首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Synthesis of nitrate reductase in the unicellular cyanobacterium Synechococcus sp. strain PCC 7942 took place at a slow rate when the cells were incubated without a supply of inorganic carbon, but addition to these cells of CO(2)/bicarbonate or, in a Synechococcus strain transformed with a gene encoding a 2-oxoglutarate permease, 2-oxoglutarate stimulated expression of the enzyme. Induction by 2-oxoglutarate was also observed at the mRNA level for two nitrogen-regulated genes, nir and amt1, but not for the photosystem II D1 protein-encoding gene psbA1. Our results are consistent with a role of 2-oxoglutarate in nitrogen control in cyanobacteria.  相似文献   

3.
Glutamine synthetase (GS; EC 6.3.1.2) activity from the unicellular cyanobacterium Synechococcus sp. strain PCC 6301 shows a short-term regulation by light-dark transitions. The enzyme activity declines down to 30% of the original level after 2 h of dark incubation, and can be fully reactivated within 15 min of re-illumination. The loss of activity is not due to protein degradation, but rather to a reversible change of the enzyme, as deduced from the GS-protein levels determined in dark-incubated cells using polyclonal antibodies raised against Synechococcus GS. Incubation with 3-(3-4-dichlorophenyl)-1,1-dimethylurea (DCMU) also provokes GS inactivation, indicating that an active electron flow between both photosystems is necessary to maintain GS in an active state. On the other hand, the light-mediated reactivation of GS in dark-incubated cells treated with dicyclohexyl-carbodiimide (DCCD) or carbonyl cyanide m-chlorophenylhydrazone (CCCP) indicates that neither changes in the ATP synthesis nor the lack of an electrochemical proton gradient across the thylakoid membrane are directly involved in the regulation process. The inactive form of GS is extremely labile in vitro after disruption of the cells, and is not reactivated by treatment with dithiothreitol or spinach thioredoxin m. These results, taken together with the fact that dark-promoted GS inactivation is dependent on the growth phase, seem to indicate that GS activity is not regulated by a typical redox process and that some other metabolic signal(s), probably related to the ammonium-assimilation pathway, might be involved in the regulation process. In this regard, our results indicate that glutamine is not a regulatory metabolite of Synechococcus glutamine synthetase.Abbreviations CAP chloramphenicol - CCCP carbonyl cyanide m-chlorophenylhydrazone - DCCD dicyclohexylcarbodiimide - DCMU 3-(3-4-dichlorophenyl)-1,1-dimethylurea - DTT dithiothreitol - GOGAT glutamate synthase - GS glutamine synthetase - PFD photon flux density This work has been financed by the Directión General de Investigación Científica y Técnica, (Grant PB88-0020) and by the Junta de Andalucía, Spain.  相似文献   

4.
5.
Abstract: The structure of glutamine synthetase (GS) enzymes from diverse bacterial groups fall into three distinct classes. GSI is the typical bacterial GS, GSII is similar to the eukaryotic GS and is found together with GSI in plant symbionts and Streptomyces , while GSIII has been found in two unrelated anaerobic rumen bacteria. In most cases, the structural gene for GS enzyme is regulated in response to nitrogen. However, different regulatory mechanisms, to ensure optimal utilization of nitrogen substrates, control the GS enzyme in each class.  相似文献   

6.
7.
Abstract The PII protein in the glutamine synthetase cascade transduces the nitrogen signal, as sensed by uridylyltransferase, both to the NRII/NRI two-component system and to adenylyltransferase, to regulate the activity of glutamine synthetase. Here we describe the amplification of a chromosomal DNA fragment from Escherichia coli which contains the sequence of a PII homologue. The derived amino acid sequence of this DNA fragment is 67% identical to E. coli PII. It contains the conserved tyrosine residue which is known to be the site of uridylylation in PII. E. coli is the first organism in which two different PII proteins have been detected.  相似文献   

8.
9.
Localization of glutamine synthetase in thin sections of nitrogen-fixing Anabaena cylindrica was performed using immuno-gold/transmission electronmicroscopy. The enzyme was present in all of the three cell types possible; vegetative cells, heterocysts and akinetes. The specific gold label was always more pronounced in heterocysts compared with vegetative cells, and showed a uniform distribution in all three types. No specific label was associated with subcellular inclusions such as carboxysomes, cyanophycin granules and polyphosphate granules. When anti-glutamine synthetase antiserum was omitted, no label was observed.Abbreviation GS glutamine synthetase  相似文献   

