首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Actin polymerization plays a critical role in clathrin-mediated endocytosis in many cell types, but how polymerization is regulated is not known. Hip1R may negatively regulate actin assembly during endocytosis because its depletion increases actin assembly at endocytic sites. Here, we show that the C-terminal proline-rich domain of Hip1R binds to the SH3 domain of cortactin, a protein that binds to dynamin, actin filaments and the Arp2/3 complex. We demonstrate that Hip1R deleted for the cortactin-binding site loses its ability to rescue fully the formation of abnormal actin structures at endocytic sites induced by Hip1R siRNA. To determine when this complex might function during endocytosis, we performed live cell imaging. The maximum in vivo recruitment of Hip1R, clathrin and cortactin to endocytic sites was coincident, and all three proteins disappeared together upon formation of a clathrin-coated vesicle. Finally, we showed that Hip1R inhibits actin assembly by forming a complex with cortactin that blocks actin filament barbed end elongation.  相似文献   

2.
A convergence of cellular, genetic and biochemical studies supports the hypothesis that the actin cytoskeleton is coupled to endocytic processes, but the roles played by actin filaments during endocytosis are not yet clear. Recent studies have identified several proteins that may functionally link the endocytic machinery with actin filament dynamics. Three of these proteins, Abp1p, Pan1p and cortactin, are activators of actin assembly nucleated by the Arp2/3 complex, a key regulator of actin assembly in vivo. Two others, intersectin and syndapin, bind N-WASp, a potent activator of actin assembly via the Arp2/3 complex. All of these proteins also bind components of the endocytic machinery, and thus, could coordinately regulate actin assembly and trafficking events. Hip1R, an F-actin-binding protein that associates with clathrin-coated vesicles, may physically link endocytic vesicles to actin filaments. The GTPase dynamin is implicated in modulating actin filaments at specialized actin-rich structures of the cell cortex, suggesting that dynamin may regulate the organization of cortical actin filaments as well as regulate actin dynamics during endocytosis. Finally, myosin VI may generate actin-dependent forces for membrane invagination or vesicle movement during the early stages of endocytosis.  相似文献   

3.
In diverse species, actin assembly facilitates clathrin-coated vesicle (CCV) formation during endocytosis. This role might be an adaptation specific to the unique environment at the cell cortex, or it might be fundamental, facilitating CCV formation on different membranes. Proteins of the Sla2p/Hip1R family bind to actin and clathrin at endocytic sites in yeast and mammals. We hypothesized that Hip1R might also coordinate actin assembly with clathrin budding at the trans-Golgi network (TGN). Using deconvolution and time-lapse microscopy, we showed that Hip1R is present on CCVs emerging from the TGN. These vesicles contain the mannose 6-phosphate receptor involved in targeting proteins to the lysosome, and the actin nucleating Arp2/3 complex. Silencing of Hip1R expression by RNAi resulted in disruption of Golgi organization and accumulation of F-actin structures associated with CCVs on the TGN. Hip1R silencing and actin poisons slowed cathepsin D exit from the TGN. These studies establish roles for Hip1R and actin in CCV budding from the TGN for lysosome biogenesis.  相似文献   

4.
The actin cytoskeleton is believed to contribute to the formation of clathrin-coated pits, although the specific components that connect actin filaments with the endocytic machinery are unclear. Cortactin is an F-actin-associated protein, localizes within membrane ruffles in cultured cells, and is a direct binding partner of the large GTPase dynamin. This direct interaction with a component of the endocytic machinery suggests that cortactin may participate in one or several endocytic processes. Therefore, the goal of this study was to test whether cortactin associates with clathrin-coated pits and participates in receptor-mediated endocytosis. Morphological experiments with either anti-cortactin antibodies or expressed red fluorescence protein-tagged cortactin revealed a striking colocalization of cortactin and clathrin puncta at the ventral plasma membrane. Consistent with these observations, cells microinjected with these antibodies exhibited a marked decrease in the uptake of labeled transferrin and low-density lipoprotein while internalization of the fluid marker dextran was unchanged. Cells expressing the cortactin Src homology three domain also exhibited markedly reduced endocytosis. These findings suggest that cortactin is an important component of the receptor-mediated endocytic machinery, where, together with actin and dynamin, it regulates the scission of clathrin pits from the plasma membrane. Thus, cortactin provides a direct link between the dynamic actin cytoskeleton and the membrane pinchase dynamin that supports vesicle formation during receptor-mediated endocytosis.  相似文献   

