首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new reactive ADP analogue has been synthesized: 2-(4-bromo-2,3-dioxobutylthio)adenosine 5'-diphosphate (2-BDB-TADP). Reaction of ADP with m-chloroperoxybenzoic acid gave ADP 1-oxide, which was treated with NaOH, followed by reaction with carbon disulfide to yield 2-thioadenosine 5'-diphosphate. The final product was synthesized by condensation of 2-thioadenosine 5'-diphosphate with 1,4-dibromobutanedione. Reaction of pig heart NAD-specific isocitrate dehydrogenase with this nucleotide analogue (0.4 mM) causes a time-dependent loss of activity to a limiting value of 75% inactivation. The rate constant for inactivation exhibits a nonlinear dependence on the concentration of 2-BDB-TADP, with kmax = 0.021 min-1 and KI = 0.067 mM. Complete protection against inactivation by 0.2 mM 2-BDB-TADP is provided by ADP + Mn2+, but not by Mn2+ alone, isocitrate, alpha-ketoglutarate, or NAD. Incorporation of 2-BDB-TADP is proportional to the extent of inactivation, reaching 1 mol of reagent/mol of enzyme subunit when the enzyme is maximally inactivated. However, when inactivation is totally prevented by incubation with 2-BDB-TADP in the presence of ADP and Mn2+, 0.5 mol of reagent/mol of subunit is still incorporated, suggesting that inactivation may be attributed to 0.5 mol of reagent/mol of average subunit. In the native enzyme, the Km for total isocitrate is 1.8 mM and is decreased 6-fold to 0.3 mM in the presence of 1 mM ADP, whereas in the modified enzyme, with 25% residual activity, the Km for total isocitrate is about the same in the absence (2.0 mM) or presence (1.8 mM) of ADP. These results indicate that 2-BDB-TADP acts as an affinity label of the ADP allosteric site of NAD-dependent isocitrate dehydrogenase.  相似文献   

2.
Pig heart NAD-dependent isocitrate dehydrogenase is allosterically activated by ADP which reduces the Km of isocitrate. The new ADP analogue 6-(4-bromo-2,3-dioxobutyl)thioadenosine 5'-diphosphate (BDB-TADP) reacts irreversibly with the enzyme at pH 6.1 and 25 degrees C, causing a rapid loss of the ability of ADP to increase the initial velocity of assays conducted at low isocitrate concentrations and a slower inactivation measured using saturating isocitrate concentrations. The rate constant for loss of ADP activation exhibits a nonlinear dependence on BDB-TADP concentration; in the presence of 0.2 mM MnSO4, KI for the reversible enzyme-reagent complex is 0.069 mM with kmax at saturating reagent concentrations equal to 0.031 min-1. For reaction at the site causing overall inactivation, KI for the initial reversible enzyme-reagent complex is estimated to be 0.018 mM with kmax = 0.0083 min-1 in the presence of 0.2 mM MnSO4. Total protection against both reactions is provided by 1 mM ADP plus 0.2 mM MnSO4 or by 0.1 mM ADP plus 0.2 mM MnSO4 plus 0.2 mM isocitrate, but not by NAD, ATP, or ADP plus EDTA. The BDB-TADP thus appears to modify two distinct metal-dependent ADP-binding sites. Incubation of isocitrate dehydrogenase with 0.14 mM BDB-[beta-32P]TADP at pH 6.1 in the presence of 0.2 mM MnSO4 results in incorporation of 0.81 mol of reagent/mol of average subunit when the ADP activation is completely lost and the enzyme is 68% inactivated. The time-dependent incorporation is consistent with the postulate that covalent reaction of 0.5 mol of BDB-TADP/mol of average enzyme subunit causes complete loss of ADP activation, while reaction with another 0.5 mol of BDB-TADP would lead to total inactivation. The enzyme is composed of three distinct subunits in the approximate ratio 2 alpha:1 beta:1 gamma. The distribution of BDB-[beta-32P]TADP incorporated into modified enzyme is 63:30:7% for alpha:beta:gamma throughout the course of the reaction. These results indicate the 6-(4-bromo-2,3-dioxobutyl)thioadenosine 5'-diphosphate functions as an affinity label of two types of potential metal-dependent ADP sites of NAD-dependent isocitrate dehydrogenase and that these allosteric sites are present on two (alpha and beta) of the enzyme's three types of subunits.  相似文献   

