似文献   

17.
F. Baluška  J. Šamaj  D. Volkmann 《Protoplasma》1999,206(1-3):174-187
Summary With heterologous antibodies raised against animal N-cadherin, -catenin, and -catenin, we have visualized their reactive proteins within cells of maize root apices. Embedding using Steedman's wax allowed us to accomplish tissue-specific analysis which revealed that cells of epidermis, endodermis/pericycle, and outer stele tissues, all of which are tightly associated to each other, are especially enriched with presumed plant homologues of N-cadherin and both catenins. In the root epidermis, trichoblasts initiating root hairs showed prominent accumulations of cadherin-like antigens at outgrowing domains where they co-localize with actin. Close associations of cadherin-like proteins with F-actin were detected in parenchymatic cells of the stele, also at the immunogold electron microscopy level. A possible role of these interesting proteins in membrane-membrane interactions is indicated by their prominent accumulations at endoplasmic-reticulum-enriched pit-field-based plant cell adhesion domains in plasmolyzing cells of maize root apices exposed to mannitol. Intriguingly, these unique adhesion domains of plasmolyzing cells are enriched with endoplasmic-reticulum-resident calreticulin. Cadherin-like, but not catenin-like, proteins were abundant also within the nucleoplasm.Abbreviations AGPs arabinogalactan proteins - EM electron microscopy - ER endoplasmic reticulum - MFs microfilaments - SB stabilizing buffer  相似文献   

18.
Perennial ryegrass is widely used for overseeding dormant bermudagrass on golf courses and sports fields in Southeastern United States to provide green color and improved playability. Late spring and summer persistence of perennial ryegrass may decrease the quality of the bermudagrass turf and reduce its winter hardiness. To help solve this problem, we developed a strategy to activate a pro-herbicide within the transgenic perennial ryegrass plants and to cause self elimination of the plants. An E. coli argE gene was introduced into perennial ryegrass by the biolistic method, which resulted in four independently transformed green plants. The mRNA of argE gene was detected in three of the plants by RT-PCR. Perennial ryegrass plants expressing the argE transgene were selectively controlled upon application of a pro-herbicide, N-acetyl-l-phosphinothricin (or N-acetyl-PPT), since the N-acetylornithinase encoded by argE gene is able to convert N-acetyl-PPT to the herbicide phosphinothricin (PPT). The non-transgenic bermudagrass plants were unaffected by the treatment. This approach provides a means to selectively remove a group of transgenic plants without affecting other plants growing with them.  相似文献   

19.
伤根对玉米光合作用和水分利用效率的影响   总被引:12,自引:2,他引:12  
1 引  言在世界范围内 ,水资源的短缺日益受到人们的关注 ,农业水资源的高效利用已是世界农业亟待解决的主要问题 .因此 ,现代农业不应再单纯满足于高产 ,还应着眼于节约资源 ,提高水资源利用效率 .近年来 ,为了提高产量及水分利用效率 ,农业科技工作者在植物 水分方面做了大量的工作[1~ 3 ,5~ 7,9~ 12 ] .在人类的农业生产实践中 ,水稻插秧、幼苗移栽以及对作物的中耕等都可以使植株生长状况好转 ,作物产量提高 ,而这些措施都会对植物根系产生一定的影响 .对作物根系进行人为的伤害 ,也可能会改善作物生长状况 ,调节作物对有限土壤水…  相似文献   

20.
Solution culture studies have shown that plant uptake of NH4 + and NO3 - can be improved by increasing the concentration of Ca2+ in the root environment: the same may be true for grass grown in soil culture. An experiment was set up to see whether gypsum (CaSO4 2H2O) increased the rate at which perennial ryegrass absorbed 15NH4 + and 15NO3 - from soil.The results demonstrated that gypsum increases the rates of uptake of both NH4 + and NO3 - by perennial ryegrass. However because there was little potential for mineral-N loss from the experimental system, either by gaseous emission or by N immobilization, long term improvements in fertilizer efficiency were not observed. Nitrogen cycling from shoots to roots commenced once net uptake of N into plants had ceased. Labelled N transferred thus to roots underwent isotopic exchange with unlabelled soil N. It was suggested that this exchange of N might constitute an energy drain from the plant, if plant organic N was exchanged for soil inorganic N. The fact that the exchange occurred at all cast doubt on the suitability of the 15N-isotope dilution technique for assessing fertilizer efficiency in medium to long term experiments. There was evidence that the extra NO3 --N taken up by plants on the all-nitrate treatments as a result of gypsum application, was reduced in root tissue rather than in shoots, but to the detriment of subsequent root growth and N uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号