5.
The actin cytoskeleton has been implicated in the maintenance of discrete sites for clathrin-coated pit formation during receptor-mediated endocytosis in mammalian cells, and its function is intimately linked to the endocytic pathway in yeast. Here we demonstrate that staining for mammalian endocytic clathrin-coated pits using a monoclonal antibody against the AP2 adaptor complex revealed a linear pattern that correlates with the organization of the actin cytoskeleton. This vesicle organization was disrupted by treatment of cells with cytochalasin D, which disassembles actin, or with 2,3-butanedione monoxime, which prevents myosin association with actin. The linear AP2 staining pattern was also disrupted in HeLa cells that were induced to express the Hub fragment of the clathrin heavy chain, which acts as a dominant-negative inhibitor of receptor-mediated endocytosis by direct interference with clathrin function. Additionally, Hub expression caused the actin-binding protein Hip1R to dissociate from coated pits. These findings indicate that proper function of clathrin is required for coated pit alignment with the actin cytoskeleton and suggest that the clathrin–Hip1R interaction is involved in the cytoskeletal organization of coated pits.  相似文献   

6.
The actin cytoskeleton has been implicated in endocytosis, yet few molecules that link these systems have been identified. Here, we have cloned and characterized mHip1R, a protein that is closely related to huntingtin interacting protein 1 (Hip1). These two proteins are mammalian homologues of Sla2p, an actin binding protein important for actin organization and endocytosis in yeast. Sequence alignments and secondary structure predictions verified that mHip1R belongs to the Sla2 protein family. Thus, mHip1R contains an NH(2)-terminal domain homologous to that implicated in Sla2p's endocytic function, three predicted coiled-coils, a leucine zipper, and a talin-like actin-binding domain at the COOH terminus. The talin-like domain of mHip1R binds to F-actin in vitro and colocalizes with F-actin in vivo, indicating that this activity has been conserved from yeast to mammals. mHip1R shows a punctate immunolocalization and is enriched at the cell cortex and in the perinuclear region. We concluded that the cortical localization represents endocytic compartments, because mHip1R colocalizes with clathrin, AP-2, and endocytosed transferrin, and because mHip1R fractionates biochemically with clathrin-coated vesicles. Time-lapse video microscopy of mHip1R-green fluorescence protein (GFP) revealed a blinking behavior similar to that reported for GFP-clathrin, and an actin-dependent inward movement of punctate structures from the cell periphery. These data show that mHip1R is a component of clathrin-coated pits and vesicles and suggest that it might link the endocytic machinery to the actin cytoskeleton.  相似文献   