10.
In the presnet studies with whole cells and extracts of the photosynthetic bacterium Rhodopseudomonas capsulata the rapid inhibition of nitrogenase dependent activities (i.e. N2-fixation acetylene reduction, or photoproduction of H2) by ammonia was investigated. The results suggest, that the regulation of the nitrogenase activity by NH 4 + in R. capsulata is mediated by glutamine synthetase (GS). (i) The glutamate analogue methionine sulfoximine (MSX) inhibited GS in situ and in vitro, and simultaneously prevented nitrogenase activity in vivo. (ii) When added to growing cultures ammonia caused rapid adenylylation of GS whereas MSX abolished the activity of both the adenylylated and unadenylylated form of the enzyme. (iii) Recommencement of H2 production due to an exhaustion of ammonia coincided with the deadenylylation of GS. (iv) In extracts, the nitrogenase was found to be inactive only when NH 4 + or MSX were added to intact cells. Subsequently the cells had to be treated with cetyltrimethylammonium bromide (CTAB). (v) In extracts the nitrogenase activity declined linearily with an increase of the ration of adenylylated vs. deadenylylated GS. A mechanism for inhibition of nitrogenase activity by ammonia and MSX is discussed.Abbreviations BSA bovin serum albumine - CTAB cetyltrimethylammonium bromide - GOGAT l-glutamine: 2-oxoglutarate amino transferase - GS glutamine synthetase - HEPES N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid - MSX l-methionine-d,l-sulfoximine  相似文献   

11.
12.
13.
Astrocytes are the primary site of glutamate conversion to glutamine in the brain. We examined the effects of treatment with either dibutyryl cyclic AMP and/or the synthetic glucocorticoid dexamethasone on glutamine synthetase enzyme activity and steady-state mRNA levels in cultured neonatal rat astrocytes. Treatment of cultures with dibutyryl cyclic AMP alone (0.25 mM–1.0 mM) increased glutamine synthetase activity and steady state mRNA levels in a dose-dependent manner. Similarly, treatment with dexamethasone alone (10–7–10–5 M) increased glutamine synthetase mRNA levels and enzyme activity. When astrocytes were treated with both effectors, additive increases in glutamine synthetase activity and mRNA were obtained. However, the additive effects were observed only when the effect of dibutyryl cyclic AMP alone was not maximal. These findings suggest that the actions of these effectors are mediated at the level of mRNA accumulation. The induction of glutamine synthetase mRNA by dibutyryl cyclic AMP was dependent on protein synthesis while the dexamethasone effect was not. Glucocorticoids and cyclic AMP are known to exert their effects on gene expression by different molecular mechanisms. Possible crosstalk between these effector pathways may occur in regulation of astrocyte glutamine synthetase expression.Abbreviations used GS glutamine synthetase - dbcAMP dibutyryl cyclic AMP - MEM minimal essential medium - cyx cycloheximide - GRE glucocorticoid response element - CRE cyclic AMP response element  相似文献   

14.
Anti-glutamine synthetase serum was raised in rabbits by injecting purified glutamine synthetase (GS) of the phototrophic bacterium Rhodopseudomonas capsulata E1F1. The antibodies were purified to monospecificity by immunoaffinity chromatography in GS-sepharose gel. These anti-GS antibodies were used to measure the antigen levels in crude extracts from bacteria, grown phototrophically with dinitrogen, nitrate, nitrite, ammonia, glutamate, glutamine or alanine as nitrogen sources. The amount of GS detected by rocket immunoelectrophoresis was proportional to Mn2+-dependent transferase activity measured in the crude extracts. Addition of GS inhibitor l-methionine-d,l-sulfoximine (MSX) to the actively growing cells promoted increased antigen levels, that were not found in the presence of glutamine or chloramphenicol. The ammonia-induced decrease in GS relative levels was reverted by MSX. GS levels remained constant when phototrophically growing cells were kept in the dark.Abbreviations GS glutamine synthetase - MOPS 2-(N-morpholine) propane sulfonate - MSX l-methionine-d,l-sulfoximine  相似文献   

