首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Varicella-zoster virus (VZV) open reading frame (ORF) 62 potentially encodes a protein with considerable amino acid homology to the herpes simplex virus (HSV) immediate-early regulatory polypeptide ICP4 (or IE3). To identify and characterize its protein product(s) (IE62), we used a rabbit antiserum prepared against a synthetic peptide corresponding to the C-terminal 13 amino acids of the predicted protein. This antiserum reacted with phosphorylated polypeptides of 175 to 180 kDa that were made in VZV-infected cells and in cells infected with a vaccinia virus recombinant expressing IE62, but not in control-infected cells, confirming its specificity and reactivity to the IE62 protein. The antiserum recognized a 175-kDa polypeptide in purified virions that comigrated with a major structural protein. Comparison of this reactivity with that of an antipeptide antiserum directed against the VZV ORF 10 product (homologous to the HSV major structural protein VP16) indicates similar levels of ORF 62 and ORF 10 polypeptides in VZV virions. In contrast, antipeptide antiserum directed against the VZV ORF 29 product, the homolog of the HSV major DNA-binding protein, failed to recognize any protein in our virion preparations. Treatment of virions with detergents that disrupt the virion envelope did not dissociate IE62 from the nucleocapsid-tegument structure of the virion. Differential sensitivity of VZV virion IE62 to trypsin digestion in the presence or absence of Triton X-100 indicates that IE62 is protected from trypsin degradation by the virus envelope; since it is not a nucleocapsid protein, we conclude that it is part of the tegument. Finally, we show that the virion 175-kDa protein either can autophosphorylate or is a major substrate in vitro for virion-associated protein kinase activity.  相似文献   

2.
Positional homologs to the UL51 open reading frame of herpes simplex virus type 1 have been identified throughout the herpesvirus family. However, no respective protein has so far been described for any of the herpesviruses. With rabbit antisera directed against oligopeptides predicted to comprise antigenic regions of the deduced pseudorabies virus (PrV) UL51 protein, a polypeptide with a size of 30 kDa was identified in PrV-infected cell lysates and in purified virions. This molecular mass correlates reasonably well with the predicted mass of 25 kDa of the 236-amino-acid deduced UL51 protein. Antisera raised against peptides derived from different predicted antigenic regions all detected the 30-kDa protein in Western blot (immunoblot) analyses. Specificity was ascertained by peptide competition. Subcellular fractionation showed the presence of the UL51 protein mainly in the nucleus of infected cells. After separation of purified virion preparations into envelope and capsid, the PrV UL51 protein was detected in the capsid fraction. In summary, we identified the first herpesvirus UL51 protein and demonstrate that it represents a structural component of PrV virions.  相似文献   

3.
Earlier reports have localized mutations which affect the processing and transport of herpes simplex virus 1 glycoproteins to a region located between the genes specifying glycoprotein B and the major viral DNA-binding protein (beta 8). The nucleotide sequence of this region contains a single long open reading frame encoding a 780-amino-acid protein with a predicted molecular weight of 83,845. To confirm the existence of this protein, rabbit polyclonal antibody was made against a synthetic peptide made according to the predicted sequence of a hydrophilic domain near the carboxy terminal of the protein. This antibody reacted with an infected cell protein of an apparent molecular weight of 95,500. We designated this protein infected cell protein 18.5 (ICP18.5). S1 nuclease analysis suggested that the 5.6-kilobase mRNA encoding ICP18.5 is initiated predominantly from one site, but three weaker initiation sites also seemed to occur within a 74-base-pair stretch of DNA. This gene appears to be conserved in the Epstein-Barr virus (EBV) genome, inasmuch as 174 of the 780 amino acids of ICP18.5 align with corresponding amino acids predicted by the EBV open reading frame BALF3. The EBV gene is located adjacent to the gene specifying a homolog of the herpes simplex virus 1 glycoprotein B.  相似文献   