7.
Dual colour total internal reflection fluorescence microscopy is a powerful tool for decoding the molecular dynamics of clathrin-mediated endocytosis (CME). Typically, the recruitment of a fluorescent protein-tagged endocytic protein was referenced to the disappearance of spot-like clathrin-coated structure (CCS), but the precision of spot-like CCS disappearance as a marker for canonical CME remained unknown. Here we have used an imaging assay based on total internal reflection fluorescence microscopy to detect scission events with a resolution of ~ 2 s. We found that scission events engulfed comparable amounts of transferrin receptor cargo at CCSs of different sizes and CCS did not always disappear following scission. We measured the recruitment dynamics of 34 types of endocytic protein to scission events: Abp1, ACK1, amphiphysin1, APPL1, Arp3, BIN1, CALM, CIP4, clathrin light chain (Clc), cofilin, coronin1B, cortactin, dynamin1/2, endophilin2, Eps15, Eps8, epsin2, FBP17, FCHo1/2, GAK, Hip1R, lifeAct, mu2 subunit of the AP2 complex, myosin1E, myosin6, NECAP, N-WASP, OCRL1, Rab5, SNX9, synaptojanin2β1, and syndapin2. For each protein we aligned ~ 1,000 recruitment profiles to their respective scission events and constructed characteristic "recruitment signatures" that were grouped, as for yeast, to reveal the modular organization of mammalian CME. A detailed analysis revealed the unanticipated recruitment dynamics of SNX9, FBP17, and CIP4 and showed that the same set of proteins was recruited, in the same order, to scission events at CCSs of different sizes and lifetimes. Collectively these data reveal the fine-grained temporal structure of CME and suggest a simplified canonical model of mammalian CME in which the same core mechanism of CME, involving actin, operates at CCSs of diverse sizes and lifetimes.  相似文献   

8.
Clathrin-mediated endocytosis is the major mechanism by which proteins and membrane lipids gain access into cells. Over the past several years, an array of proteins has been identified that define the molecular machinery regulating the formation of clathrin-coated pits and vesicles. This article focuses on how the identification of this machinery has begun to reveal a molecular basis for a link between endocytosis and the actin cytoskeleton--a link that had long been suspected to exist in mammalian cells but which had remained elusive. In particular, I discuss the relationship between actin and three components of the endocytic machinery--dynamin, HIPs (huntingtin-interacting proteins) and intersectin.  相似文献   

9.
Huntingtin-interacting protein 1 related (Hip1R) is a novel component of clathrin-coated pits and vesicles and is a mammalian homologue of Sla2p, an actin-binding protein important for both actin organization and endocytosis in yeast. Here, we demonstrate that Hip1R binds via its putative central coiled-coil domain to clathrin, and provide evidence that Hip1R and clathrin are associated in vivo at sites of endocytosis. First, real-time analysis of Hip1R-YFP and DsRed-clathrin light chain (LC) in live cells revealed that these proteins show almost identical temporal and spatial regulation at the cell cortex. Second, at the ultrastructure level, immunogold labeling of 'unroofed' cells showed that Hip1R localizes to clathrin-coated pits. Third, overexpression of Hip1R affected the subcellular distribution of clathrin LC. Consistent with a functional role for Hip1R in endocytosis, we also demonstrated that it promotes clathrin cage assembly in vitro. Finally, we showed that Hip1R is a rod-shaped apparent dimer with globular heads at either end, and that it can assemble clathrin-coated vesicles and F-actin into higher order structures. In total, Hip1R's properties suggest an early endocytic function at the interface between clathrin, F-actin, and lipids.  相似文献   

10.
Clathrin-mediated endocytosis in mammalian cells is critical for a variety of cellular processes including nutrient uptake and cell surface receptor down-regulation. Despite the findings that numerous endocytic accessory proteins directly or indirectly regulate actin dynamics and that actin assembly is spatially and temporally coordinated with endocytosis, direct functional evidence for a role of actin during clathrin-coated vesicle formation is lacking. Here, we take parallel biochemical and microscopic approaches to address the contribution of actin polymerization/depolymerization dynamics to clathrin-mediated endocytosis. When measured using live-cell fluorescence microscopy, disruption of the F-actin assembly and disassembly cycle with latrunculin A or jasplakinolide results in near complete cessation of all aspects of clathrin-coated structure (CCS) dynamics. Stage-specific biochemical assays and quantitative fluorescence and electron microscopic analyses establish that F-actin dynamics are required for multiple distinct stages of clathrin-coated vesicle formation, including coated pit formation, constriction, and internalization. In addition, F-actin dynamics are required for observed diverse CCS behaviors, including splitting of CCSs from larger CCSs, merging of CCSs, and lateral mobility on the cell surface. Our results demonstrate a key role for actin during clathrin-mediated endocytosis in mammalian cells.  相似文献   