3.
Phycomyces blakesleeanus isocitrate lyase (EC 4.1.3.1) is in vivo reversibly inactivated by hydrogen peroxide. The purified enzyme showed reversible inactivation by an ascorbate plus Fe(2+) system under aerobic conditions. Inactivation requires hydrogen peroxide; was prevented by catalase, EDTA, Mg(2+), isocitrate, GSH, DTT, or cysteine; and was reversed by thiols. The ascorbate served as a source of hydrogen peroxide and also reduced the Fe(3+) ions produced in a "site-specific" Fenton reaction. Two redox-active cysteine residues per enzyme subunit are targets of oxidative modification; one of them is located at the catalytic site and the other at the metal regulatory site. The oxidized enzyme showed covalent and conformational changes that led to inactivation, decreased thermal stability, and also increased inactivation by trypsin. These results represent an example of redox regulation of an enzymatic activity, which may play a role as a sensor of redox cellular status.  相似文献   

4.
The human NAD-dependent isocitrate dehydrogenase (IDH), with three types of subunits present in the ratio of 2alpha:1beta:1gamma, requires a divalent metal ion to catalyze the oxidative decarboxylation of isocitrate. With the aim of identifying ligands of the enzyme-bound Mn(2+), we mutated aspartates on the alpha, beta, or gamma subunits. Mutagenesis target sites were based on crystal structures of metal-isocitrate complexes of Escherichia coli and pig mitochondrial NADP-IDH and sequence alignments. Aspartates replaced by asparagine or cysteine were 206, 230, and 234 of the alpha subunit and those corresponding to alpha-Asp-206: 217 of the beta subunit and 215 of the gamma subunit. Each expressed, purified mutant enzyme has two wild-type subunits and one subunit with a single mutation. Specific activities of WT, alpha-D206N, alpha-D230C, alpha-D234C, beta-D217N, and gamma-D215N enzymes are 22, 29, 1.4, 0.2, 7.3 and 3.7 micromol of NADH/min/mg, respectively, whereas alpha-D230N and alpha-D234N enzymes showed no activity. The K(m,Mn(2+)) for alpha-D230C and gamma-D215N are increased 32- and 100-fold, respectively, along with elevations in K(m,isocitrate). The K(m,NAD) of alpha-D230C is increased 16-fold, whereas that of beta-D217N is elevated 10-fold. For all the mutants K(m,isocitrate) is decreased by ADP, indicating that these aspartates are not needed for normal ADP activation. This study demonstrates that alpha-Asp-230 and alpha-Asp-234 are critical for catalytic activity, but alpha-Asp-206 is not needed; alpha-Asp-230 and gamma-Asp-215 may interact directly with the Mn(2+); and alpha-Asp-230 and beta-Asp-217 contribute to the affinity of the enzyme for NAD. These results suggest that the active sites of the human NAD-IDH are shared between alpha and gamma subunits and between alpha and beta subunits.  相似文献   

5.
Treatment of E. coli extract with iron/ascorbate preferentially inactivated NADP-isocitrate dehydrogenase without affecting glucose-6-phosphate dehydrogenase. NADP-Isocitrate dehydrogenase required divalent metals such as Mg2+, Mn2+ or Fe2+ ion. Iron/ascorbate-dependent inactivation of the enzyme was accompanied with the protein fragmentation as judged by SDS-PAGE. Catalase protecting the enzyme from the inactivation suggests that hydroxyl radical is responsible for the inactivation with fragmentation. TOF-MS analysis showed that molecular masses of the enzyme fragments were 36 and 12, and 33 and 14 kDa as minor components. Based on the amino acid sequence analyses of the fragments, cleavage sites of the enzyme were identified as Asp307-Tyr308 and Ala282-Asp283, which are presumed to be the metal-binding sites. Ferrous ion bound to the metal-binding sites of the E. coli NADP-isocitrate dehydrogenase may generate superoxide radical that forms hydrogen peroxide and further hydroxyl radical, causing inactivation with peptide cleavage of the enzyme. Oxidative inactivation of NADP-isocitrate dehydrogenase without affecting glucose 6-phosphate dehydrogenase shows only a little influence on the antioxidant activity supplying NADPH for glutathione regeneration, but may facilitate flux through the glyoxylate bypass as the biosynthetic pathway with the inhibition of the citric acid cycle under aerobic growth conditions of E. coli.  相似文献   