4.
5.
6.
Mo C  Suen J  Sommer M  Arvin A 《Journal of virology》1999,73(5):4197-4207
Varicella-zoster virus (VZV) is an alphaherpesvirus that is the causative agent of chickenpox and herpes zoster. VZV open reading frame 5 (ORF5) encodes glycoprotein K (gK), which is conserved among alphaherpesviruses. While VZV gK has not been characterized, and its role in viral replication is unknown, homologs of VZV gK in herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PRV) have been well studied. To identify the VZV ORF5 gene product, we raised a polyclonal antibody against a fusion protein of ORF5 codons 25 to 122 with glutathione S-transferase and used it to study the protein in infected cells. A 40,000-molecular-weight protein was detected in cell-free virus by Western blotting. In immunogold electron microscopic studies, VZV gK was in enveloped virions and was evenly distributed in the cytoplasm in infected cells. To determine the function of VZV gK in virus growth, a series of gK deletion mutants were constructed with VZV cosmid DNA derived from the Oka strain. Full and partial deletions in gK prevented viral replication when the gK mutant cosmids were transfected into melanoma cells. Insertion of the HSV-1 (KOS) gK gene into the endogenous VZV gK site did not compensate for the deletion of VZV gK. The replacement of VZV gK at a nonnative AvrII site in the VZV genome restored the phenotypic characteristics of intact recombinant Oka (rOka) virus. Moreover, gK complementing cells transfected with a full gK deletion mutant exhibited viral plaques indistinguishable from those of rOka. Our results are consistent with the studies of gK proteins of HSV-1 and PRV showing that gK is indispensable for viral replication.  相似文献   

7.
Monospecific polyclonal antisera raised against VP13/14, a major tegument protein of herpes simplex virus type 1 cross-reacted with structural equine herpesvirus 1 and 4 proteins of Mr 120,000 and 123,000, respectively; these proteins are identical in molecular weight to the corresponding glycoprotein 10 (gp10) of each virus. Using a combination of immune precipitation and Western immunoblotting techniques, we confirmed that anti-VP13/14 and a monoclonal antibody to gp10 reacted with the same protein. Sequence analysis of a lambda gt11 insert of equine herpesvirus 1 gp10 identified an open reading frame in equine herpesvirus 4 with which it showed strong homology; this open reading frame also shared homology with gene UL47 of herpes simplex virus type 1 and gene 11 of varicella-zoster virus. This showed that, in addition to immunological cross-reactivity, VP13/14 and gp10 have protein sequence homology; it also allowed identification of VP13/14 as the gene product of UL47.  相似文献   

8.
By analyses of short DNA sequences, we have deduced the overall arrangement of genes in the (A + T)-rich coding sequences of herpesvirus saimiri (HVS) relative to the arrangements of homologous genes in the (G + C)-rich coding sequences of the Epstein-Barr virus (EBV) genome and the (A + T)-rich sequences of the varicella-zoster virus (VZV) genome. Fragments of HVS DNA from 13 separate sites within the 111 kilobase pairs of the light DNA coding sequences of the genome were subcloned into M13 vectors, and sequences of up to 350 bases were determined from each of these sites. Amino acid sequences predicted for fragments of open reading frames defined by these sequences were compared with a library of the protein sequences of major open reading frames predicted from the complete DNA sequences of VZV and EBV. Of the 13 short amino acid sequences obtained from HVS, only 3 were recognizably homologous to proteins encoded by VZV, but all 13 HVS sequences were unambiguously homologous to gene products encoded by EBV. The HVS reading frames identified by this method included homologs of the major capsid polypeptides, glycoprotein H, the major nonstructural DNA-binding protein, thymidine kinase, and the homolog of the regulatory gene product of the BMLF1 reading frame of EBV. Locally as well as globally, the order and relative orientation of these genes resembled that of their homologs on the EBV genome. Despite the major differences in their nucleotide compositions and in the nature and arrangements of reiterated DNA sequences, the genomes of the lymphotropic herpesviruses HVS and EBV encode closely related proteins, and they share a common organization of these coding sequences which differs from that of the neurotropic herpesviruses, VZV and herpes simplex virus.  相似文献   