11.
Senetar MA  Foster SJ  McCann RO 《Biochemistry》2004,43(49):15418-15428
The I/LWEQ module superfamily is a class of actin-binding proteins that contains a conserved C-terminal actin-binding element known as the I/LWEQ module. I/LWEQ module proteins include the metazoan talins, the cellular slime mold talin homologues TalA and TalB, fungal Sla2p, and the metazoan Sla2 homologues Hip1 and Hip12 (Hip1R). These proteins possess a similar modular organization that includes an I/LWEQ module at their C-termini and either a FERM domain or an ENTH domain at their N-termini. As a result of this modular organization, I/LWEQ module proteins may serve as linkers between cellular compartments, such as the plasma membrane and the endocytic machinery, and the actin cytoskeleton. Previous studies have shown that I/LWEQ module proteins bind to F-actin. In this report, we have determined the affinity of the I/LWEQ module proteins Talin1, Talin2, huntingtin interacting protein-1 (Hip1), and the Hip1-related protein (Hip1R/Hip12) for F-actin and identified a conserved structural element that interferes with the actin binding capacity of these proteins. Our data support the hypothesis that the actin-binding determinants in native talin and other I/LWEQ module proteins are cryptic and indicate that the actin binding capacities of Talin1, Talin2, Hip1, and Hip12 are regulated by intrasteric occlusion of primary actin-binding determinants within the I/LWEQ module. We have also found that the I/LWEQ module contains a dimerization motif and stabilizes actin filaments against depolymerization. This activity may contribute to the function of talin in cell adhesion and the roles of Hip1, Hip12 (Hip1R), and Sla2p in endocytosis.  相似文献   

12.
Migrating cells extend protrusions to establish new adhesion sites at their leading edges. One of the driving forces for cell migration is the directional trafficking of cell-adhesion molecules such as integrins. Here, we show that the endocytic adaptor protein Numb is an important component of the machinery for directional integrin trafficking in migrating cells. Numb binds to integrin-betas and localizes to clathrin-coated structures (CCSs) at the substratum-facing surface of the leading edge. Numb inhibition by RNAi impairs both integrin endocytosis and cell migration toward integrin substrates. Numb is regulated by phosphorylation since the protein is released from CCSs and no longer binds integrins when phosphorylated by atypical protein kinase C (aPKC). Because Numb interacts with the aPKC binding partner PAR-3, we propose a model in which polarized Numb phosphorylation contributes to cell migration by directing integrin endocytosis to the leading edge.  相似文献   