6.
The 2',3'-dialdehyde nicotinamide ribose derivatives of NAD (oNAD) and NADH (oNADH) have been prepared enzymatically from the corresponding 2',3'-dialdehyde analogs of NADP and NADPH. Pig heart NAD-dependent isocitrate dehydrogenase requires NAD as coenzyme but binds NADPH, as well as NADH, ADP, and ATP, at regulatory sites. Incubation of 1-3 mM oNAD or oNADH with this isocitrate dehydrogenase causes a time-dependent decrease in activity to a limiting value 40% that of the initial enzyme, suggesting that reaction does not occur at the catalytic coenzyme site. Upon varying the concentration of oNAD or oNADH from 0.2 to 3 mM, the inactivation rate constants increase in a nonlinear manner, consistent with reversible binding of oNAD and oNADH to the enzyme prior to covalent reaction. Inactivation is accompanied by incorporation of radioactive reagent with extrapolation to 0.54 mol [14C]oNAD or 0.45 mol [14C]oNADH/mol average enzyme subunit (or about 2 mol reagent/mol enzyme tetramer) when the enzyme is maximally inactivated; this value corresponds to the number of reversible binding sites for each of the natural ligands of isocitrate dehydrogenase. The protection against oNAD or oNADH inactivation by NADH, NADPH, and ADP (but not by isocitrate, NAD, or NADP) indicates that reaction occurs in the region of a nucleotide regulatory site. In contrast to the effects of oNAD and oNADH, oNADP and oNADPH cause total inactivation of the NAD-dependent isocitrate dehydrogenase, concomitant with incorporation, respectively, of about 3.5 mol [14C]oNADP or 1.3 mol [14C]oNADPH/mol average subunit. Reaction rates exhibit a linear dependence on [oNADP] or [oNADPH] and protection by natural ligands against inactivation is not striking. These results imply that oNADP and oNADPH are acting in this case as general chemical modifiers and indicate the importance of the free adenosine 2'-OH of oNAD and oNADH for specific labeling of the NAD-dependent isocitrate dehydrogenase. The new availability of 2',3'-dialdehyde nicotinamide ribose derivatives of NAD, NADH, NADP, and NADPH may allow selection of the appropriate reactive coenzyme analog for affinity labeling of a variety of dehydrogenases.  相似文献   

7.
Y C Huang  R F Colman 《Biochemistry》1990,29(36):8266-8273
Pig heart NAD-dependent isocitrate dehydrogenase has a subunit structure consisting of alpha 2 beta gamma, with the alpha subunit exhibiting a molecular weight of 39,000 and the beta and gamma each having molecular weights of 41,000. The amino-terminal sequences (33-35 residues) and the cysteinyl peptide sequences have now been determined by using subunits separated by chromatofocusing or isoelectric focusing and electroblotting. Displacement of the N-terminal sequence of the alpha subunit by 11-12 amino acids relative to that of the larger beta and gamma subunits reveals a 17 amino acid region of great similarity in which 10 residues are identical in all three subunits. The complete enzyme has 6.0 free SH groups per average subunit of 40,000 daltons, but yields 15 distinguishable cysteines in isolated tryptic peptides. Six distinct cysteines in sequenced peptides have been located in the alpha subunit. The beta and gamma subunits contain seven and five cysteines, respectively, with tryptic peptides containing three cysteines being common to the beta and gamma subunits. The three subunits appear to be closely related, but beta and gamma are more similar to each other than either is to the alpha subunit. The NAD-specific isocitrate dehydrogenase from pig heart has been shown to have 2 binding sites/enzyme tetramer for isocitrate, manganous ion, NAD+, and the allosteric activator ADP [Colman, R. F. (1983) Pept. Protein Rev. 1, 41-69]. It is proposed that the catalytically active tetrameric enzyme is organized as a dimer of dimers in which the alpha beta and alpha gamma dimers are nonidentical but functionally similar.  相似文献   