9.
The UL37 open reading frame of the herpes simplex virus type 1 (HSV-1) DNA genome is located between map units 0.527 and 0.552. We have identified and characterized the UL37 protein product in HSV-1-infected cells. The presence of the UL37 protein was detected by using a polyclonal rabbit antiserum directed against an in vitro-translated product derived from an in vitro-transcribed UL37 mRNA. The UL37 open reading frame encodes for a protein with an apparent molecular mass of 120 kDa in HSV-1-infected cells; the protein's mass was assigned on the basis of its migration in sodium dodecyl sulfate-polyacrylamide gels. The UL37 protein is not present at detectable levels in purified HSV-1 virions, suggesting that it is not a structural protein. Analysis of time course experiments and experiments using DNA synthesis inhibitors demonstrated that the UL37 protein is expressed prior to the onset of viral DNA synthesis, reaching maximum levels late in infection, classifying it as a gamma 1 gene. Elution of HSV-1-infected cell proteins from single-stranded DNA agarose columns by using a linear KCl gradient demonstrated that the UL37 protein elutes from this matrix at a salt concentration similar to that observed for ICP8, the major HSV-1 DNA-binding protein. In addition, computer-assisted analysis revealed a potential ATP-binding domain in the predicted UL37 amino acid sequence. On the basis of the kinetics of appearance and DNA-binding properties, we hypothesize that UL37 represents a newly recognized HSV-1 DNA-binding protein that may be involved in late events in viral replication.  相似文献   

10.
Varicella-zoster virus (VZV) encodes five gene products that do not have homologs in herpes simplex virus. One of these genes, VZV open reading frame 32 (ORF32), is predicted to encode a protein of 16 kDa. VZV ORF32 protein was shown to be phosphorylated and located in the cytosol of virus-infected cells. Antibody to ORF32 protein immunoprecipitated 16- and 18-kDa phosphoproteins from VZV-infected cells. Since VZV encodes two protein kinases that might phosphorylate ORF32 protein, immunoprecipitations were performed with cells infected with VZV mutants unable to express either of the viral protein kinases. Cells infected with VZV unable to express the ORF66 protein kinase contained both the 16- and 18-kDa ORF32 phosphoproteins; however, cells infected with the VZV ORF47 protein kinase mutant showed only the 16-kDa ORF32 phosphoprotein. Treatment of [35S]methionine-labeled proteins with calf intestine alkaline phosphatase resulted in a decrease in size of the ORF32 proteins from 16 and 18 kDa to 15 and 17 kDa, respectively. VZV unable to express ORF32 protein replicated in human melanoma cells to titers similar to those seen with parental virus; however, VZV unable to express ORF32 was impaired for replication in U20S osteosarcoma cells. Thus, VZV ORF32 protein is posttranslationally modified by the ORF47 protein kinase. Since the VZV ORF47 protein kinase has recently been shown to be critical for replication in human fetal skin and lymphocytes, its ability to modify the ORF32 protein suggests that the latter protein may have a role for VZV replication in human tissues.  相似文献   

11.
The herpes simplex virus type 1 (HSV-1) UL37 open reading frame encodes a 120-kDa late (gamma 1), nonstructural protein in infected cells. Recent studies in our laboratory have demonstrated that the UL37 protein interacts in the cytoplasm of infected cells with ICP8, the major HSV-1 DNA-binding protein. As a result of this interaction, the UL37 protein is transported to the nucleus and can be coeluted with ICP8 from single-stranded DNA columns. Pulse-labeling and pulse-chase studies of HSV-1-infected cells with [35S]methionine and 32Pi demonstrated that UL37 was a phosphoprotein which did not have a detectable rate of turnover. The protein was phosphorylated soon after translation and remained phosphorylated throughout the viral replicative cycle. UL37 protein expressed from a vaccinia virus recombinant was also phosphorylated during infection, suggesting that the UL37 protein was phosphorylated by a cellular kinase and that interaction with the ICP8 protein was not a prerequisite for UL37 phosphorylation.  相似文献   