13.
The formation of clathrin-coated endocytic vesicles is driven by a complex and highly dynamic molecular machinery. In this issue, Idrissi et al. (Idrissi, F.-Z., H. Grötsch, I.M. Fernández-Golbano, C. Presciatto-Baschong, H. Riezman, and M.-I. Geli. 2008. J. Cell Biol. 180:1219–1232) reveal some of the secrets of this machinery by analyzing the localizations of nine endocytic proteins during vesicle budding in yeast using quantitative immunoelectron microscopy.More than 50 different proteins are thought to have roles in the formation of clathrin-coated endocytic vesicles. These proteins assemble together at the plasma membrane, forming the molecular machinery that drives budding of endocytic vesicles. Although clathrin-mediated endocytosis has been studied already for more than four decades, an understanding of the molecular mechanisms of the process is still quite limited. The difficulty of unraveling the molecular mechanisms is not only a result of the large number of involved proteins but is also a result of the dynamic nature of the endocytic machinery. Endocytic proteins are recruited to the site of vesicle formation in a sequential manner, each protein having its specific times of arrival and departure. The composition of the endocytic machinery can change in a matter of seconds. Many of the recent insights into the process of clathrin-mediated endocytosis have come from imaging of fluorescently labeled proteins in living cells using fluorescence microscopy. Light microscopy provides a good temporal resolution of dynamic events, but its spatial resolution is quite limiting when studying endocytic vesicle budding. On the other hand, electron microscopy offers much better spatial resolution but only provides still images.In this issue, one study (see Idrissi et al. on p. 1219) uses immunoelectron microscopy to study the localizations of nine different proteins at sites of endocytosis in yeast cells. Most of the proteins involved in clathrin-mediated endocytosis in yeast are conserved throughout eukaryotes, including mammals, making yeast a good model system for studying the basic mechanisms of endocytosis. However, only a few studies have addressed the organization of the endocytic machinery at the ultrastructural level in yeast (Mulholland et al., 1994; Young et al., 2004; Rodal et al., 2005). Idrissi et al. (2008) start by looking at clathrin, Pan1 (Eps15 homologue), and Sla1 (intersectin-like protein), which, when visualized in living cells by fluorescence microscopy, show similar behaviors. These proteins accumulate at the plasma membrane, forming small fluorescent spots that are initially nonmotile but then move ∼200 nm from the surface toward the interior of the cell at a constant speed for ∼10 s, after which the spots are rapidly disassembled (Kaksonen et al., 2005; Newpher et al., 2005). Idrissi et al. (2008) show by immunoelectron microscopy that clathrin, Pan1, and Sla1 each localize to tips of plasma membrane invaginations, which are ∼50 nm in diameter and have variable lengths up to 180 nm (Fig. 1). This confirms the earlier hypothesis that the movement of these proteins seen in living cells corresponds to the invagination of a clathrin-coated pit, not to the movement of an already budded vesicle. Importantly, these observations show that the length of the endocytic invagination can be used as an indicator for its age.Open in a separate windowFigure 1. Schematic model showing the localization of nine proteins on an endocytic invagination. An invagination of intermediate length (∼100 m) is depicted. The coat proteins, including clathrin, coat the tip of the invagination. Rvs167, Las17, and Bbc1 occupy the neck region below the tip. Myo5 concentrates to the base of the invagination. Actin and actin-binding protein Abp1 form a shell covering the whole invagination. The quantitative immunoelectron microscopy analysis is then applied to six other proteins involved in endocytosis: Rvs167, Las17, Bbc1, Myo5, actin, and Abp1 (Fig. 1). Rvs167 is a homologue of mammalian amphiphysin, a protein involved in pinching vesicles off from the tips of clathrin-coated pits (Takei et al., 1999). The other studied proteins are regulators or components of the actin cytoskeleton, which, in yeast, is essential for endocytosis, specifically for the movement of clathrin and other coat-associated proteins away from the cell surface (i.e., for the membrane invagination; Kubler and Riezman, 1993; Kaksonen et al., 2003). This