8.
Mammalian NAD-dependent isocitrate dehydrogenase is an allosteric enzyme, activated by ADP and composed of 3 distinct subunits in the ratio 2alpha:1beta:1gamma. Based on the crystal structure of NADP-dependent isocitrate dehydrogenases from Escherichia coli, Bacillus subtilis, and pig heart, and a comparison of their amino acid sequences, alpha-Arg88, beta-Arg99, and gamma-Arg97 of human NAD-dependent isocitrate dehydrogenase were chosen as candidates for mutagenesis to test their roles in catalytic activity and ADP activation. A plasmid harboring cDNA that encodes alpha, beta, and gamma subunits of the human isocitrate dehydrogenase (Kim, Y. O., Koh, H. J., Kim, S. H., Jo, S. H., Huh, J. W., Jeong, K. S., Lee, I. J., Song, B. J., and Huh, T. L. (1999) J. Biol. Chem. 274, 36866-36875) was used to express the enzyme in isocitrate dehydrogenase-deficient E. coli. Wild type (WT) and mutant enzymes (each containing 2 normal subunits plus a mutant subunit with alpha-R88Q, beta-R99Q, or gamma-R97Q) were purified to homogeneity yielding enzymes with 2alpha:1beta:1gamma subunit composition and a native molecular mass of 315 kDa. Specific activities of 22, 14, and 2 micromol of NADH/min/mg were measured, respectively, for WT, beta-R99Q, and gamma-R97Q enzymes. In contrast, mutant enzymes with normal beta and gamma subunits and alpha-R88Q mutant subunit has no detectable activity, demonstrating that, although beta-Arg99 and gamma-Arg97 contribute to activity, alpha-Arg88 is essential for catalysis. For WT enzyme, the Km for isocitrate is 2.2 mm, decreasing to 0.3 mm with added ADP. In contrast, for beta-R99Q and gamma-R97Q enzymes, the Km for isocitrate is the same in the absence or presence of ADP, although all the enzymes bind ADP. These results suggest that beta-Arg99 and gamma-Arg97 are needed for normal ADP activation. In addition, the gamma-R97Q enzyme has a Km for NAD 10 times that of WT enzyme. This study indicates that a normal alpha subunit is required for catalytic activity and alpha-Arg88 likely participates in the isocitrate site, whereas the beta and gamma subunits have roles in the nucleotide functions of this allosteric enzyme.  相似文献   

9.
NADP+-linked isocitrate dehydrogenase (E.C.1.1.1.42) has been purified to homogeneity from germinating pea seeds. The enzyme is a tetrameric protein (mol wt, about 146,000) made up of apparently identical monomers (subunit mol wt, about 36,000). Thermal inactivation of purified enzyme at 45 degrees and 50 degrees C shows simple first order kinetics. The enzyme shows optimum activity at pH range 7.5-8. Effect of substrate [S] on enzyme activity at different pH (6.5-8) suggests that the proton behaves formally as an "uncompetitive inhibitor". A basic group of the enzyme (site) is protonated in this pH range in the presence of substrate only, with a pKa equal to 6.78. On successive dialysis against EDTA and phosphate buffer, pH 7.8 at 0 degrees C, yields an enzymatically inactive protein showing kinetics of thermal inactivation identical to the untreated (native) enzyme. Maximum enzyme activity is observed in presence of Mn2+ and Mg2+ ions (3.75 mM). Addition of Zn2+, Cd2+, Co2+ and Ca2+ ions brings about partial recovery. Other metal ions Fe2+, Cu2+ and Ni2+ are ineffective.  相似文献   