12.
13.
Earlier reports have described a novel protein kinase in cells infected with herpes simplex or pseudorabies viruses. These novel enzymes were characterized by their acceptance of protamine as a substrate and by their differential chromatographic behavior in anion-exchange chromatography. We report that this activity was not present in extracts of uninfected cells or of cells infected with a mutant constructed so as to contain a deletion in the US3 open reading frame mapping in the small component of herpes simplex virus 1 DNA. The activity was present in extracts of cells infected with wild-type virus and with a recombinant in which the US3 open reading frame had been rescued. Our results are consistent with the observation reported earlier that the coding sequences predict an amino acid motif common to protein kinases and lead to the conclusion that the US3 open reading frame encodes a virus-specific protein kinase that is not required for virus growth in cells in culture.  相似文献   

14.
An antibody made against the herpes simplex virus 1 US5 gene predicted to encode glycoprotein J was found to react strongly with two proteins, one with an apparent Mr of 23,000 and mapping in the S component and one with a herpes simplex virus protein with an apparent Mr of 43,000. The antibody also reacted with herpes simplex virus type 2 proteins forming several bands with apparent Mrs ranging from 43,000 to 50,000. Mapping studies based on intertypic recombinants, analyses of deletion mutants, and ultimately, reaction of the antibody with a chimeric protein expressed by in-frame fusion of the glutathione S-transferase gene to an open reading frame antisense to the gene encoding glycoprotein B led to the definitive identification of the new open reading frame, designated UL27.5. Sequence analyses indicate the conservation of a short amino acid sequence common to US5 and UL27.5. The coding sequence of the herpes simplex virus UL27.5 open reading frame is strongly homologous to the sequence encoding the carboxyl terminus of the herpes simplex virus 2 UL27.5 sequence. However, both open reading frames could encode proteins predicted to be significantly larger than the mature UL27.5 proteins accumulating in the infected cells, indicating that these are either processed posttranslationally or synthesized from alternate, nonmethionine-initiating codons. The UL27.5 gene expression is blocked by phosphonoacetate, indicating that it is a γ2 gene. The product accumulated predominantly in the cytoplasm. UL27.5 is the third open reading frame found to map totally antisense to another gene and suggests that additional genes mapping antisense to known genes may exist.  相似文献   

15.
16.
Varicella-zoster virus (VZV) gene 63 encodes a protein (IE63) with a predicted molecular mass of 30.5 kDa which has amino acid similarities to the immediate-early (IE) protein 22 (ICP22) of herpes simplex virus type 1. ICP22 is a polypeptide synthesized in herpes simplex virus type 1-infected cells, and as is the case for its VZV counterpart, its regulatory functions are unknown. On the basis of the VZV DNA sequence, it has been shown that IE63 exhibits hydrophilic and acidic properties, suggesting that this protein could play a regulatory role during the infectious cycle. We report in this article cotransfection experiments which demonstrate that the VZV gene 63 protein strongly represses, in a dose-dependent manner, the expression of VZV gene 62. On the other hand, transient expression of the VZV gene 63 protein can promote activation of the thymidine kinase gene but cannot affect the expression of the genes encoding glycoproteins I and II. The results of transient expression experiments strongly suggest that the VZV gene 63 protein could play a pivotal role in the repression of IE gene expression as well as in the activation of early gene expression.  相似文献   