analysis reveals many exciting details about the dynamic organization of the endocytic machinery. The yeast amphiphysin homologue Rvs167 is shown to localize to the tubular area of the membrane invagination, just below its clathrin-coated tip. Las17 (yeast Wiskott-Aldrich syndrome protein), a strong activator of the actin filament nucleator Arp2/3 (Winter et al., 1999), and Bbc1, an inhibitor of Las17 (Rodal et al., 2003), both localize to the same area as Rvs167. Myo5, a type I myosin, which is both an actin-dependent molecular motor and an activator of the Arp2/3 complex (Sun et al., 2006), localizes mostly to the base of the invagination, where the membrane has a negative curvature. Genetic experiments together with live cell imaging have suggested that Las17 and Myo5 are both needed sequentially for actin-driven invagination of the membrane (Sirotkin et al., 2005; Sun et al., 2006; Galletta et al., 2008). Las17 has a role in initiating the actin polymerization at endocytic sites, whereas Myo5 is needed for the subsequent internalization process. Interestingly, these two major activators of the Arp2/3 complex localize slightly differently: Myo5 closer to the base of the invagination and Las17 in the middle. This suggests that actin polymerization may be spatially restricted to different areas during different stages of endocytosis. Analysis of actin and actin filament–binding protein Abp1 reveals that they are localized throughout the invagination. However, when compared with the other proteins, immunogold labeling for actin and Abp1 is significantly further away from the lipid bilayer, suggesting that the actin cytoskeleton forms an outer shell covering the rest of the endocytic protein machinery.Using the invagination length as an indicator for the age of the endocytic site, Idrissi et al. (2008) are able to add the time dimension to their data, revealing some interesting temporal dynamics of protein localizations. The temporal order of protein recruitment derived from the electron microscopy data matches observations made using live cell imaging, but the localizations can now be seen at much higher resolution and in relation to the shape of the membrane. Bbc1 and Rvs167 colocalize with Las17, but they appear only on longer, older invaginations. Similarly, Las17 localization precedes Myo5 accumulation, which is consistent with their postulated order of function. The shortest invaginations (<50 nm) show very little labeling for actin. This may mean that the initial membrane bending is independent of actin and could be caused by clathrin or other coat proteins. In older invaginations, actin shows an intriguing distribution. The initial continuous labeling is split into two. Part of the staining localizes to the base of the invagination, and another part localizes to the tip. Similar behavior is also described for Myo5, which initially is concentrated at the base of the invagination but later also appears at the tip. It is not clear whether this staining pattern reflects two separate structures or whether one structure breaks into two. However, this finding shows that the organization of the actin cytoskeleton associated with the endocytic sites may be more complex than previously thought.One of the key events on the endocytic pathway, vesicle scission, still escapes analysis. Scission and the following disassembly are probably too transient to be caught in fixed cells frequently enough to yield sufficient data for analysis. Other very transient events may also go undetected because they could get smeared as a result of the averaging of data from tens of different invaginations. For these very transient events, live cell imaging is likely to remain the method of choice (Merrifield et al., 2005). However, the superior resolution offered by electron microscopy will clearly continue to provide critical insights. Idrissi et al. (2008) analyzed localizations of nine different proteins. At least 40 yeast proteins involved in endocytic internalization remain to be studied. The rich collections of endocytic mutants will also provide many interesting samples for analysis. What happens to the organization of the endocytic machinery when one of the Arp2/3 activators is mutated? Does the shape or size of the invagination change if one of the coat components is deleted? What would be the effect of inhibiting the motor activity of Myo5? These are just a few examples of exciting questions that can now be addressed.  相似文献   