10.
Anaerobically induced NAD-linked glycerol dehydrogenase of Klebsiella pneumoniae for fermentative glycerol utilization was reported previously to be inactivated in the cell during oxidative metabolism. In vitro inactivation was observed in this study by incubating the purified enzyme in the presence of O2, Fe2+, and ascorbate or dihydroxyfumarate. It appears that O2 and the reducing agent formed H2O2 and that H2O2 reacted with Fe2+ to generate an activated species of oxygen which attacked the enzyme. The in vitro-oxidized enzyme, like the in vivo-inactivated enzyme, showed an increased Km for NAD (but not glycerol) and could no longer be activated by Mn2+ which increased the Vmax of the native enzyme but decreased its apparent affinity for NAD. Ethanol dehydrogenase and 1,3-propanediol oxidoreductase, two enzymes with anaerobic function, also lost activity when the cells were incubated aerobically with glucose. However, glucose 6-phosphate dehydrogenase (NADP-linked), isocitrate dehydrogenase, and malate dehydrogenase, expected to function both aerobically and anaerobically, were not inactivated. Thus, oxidative modification of proteins in vivo might provide a mechanism for regulating the activities of some anaerobic enzymes.  相似文献   

11.
Grodsky NB  Soundar S  Colman RF 《Biochemistry》2000,39(9):2193-2200
Pig heart NADP-dependent isocitrate dehydrogenase requires a divalent metal cation for catalysis. On the basis of affinity cleavage studies [Soundar and Colman (1993) J. Biol. Chem. 268, 5267] and analysis of the crystal structure of E. coli NADP-isocitrate dehydrogenase [Hurley et al. (1991) Biochemistry 30, 8671], the residues Asp(253), Asp(273), Asp(275), and Asp(279) were selected as potential ligands of the divalent metal cation in the pig heart enzyme. Using a megaprimer PCR method, the Asp at each of these positions was mutated to Asn. The wild-type and mutant enzymes were expressed in Escherichia coli and purified. D253N has a specific activity, K(m) values for Mn(2+), isocitrate, and NADP, and also a pH-V(max) profile similar to those of the wild-type enzyme. Thus, Asp(253) is not involved in enzyme function. D273N has an increased K(m) for Mn(2+) and isocitrate with a specific activity 5% that of wild type. The D273N mutation also prevents the oxidative metal cleavage seen with Fe(2+) alone in the wild-type enzyme. As compared to wild type, D275N has greatly increased K(m) values for Mn(2+) and isocitrate, with a specific activity <0.1% that of wild type, and a large increase in pK(a) for the enzyme-substrate complex. D279N has only small increases in K(m) for Mn(2+) and isocitrate, but a specific activity <0.1% that of wild type and a major change in the shape of its pH-V(max) profile. These results suggest that Asp(273) and Asp(275) contribute to metal binding, whereas Asp(279), as well as Asp(275), is critical for catalysis. Asp(279) may function as the catalytic base. Using the Modeler program of Insight II, a structure for porcine NADP-isocitrate dehydrogenase was built based on the X-ray coordinates of the E. coli enzyme, allowing visualization of the metal-isocitrate site.  相似文献   

12.
The DPN-specific isocitrate dehydrogenase of pig heart is totally and irreversibly inactivated by 0.05 M potassium cyanate at pH 7.4 A plot of the rate constant versus cyanate concentration is not linear, but rather exhibits saturation kinetics, implying that cyanate may bind to the enzyme to give an enzyme-cyanate complex (K equal 0.125 M) prior to the covalent reaction. In the presence of manganous ion the addition of isocitrate protects the enzyme against cyanate inactivation, indicating that chemical modification occurs in the active site region of the enzyme. The dependence of the decrease of the rate constant for inactivation on the isocitrate concentration yields a dissociation constant for the enzyme-manganese-isocitrate complex which agrees with the Michaelis constant. The allosteric activator ADP, which lowers the Michaelis constant for isocitrate, does not itself significantly affect the cyanate reaction; however, it strikingly enhances the protection by isocitrate. The addition of the chelator EDTA essentially prevents protection by isocitrate and manganous ion, demonstrating the importance of the metal ion in this process. The substrate alpha-ketoglutarate and the coenzymes DPN and DPNH do not significantly affect the rate of modification of the enzymes by cyanate. Incubation of isocitrate dehydrogenase with 14C-labeled potassium cyanate leads to the incorporation of approximately 1 mol of radioactive cyanate per peptide chain concomitant with inactivation. Analysis of acid hydrolysates of the radioactive enzyme reveals that lysyl residues are the sole amino acids modified. These results suggest that cyanate, or isocyanic acid, may bind to the active site of this enzyme as an analogue of carbon dioxide and carbamylate a lysyl residue at the active site.  相似文献   