17.
To investigate the role of varicella-zoster virus (VZV) open reading frame 47 (ORF47) protein kinase during infection, a VZV mutant was generated in which two contiguous stop codons were introduced into ORF47, thus eliminating expression of the ORF47 kinase. ORF47 kinase was not essential for the growth of VZV in cultured cells, and the growth rate of the VZV mutant lacking ORF47 protein was indistinguishable from that of parental VZV. Nuclear extracts from cells infected with parental VZV contained several phosphorylated proteins which were not detected in extracts from cells infected with the ORF47 mutant. The herpes simplex virus type 1 (HSV-1) UL13 protein (the homolog of VZV ORF47 protein) is responsible for the posttranslational processing associated with phosphorylation of HSV-1 ICP22 (the homolog of VZV ORF63 protein). Immunoprecipitation of 32P-labeled proteins from cells infected with parental virus and those infected with ORF47 mutant virus yielded similar amounts of the VZV phosphoproteins encoded by ORF4, ORF62, ORF63, and ORF68 (VZV gE), and the electrophoretic migration of these proteins was not affected by the lack of ORF47 kinase. Therefore, while the VZV ORF47 protein is capable of phosphorylating several cellular or viral proteins, it is not required for phosphorylation of the ORF63 protein in virus-infected cells.  相似文献   

18.
The UL7 gene of bovine herpesvirus 1 (BHV-1) strain Schönböken was found at a position and in a context predicted from the gene order in the prototype alphaherpesvirus herpes simplex virus type 1. The gene and flanking regions were sequenced, the UL7 RNA and protein were characterized, and 98.3% of the UL7 open reading frame was deleted from the viral genome without destroying productive virus replication. Concomitant deletion of nine 3' codons from the BHV-1 UL6 ORF and 77 amino acids from the carboxy terminus of the predicted BHV-1 UL8 protein demonstrated that these domains are also not essential for function of the respective proteins. The UL7 open reading frame encodes a protein of 300 amino acids with a calculated molecular mass of 32 kDa. Comparison with UL7 homologs of other alphaherpesviruses revealed a high degree of homology, the most prominent being to the predicted UL7 polypeptide of varicella-zoster virus, with 43.3% identical amino acids. A monospecific anti-UL7 serum identified the 33-kDa (apparent-molecular-mass) UL7 polypeptide which is translated from an early-expressed 1.7-kb RNA. The UL7 protein was localized in the cytoplasm of infected cells and could not be detected in purified virions. In summary, we describe the first identification of an alphaherpesviral UL7-encoded polypeptide and demonstrate that the UL7 protein is not essential for replication of BHV-1 in cell culture.  相似文献   

19.
We have studied the major DNA-binding protein (ICP8) from herpes simplex virus type 1 to identify its DNA-binding site. Since we obtained our protein from a cell line carrying multiple chromosomally located copies of the ICP8 gene, we first analyzed this protein to assess its similarity to the corresponding viral protein. Our protein resembled the viral protein by molecular weight, response to antibody, preference for binding single-stranded DNA, and ability to lower the melting temperature of poly(dA-dT). To define the DNA-binding domain, we subjected the protein to limited trypsin digestion and separated the peptide products on a sodium dodecyl sulfate-polyacrylamide gel. These fragments were then transferred to a nitrocellulose membrane, renatured in situ, and tested for their ability to bind DNA. From this assay, we identified four fragments which both bound DNA and exhibited the expected binding preference for single-stranded DNA. The sequence of the smallest of these fragments was determined and corresponds to a polypeptide spanning residues 300 to 849 in the intact protein. This peptide contains several regions which may be important for DNA binding based on sequence similarities in single-stranded DNA-binding proteins from other herpesviruses and, in one case, on a conserved sequence found in more distant procaryotic and eucaryotic proteins.  相似文献   

20.
The DNA sequence of a vaccinia virus late gene contains an open reading frame that corresponds to the 28,000-dalton (28K) polypeptide made by in vitro translation of hybrid-selected mRNA. To further characterize the protein product of this late gene, we cloned a segment of DNA containing part of the open reading frame into a bacterial expression vector. The fusion protein produced from this vector, containing 151 amino acids of the predicted vaccinia virus protein, was used to immunize rabbits. The resulting antiserum specifically bound to a major 25K structural protein that is localized in the core of vaccinia virions, as well as to a 28K protein found in infected cells. Pulse-chase experiments indicated that the 25K core protein is originally made as a 28K precursor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号