14.
Growing evidence indicates that kinases are central to the regulation of endocytic pathways. Previously, we identified p21‐activated kinase 1 (Pak1) as the first specific regulator of clathrin‐ and caveolae‐independent endocytosis used by the interleukin 2 receptor subunit (IL‐2R). Here, we address the mechanism by which Pak1 regulates IL‐2Rβ endocytosis. First, we show that Pak1 phosphorylates an activator of actin polymerization, cortactin, on its serine residues 405 and 418. Consistently, we observe a specific inhibition of IL‐2Rβ endocytosis when cells overexpress a cortactin, wherein these serine residues have been mutated. In addition, we show that the actin polymerization enhancer, neuronal Wiskott–Aldrich syndrome protein (N‐WASP), is involved in IL‐2Rβ endocytosis. Strikingly, we find that Pak1 phosphorylation of cortactin on serine residues 405 and 418 increases its association with N‐WASP. Thus, Pak1, by controlling the interaction between cortactin and N‐WASP, could regulate the polymerization of actin during clathrin‐independent endocytosis.  相似文献   

15.
The GTPase dynamin is required for endocytic vesicle formation. Dynamin has also been implicated in regulating the actin cytoskeleton, but the mechanism by which it does so is unclear. Through interactions via its proline-rich domain (PRD), dynamin binds several proteins, including cortactin, profilin, syndapin, and murine Abp1, that regulate the actin cytoskeleton. We investigated the interaction of dynamin2 and cortactin in regulating actin assembly in vivo and in vitro. When expressed in cultured cells, a dynamin2 mutant with decreased affinity for GTP decreased actin dynamics within the cortical actin network. Expressed mutants of cortactin that have decreased binding of Arp2/3 complex or dynamin2 also decreased actin dynamics. Dynamin2 influenced actin nucleation by purified Arp2/3 complex and cortactin in vitro in a biphasic manner. Low concentrations of dynamin2 enhanced actin nucleation by Arp2/3 complex and cortactin, and high concentrations were inhibitory. Dynamin2 promoted the association of actin filaments nucleated by Arp2/3 complex and cortactin with phosphatidylinositol 4,5-bisphosphate (PIP2)-containing lipid vesicles. GTP hydrolysis altered the organization of the filaments and the lipid vesicles. We conclude that dynamin2, through an interaction with cortactin, regulates actin assembly and actin filament organization at membranes.  相似文献   

16.
Dynamic actin filaments are required for the formation and internalization of endocytic vesicles. Yeast actin cables serve as a track for the translocation of endocytic vesicles to early endosomes, but the molecular mechanisms regulating the interaction between vesicles and the actin cables remain ambiguous. Previous studies have demonstrated that the yeast Eps15-like protein Pan1p plays an important role in this interaction, and that interaction is not completely lost even after deletion of the Pan1p actin-binding domain, suggesting that additional proteins mediate association of the vesicle with the actin cable. Other candidates for mediating the interaction are endocytic coat proteins Sla2p (yeast Hip1R) and Ent1p/2p (yeast epsins), as these proteins can bind to both the plasma membrane and the actin filament. Here, we investigated the degree of redundancy in the actin-binding activities of Pan1p, Sla2p, and Ent1p/2p involved in the internalization and transport of endocytic vesicles. Expression of the nonphosphorylatable form of Pan1p, Pan1-18TA, caused abnormal accumulation of both actin cables and endocytic vesicles, and this accumulation was additively suppressed by deletion of the actin-binding domains of both Pan1p and Ent1p. Interestingly, deletion of the actin-binding domains of Pan1p and Ent1p in cells lacking the ENT2 gene resulted in severely defective internalization of endocytic vesicles and recruitment of actin cables to the site of endocytosis. These results suggest that Pan1p and Ent1p/2p cooperatively regulate the interaction between the endocytic vesicle and the actin cable.  相似文献   

17.
The bacterial pathogen Listeria monocytogenes uses the surface protein InlB to invade a variety of cell types. The interaction of InlB with the hepatocyte growth-factor receptor, Met, is crucial for infection to occur. Remarkably, the ubiquitin ligase Cbl is rapidly recruited to InlB-activated Met. Recent studies have shown that ligand-dependent endocytosis of Met and other receptor tyrosine kinases is triggered by monoubiquitination of the receptor, a process that is mediated by Cbl. Here, we show that purified InlB induces the Cbl-dependent monoubiquitination and endocytosis of Met. We then demonstrate that the bacterium exploits the ubiquitin-dependent endocytosis machinery to invade mammalian cells. First, we show that L. monocytogenes colocalizes with Met, EEA1, Cbl, clathrin and dynamin during entry. Then, we assess the role of different proteins of the endocytic machinery during L. monocytogenes infection. Over-expression or down-regulation of Cbl, respectively, increases or decreases bacterial invasion. Furthermore, RNA interference-mediated knock-down of major components of the endocytic machinery (for example, clathrin, dynamin, eps15, Grb2, CIN85, CD2AP, cortactin and Hrs), inhibit bacterial entry, establishing that the endocytic machinery is key to the bacterial internalization process.  相似文献   