13.
Four different techniques, equilibrium dialysis, protection of enzymatic activity against chemical inactivation, 31P relaxation rats, and water proton relaxation rates, are used to study divalent metal ion, inorganic phosphate, and inorganic phosphate analogue binding to yeast inorganic pyrophosphatase, EC 3.6.1.1. A major new finding is that the binding of a third divalent metal ion per subunit, which has elsewhere been implicated as being necessary for enzymatic activity [Springs, B., Welsh, K. M., & Cooperman, B. S. (1981) Biochemistry (in press)], only becomes evident in the presence of added inorganic phosphate and that, reciprocally, inorganic phosphate binding to both its high- and low-affinity sites on the enzyme is markedly enhanced in the presence of divalent metal ions, with Mn2+ causing an especially large increase in affinity. The results obtained allow evaluation of all of the relevant equilibrium constants for the binding of Mn2+ and inorganic phosphate or of Co2+ and inorganic phosphate to the enzyme and show that the high-affinity site has greater specificity for inorganic phosphate than the low-affinity site. In addition, they provide. The results obtained allow evaluation of all of the relevant equilibrium constants for the binding of Mn2+ and inorganic phosphate or of Co2+ and inorganic phosphate to the enzyme and show that the high-affinity site has greater specificity for inorganic phosphate than the low-affinity site. In addition, they provide. The results obtained allow evaluation of all of the relevant equilibrium constants for the binding of Mn2+ and inorganic phosphate or of Co2+ and inorganic phosphate to the enzyme and show that the high-affinity site has greater specificity for inorganic phosphate than the low-affinity site. In addition, they provide evidence against divalent metal ion inner sphere binding to phosphate for enzyme subunits having one or two divalent metal ions bound per subunit and evidence for a conformational change restricting active-site accessibility to solvent on the binding of a third divalent metal ion per subunit.  相似文献   

14.
A Saha  Y C Huang  R F Colman 《Biochemistry》1989,28(21):8425-8431
The substrate affinity label 3-bromo-2-ketoglutarate (BrKG) reacts covalently with pig heart NAD+-specific isocitrate dehydrogenase with complete inactivation and incorporation of about 0.8 mol of reagent/mol of average enzyme subunit [Bednar, R.A., Hartman, F.C., & Colman, R.F. (1982) Biochemistry 21, 3681-3689]. Protection against inactivation is provided by isocitrate and Mn2+. We have now identified a critical modified peptide by comparison of the peptides labeled by BrKG at pH 6.1 in the absence and presence of isocitrate and Mn2+. Modified enzyme, isolated from unreacted BrKG, was incubated with [3H]NaBH4 to reduce the keto group of protein-bound 2-ketoglutarate and thereby introduce a radioactive tracer into the modified amino acid. Following carboxymethylation and digestion with trypsin, the specific modified peptide was isolated by reverse-phase HPLC, first in 0.1% trifluoroacetic acid with a gradient in acetonitrile and then in 20 mM ammonium acetate, pH 5.8, with an acetonitrile gradient. Gas-phase sequencing gave the modified peptide: Ser-Ala-X-Val-Pro-Val-Asp-Phe-Glu-Glu-Val-Val-Val-Ser-Ser-Asn-Ala-Asp-Gl u-Glu- Asp-Ile-Arg. The corresponding tryptic peptide that was isolated from unmodified enzyme yielded the same sequence except for (carboxymethyl)cysteine at position 3, suggesting that cysteine is the target of 3-bromo-2-ketoglutarate. Pig heart NAD+-dependent isocitrate dehydrogenase is composed of three distinct subunits (alpha, beta, and gamma) that can be separated by chromatofocusing in urea and identified by analytical gel isoelectric focusing. The peptide modified by 3-bromo-2-ketoglutarate, which is in or near the substrate site, is derived only from the separated gamma subunit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
J M Bailey  R F Colman 《Biochemistry》1987,26(15):4893-4900
When the substrate isocitrate-Mn2+ is present, the fluorescent nucleotide analogue 2-[(4-bromo-2,3-dioxobutyl)thio]-1,N6-ethenoadenosine 2',5'-bisphosphate (2-BDB-T epsilon A-2',5'-DP) reacts irreversibly with pig heart NADP+-specific isocitrate dehydrogenase at the coenzyme binding site on one subunit of the dimeric enzyme [Bailey, J. M., & Colman, R. F. (1985) Biochemistry 24, 5367-5377]. The modified enzyme, which retains partial activity, binds 1 mol of NADPH or 1 mol of the coenzyme analogue, reduced thionicotinamide adenine dinucleotide phosphate (TNADPH), per dimer. TNADPH quenches the fluorescence of enzyme-bound 2-BDB-T epsilon A-2',5'-DP with an efficiency of energy transfer of 9.8%. From this value and the spectral properties of the donor and acceptor chromophores, a distance of 32 A was calculated as the average distance between coenzyme sites on the two subunits. Isocitrate dehydrogenase activity requires a divalent metal ion, such as Mn2+, Co2+, or Ni2+. Co2+ and Ni2+ have absorption spectra that overlap the emission spectra of enzyme-bound 2-BDB-T epsilon A-2',5'-DP. In the presence of isocitrate, each of these two metal ions quenches the fluorescence of the enzyme-bound reagent with an efficiency of energy transfer of 28-29%. From this value and the spectral characteristics of the energy donor and acceptors, an average distance of 8.0 A was estimated between the metal-isocitrate site and the labeled coenzyme site. These distances have provided constraints in formulating a model of the spatial arrangement of active-site ligands on isocitrate dehydrogenase.  相似文献   