15.
Summary Immunogold labelling was used to detect the cellular and sub-cellular distribution of glutamine synthetase (GS) in nodulatedGlycine max var. maple arrow. The protein was detected in thin sections of tissue embedded in LR white acrylic resin by employing two polyclonal antibody preparations, one active chloroplastic GS, the other against the cytosolic form of the enzyme. In the mature leaf tissue, GS was visualized only in the chloroplasts, exclusively within the stroma matrix; in the root cortical tissue, the enzyme was distributed homogenously in the cytosol but with a slight preferential localization associated with certain endomembranes, whereas in the root nodules both cytosolic and plastidial compartments were labelled in infected and uninfected cells. Particular to the infected cells, the bacteroids' inner matrix reacted slightly to the GS antibody and a strong signal was preferentially localized on the bacteroids' outer envelope membranes. In general, GS was more concentrated in nodules as estimated by gold particle distribution, whether in the cytosol, plastids or on the bacteroid envelope membranes, than in either root tissue or leaf tissue. Although the cytoplasmic labelling density in nodules was similar in uninfected and infected cells, certain structural features in the latter (abundant cytosol, numerous GS-positive bacteroids and GS-reactive proplastids) contribute to a more enzyme-rich type than its uninfected counterpart.Abbrevation GS glutamine synthetase  相似文献   

16.
17.
Summary The glnA gene of the thermophilic sulphur-dependent archaebacterium Sulfolobus solfataricus was identified by hybridization with the corresponding gene of the cyanobacterium Spirulina platensis and cloned in Escherichia coli. The nucleotide sequence of the 1696 bp DNA fragment containing the structural gene for glutamine synthetase was determined, and the derived amino acid sequence (471 residues) was compared to the sequences of glutamine synthetases from eubacteria and eukaryotes. The homology between the archaebacterial and the eubacterial enzymes is higher (42%–49%) than that found with the eukaryotic counterpart (less than 20%). This was true also when the five most conserved regions, which it is possible to identify in both eubacterial and eukaryotic glutamine synthetases, were analysed.  相似文献   

18.
To elucidate the metabolic characteristics of recombinant CHO cells expressing glutamine synthetase (GS) in the medium with or without glutamine, the concentrations of extra- and intracellular metabolites and the activities of key metabolic enzymes involved in glutamine metabolism pathway were determined. In the absence of glutamine, glutamate was utilized for glutamine synthesis, while the production of ammonia was greatly decreased. In addition, the expression of recombinant protein was increased by 18%. Interestingly, the intracellular glutamine maintained almost constant, independent of the presence of glutamine or not. Activities of glutamate-oxaloacetate aminotransferase (GOT), glutamate-pyruvate aminotransferase (GPT), and glutamate dehydrogenase (GDH) increased in the absence of glutamine. On the other hand, intracellular isocitrate and the activities of its downstream isocitrate dehydrogenase in the TCA cycle increased also. In combination with these two factors, a 8-fold increase in the intracellular α-ketoglutarate was observed in the culture of CHO-GS cells in the medium without glutamine.  相似文献   

19.
20.
Glutamine synthetase (EC 6.3.1.2) has been purified from a collagenolytic Vibrio alginolyticus strain. The apparent molecular weight of the glutamine synthetase subunit was approximately 62,000. This indicates a particle weight for the undissociated enzyme of 744,000, assuming the enzyme is the typical dodecamer. The glutamine synthetase enzyme had a sedimentation coefficient of 25.9 S and seems to be regulated by a denylylation and deadenylylation. The pH profiles assayed by the -glutamyltransferase method were similar for NH4-shocked and unshocked cell extracts and isoactivity point was not obtained from these eurves. The optimum pH for purified and crude cell extracts was 7.9. Cell-free glutamine synthetase was inhibited by some amino acids and AMP. The transferase activity of glutamine synthetase from mid-exponential phase cells varied greatly depending on the sources of nitrogen or carbon in the growth medium. Glutamine synthetase level was regulated by nitrogen catabolite repression by (NH4)2SO4 and glutamine, but cells grown, in the presence of proline, leucine, isoleucine, tryptophan, histidine, glutamic acid, glycine and arginine had enhanced levels of transferase activity. Glutamine synthetase was not subject to glucose, sucrose, fructose, glycerol or maltose catabolite repression and these sugars had the opposite effect and markedly enhanced glutamine synthetase activity.Abbreviations GS glutamine synthetase - SMM succinate minimal medium - ASMM ammonium/succinate minimal medium - GT -glutamyl transferase - SVP snake venom phosphodiesterase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号