18.
The dynamin family of large GTPases has been implicated in the formation of nascent vesicles in both the endocytic and secretory pathways. It is believed that dynamin interacts with a variety of cellular proteins to constrict membranes. The actin cytoskeleton has also been implicated in altering membrane shape and form during cell migration, endocytosis, and secretion and has been postulated to work synergistically with dynamin and coat proteins in several of these important processes. We have observed that the cytoplasmic distribution of dynamin changes dramatically in fibroblasts that have been stimulated to undergo migration with a motagen/hormone. In quiescent cells, dynamin 2 (Dyn 2) associates predominantly with clathrin-coated vesicles at the plasma membrane and the Golgi apparatus. Upon treatment with PDGF to induce cell migration, dynamin becomes markedly associated with membrane ruffles and lamellipodia. Biochemical and morphological studies using antibodies and GFP-tagged dynamin demonstrate an interaction with cortactin. Cortactin is an actin-binding protein that contains a well defined SH3 domain. Using a variety of biochemical methods we demonstrate that the cortactin-SH3 domain associates with the proline-rich domain (PRD) of dynamin. Functional studies that express wild-type and mutant forms of dynamin and/or cortactin in living cells support these in vitro observations and demonstrate that an increased expression of cortactin leads to a significant recruitment of endogenous or expressed dynamin into the cell ruffle. Further, expression of a cortactin protein lacking the interactive SH3 domain (CortDeltaSH3) significantly reduces dynamin localization to the ruffle. Accordingly, transfected cells expressing Dyn 2 lacking the PRD (Dyn 2(aa)DeltaPRD) sequester little of this protein to the cortactin-rich ruffle. Interestingly, these mutant cells are viable, but display dramatic alterations in morphology. This change in shape appears to be due, in part, to a striking increase in the number of actin stress fibers. These findings provide the first demonstration that dynamin can interact with the actin cytoskeleton to regulate actin reorganization and subsequently cell shape.  相似文献   

19.
Arp2/3 complex is an important actin filament nucleator that creates branched actin filament networks required for formation of lamellipodia and endocytic actin structures. Cellular assembly of branched actin networks frequently requires multiple Arp2/3 complex activators, called nucleation promoting factors (NPFs). We recently presented a mechanism by which cortactin, a weak NPF, can displace a more potent NPF, N-WASP, from nascent branch junctions to synergistically accelerate nucleation. The distinct roles of these NPFs in branching nucleation are surprising given their similarities. We biochemically dissected these two classes of NPFs to determine how their Arp2/3 complex and actin interacting segments modulate their influences on branched actin networks. We find that the Arp2/3 complex-interacting N-terminal acidic sequence (NtA) of cortactin has structural features distinct from WASP acidic regions (A) that are required for synergy between the two NPFs. Our mutational analysis shows that differences between NtA and A do not explain the weak intrinsic NPF activity of cortactin, but instead that cortactin is a weak NPF because it cannot recruit actin monomers to Arp2/3 complex. We use TIRF microscopy to show that cortactin bundles branched actin filaments using actin filament binding repeats within a single cortactin molecule, but that N-WASP antagonizes cortactin-mediated bundling. Finally, we demonstrate that multiple WASP family proteins synergistically activate Arp2/3 complex and determine the biochemical requirements in WASP proteins for synergy. Our data indicate that synergy between WASP proteins and cortactin may play a general role in assembling diverse actin-based structures, including lamellipodia, podosomes, and endocytic actin networks.  相似文献   

20.
Clathrin-mediated transport is a major pathway for endocytosis. However, in yeast, where cortical actin patches are essential for endocytosis, plasma membrane-associated clathrin has never been observed. Using live cell imaging, we demonstrate cortical clathrin in association with the actin-based endocytic machinery in yeast. Fluorescently tagged clathrin is found in highly mobile internal trans-Golgi/endosomal structures and in smaller cortical patches. Total internal reflection fluorescence microscopy showed that cortical patches are likely endocytic sites, as clathrin is recruited prior to a burst of intensity of the actin patch/endocytic marker, Abp1. Clathrin also accumulates at the cortex with internalizing alpha factor receptor, Ste2p. Cortical clathrin localizes with epsins Ent1/2p and AP180s, and its recruitment to the surface is dependent upon these adaptors. In contrast, Sla2p, End3p, Pan1p, and a dynamic actin cytoskeleton are not required for clathrin assembly or exchange but are required for the mobility, maturation, and/or turnover of clathrin-containing endocytic structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号