16.
Pig heart TPN-dependent isocitrate dehydrogenase is inactivated by reaction with 5,5′-dithiobis (2-nitrobenzoic acid) (DTNB). The dependence of the rate constant for inactivation on the reagent concentration is nonlinear, and can be analyzed in terms of the existence of two mechanisms for reaction with the enzyme, one involving reversible binding prior to inactivation and the other a bimolecular reaction. Cyanide reacts with the inactive modified enzyme to yield thiocyano-isocitrate dehydrogenase without increasing the catalytic activity; this result suggests that inactivation by DTNB is not due to steric hindrance by the bulky thionitrobenzoate group bound to the enzyme. The inactive thiocyano enzyme binds manganous ion normally. In contrast to its effect on native enzyme, however, isocitrate does not strengthen the binding of Mn2+ to the thiocyano enzyme; the tightened binding of manganous-isocitrate may be critical for the catalytic activity of the enzyme. Protection against inactivation by DTNB is provided by isocitrate plus the activator, manganous ion, or the competitive inhibitor, calcium ion. The concerted inhibitors oxalacetate and glyoxylate, when present together with Mn2+ and TPN, also protect against loss of activity. A marked decrease in the inactivation rate constant to a finite limiting value is caused by saturating concentrations of TPNH and Mn2+, indicating that these ligands do not bind directly at the sites attacked by DTNB. The number of cysteine residues which react with DTNB concomitant with inactivation depends on the ligands present in the reaction mixture. In all cases, the equivalent of one -SH reacts without affecting activity. In the presence of Mn2+ and α-ketoglutarate, which do not appreciably affect the inactivation rate, loss of activity is proportional to reaction with two -SH groups. These results suggest that the integrity of a maximum of two cysteine residues is essential for the function of the pig heart isocitrate dehydrogenase, and that at least one cysteine residue may be located within the manganous-isocitrate binding site.  相似文献   

17.
The NAD-dependent glutamate dehydrogenase from Candida utilis was isolated from 32P-labeled cells following enzyme inactivation promoted by glutamate starvation and found to exist in a phosphorylated form. Analysis of purified, fully active NAD-dependent glutamate dehydrogenase (a form) and inactive NAD-dependent glutamate dehydrogenase (b form) for alkalilabile phosphate revealed that the a form contained 0.09 +/- 0.06 mol of phosphate/mol of enzyme subunit and b form 1.25 +/- 0.06 mol of phosphate/mol of enzyme subunit. Phosphorylation caused a 10-fold reduction in enzyme specific activity. Dephosphorylation (release of 32P) and enzyme reactivation occurred on incubation with cell-free yeast extracts, indicating the presence of a phosphoprotein phosphatase in such preparations.  相似文献   

18.
Metal chelating agent EDTA inhibits the activity of mung-bean NADP+-linked isocitrate dehydrogenase (ICDH) in a competitive manner. The activity of the Apo-enzyme was restored by divalent metal ions with the order of effectiveness found to be Mn 2+> Mg2+ > Zn2+ > Co2+ > Cu2+. here appeared to be a single type of metal binding site that was saturated either with 0.5 mM of Mn2+ or with 2.5 mM of Mg2+. ADP, ATP and NADPH inhibit the enzyme in competitive manner. On titration with 5, 5’-dithiobis (2-nitrobenzoate), i.e. DTNB, the mung bean isocitrate dehydrogenase showed 4.0 reactive -SH groups per molecule. The denatured ICDH enzyme of mung bean possess 8.1-SH groups per molecule. The blocking of this group with -SH reagents, lead to the inactivation of mung bean ICDH enzyme. Time-dependent inactivation of ICDH with iodoacetamide and Nethylmaleimide (NEM) revealed decay in the activity in a single exponential manner.  相似文献   

19.
The pH dependence of the maximum velocity of the reaction catalyzed by diphosphopyridine nucleotide (DPN) dependent isocitrate dehydrogenase indicates the requirement for the basic form of an ionizable group in the enzyme-substrate complex with a pK of 6.6. This pK is unaltered from 10 to 33 degrees C, suggesting the ionization of a carboxyl rather than an imidazolium ion. The enzyme is inactivated upon incubation with 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide in the presence of glycinamide or glycine ethyl ester. This inactivation is dependent on pH and the rate constant (k) increases as the pH is decreased in the range 7.3 to 6.25. A plot of 1/(H+) vs. 1/k suggests that the enzyme is inactivated as a result of the modification of a single ionizable group in this pH range. The coenzyme DPN and substrate alpha-ketoglutarate do not affect the rate of inactivation. In contrast, manganous ion (2 mM) and isocitrate (60 mM) produce a sevenfold decrease in the rate constant. The allosteric activator ADP (1 mM) does not itself influence the rate of inactivation; however, it reduces the concentration of Mn2+ (1 mM) and isocitrate (20 mM) required to produce the same decrease in the inactivation constant. These observations imply that the modification occurs at the substrate-binding site. Experiments employing [1-14C]glycine ethyl ester show a net incorporation of 2 mol of glycine ethyl ester per subunit (40 000), concomitant with the complete inactivation of the enzyme. The radioactive modified enzyme, after removal of excess reagent by dialysis, was exhaustively digested with proteolytic enzymes. High voltage electrophoretic analyses of the hydrolysate at pH 6.4 and 3.5 yield two major radioactive spots with approximately equal intensity, which correspond to gamma-glutamylglycine and beta-aspartylglycine, the ultimate products of reaction with glutamic and aspartic acids, respectively. Modification in the presence of manganous ion and isocitrate results in significant reduction in the incorporation of radioactivity into the two dipeptides. These results suggest that carbodiimide attacks one glutamyl and one aspartyl residue per subunit of the enzyme and that the integrity of these residues is crucial for the enzymatic activity.  相似文献   

20.
Ubiquinol-1 in aerated aqueous solution inactivates several enzymes--alanine aminotransferase, alkaline phosphatase, Na+/K(+)-ATPase, creatine kinase and glutamine synthetase--but not isocitrate dehydrogenase and malate dehydrogenase. Ubiquinone-1 and/or H2O2 do not affect the activity of alkaline phosphatase and glutamine synthetase chosen as model enzymes. Dioxygen and transition metal ions, even if in trace amounts, are essential for the enzyme inactivation, which indeed does not occur under argon atmosphere or in the presence of metal chelators. Supplementation with redox-active metal ions (Fe3+ or Cu2+), moreover, potentiates alkaline phosphatase inactivation. Since catalase and peroxidase protect while superoxide dismutase does not, hydrogen peroxide rather than superoxide anion seems to be involved in the inactivation mechanism through which oxygen active species (hydroxyl radical or any other equivalent species) are produced via a modified Haber-Weiss cycle, triggered by metal-catalyzed oxidation of ubiquinol-1. The lack of efficiency of radical scavengers and the almost complete protection afforded by enzyme substrates and metal cofactors indicate a 'site-specific' radical attack as responsible for the oxidative damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号