首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The mammalian mitochondrial NADP-dependent isocitrate dehydrogenase is a citric acid cycle enzyme and an important contributor to cellular defense against oxidative stress. The Mn(2+)-isocitrate complex of the porcine enzyme was recently crystallized; its structure indicates that Ser(95), Asn(97), and Thr(78) are within hydrogen-bonding distance of the gamma-carboxylate of enzyme-bound isocitrate. We used site-directed mutagenesis to replace each of these residues by Ala and Asp. The wild-type and mutant enzymes were expressed in Escherichia coli and purified to homogeneity. All the enzymes retain their native dimeric structures and secondary structures as monitored by native gel electrophoresis and circular dichroism, respectively. V(max) of the three alanine mutants is decreased to 24%-38% that of wild-type enzyme, with further decreases in the aspartate mutants. For T78A and S95A mutants, the major changes are the 10- to 100-fold increase in the K(m) values for isocitrate and Mn(2+). The results suggest that Thr(78) and Ser(95) function to strengthen the enzyme's affinity for Mn(2+)-isocitrate by hydrogen bonding to the gamma-carboxylate of isocitrate. For the Asn(97) mutants, the K(m) values are much less affected. The major change in the N97A mutant is the increase in pK(a) of the ionizable metal-liganded hydroxyl of enzyme-bound isocitrate from 5.23 in wild type to 6.23 in the mutant enzyme. The hydrogen bond between Asn(97) and the gamma-carboxylate of isocitrate may position the substrate to promote a favorable lowering of the pK of the enzyme-isocitrate complex. Thus, Thr(78), Ser(95), and Asn(97) perform important but distinguishable roles in catalysis by porcine NADP-specific isocitrate dehydrogenase.  相似文献   

3.
In the green alga Chlamydomonas reinhardtii , nitrogen staravation induced a reversible increase (2-fold) in NAD-isocitrate dehydrogenase (NAD-IDH; EC 1.1.1.41) and NADP-isocitrate dehydrogenase (NADP-IDH; EC 1.1.1.42) activities. Both enzymes were not affected by the concentration of CO2, the dark or the nature of the nitrogen source (nitrate, nitrite, or ammonium). When cells growing autotrophically were transferred to heterotrophic conditions, a 40% reduction of the NAD-IDH activity was detected, a 2-fold increase of NADP-IDH was observed and isocitrate lyase (ICL; EC 4.1.3.1) activity was induced. The replacement of autotrophic conditions led to the initial activity levels. NAD- and NADP-IDH activities showed markedly different patterns of increase in synchronous cultures of this alga obtained by 12 h light/12 h dark transitions. While NAD-IDH increased in the last 4 h of the dark period, NADP-IDH increased during the last 4 h of the light period, remaining constant for the rest of the cycle.  相似文献   

4.
Thr(373), Lys(374), Asp(375), and Lys(260) were chosen as site-directed mutagenesis targets within porcine NADP-dependent isocitrate dehydrogenase based on structurally corrected sequence alignment among prokaryotic and eukaryotic NADP-isocitrate dehydrogenases. Wild-type and all mutant enzymes were expressed in Escherichia coli and purified to homogeneity. These mutations do not alter the secondary structure or dimerization state of the mutants. The D375N and K260Q mutants exhibit, respectively, a 15- and 28-fold increase in K(m) for NADP, along with marked decreases in V(max) as compared to wild-type enzyme. In contrast, replacing Lys(374), which was previously proposed to contribute to apparent coenzyme affinity, does not change the enzyme's kinetic parameters. T373S exhibits similar kinetic parameters to those of wild-type while T373A and T373V mutations reduce the V(max) values of the resulting enzymes to 1 and 20%, respectively of that of wild-type. We conclude that a hydroxyl group at position 373 is required for effective enzyme function and that Asp(375) and Lys(260) are critical amino acids contributing to coenzyme affinity as well as catalysis by porcine NADP-isocitrate dehydrogenase.  相似文献   

5.
6.
Peroxisomal NADP-linked isocitrate dehydrogenase (Ps-NADP-IDH) was purified for the first time from Candida tropicalis cells grown on n-alkane as a carbon source, which was effective in proliferation of peroxisomes. The properties of Ps-NADP-IDH were compared with those of mitochondrial NAD-linked isocitrate dehydrogenase (Mt-NAD-IDH) purified from the cells grown on acetate, in which peroxisomes did not proliferate. Ps-NADP-IDH was a homodimer of identical subunits (45 kDa), while Mt-NAD-IDH was suggested to be a heterooctamer composed of two types of subunits with different molecular masses (41 and 38 kDa). Kinetic studies revealed that Ps-NADP-IDH gave Michaelis-Menten saturation curves against isocitrate and NADP concentrations, whereas Mt-NAD-IDH was an allosteric enzyme regulated by ATP, AMP, and citrate. Inhibition by 2-oxoglutarate, a precursor of glutamate, was observed only for Ps-NADP-IDH. Both enzymes were inhibited by concomitant addition of oxalacetate and glyoxylate. The function of Ps-NADP-IDH seems to be completely discriminated from that of Mt-NAD-IDH as reflected by their distinct subcellular localizations. Furthermore, the properties of Ps-NADP-IDH were also compared with those of other mitochondrial and cytosolic IDHs from sources reported previously.  相似文献   

7.

Background

There are three isocitrate dehydrogenases (IDHs) in the pancreatic insulin cell; IDH1 (cytosolic) and IDH2 (mitochondrial) use NADP(H). IDH3 is mitochondrial, uses NAD(H) and was believed to be the IDH that supports the citric acid cycle.

Methods

With shRNAs targeting mRNAs for these enzymes we generated cell lines from INS-1 832/13 cells with severe (80%–90%) knockdown of the mitochondrial IDHs separately and together in the same cell line.

Results

With knockdown of both mitochondrial IDH's mRNA, enzyme activity and protein level, (but not with knockdown of only one mitochondrial IDH) glucose- and BCH (an allosteric activator of glutamate dehydrogenase)-plus-glutamine-stimulated insulin release were inhibited. Cellular levels of citrate, α-ketoglutarate, malate and ATP were altered in patterns consistent with blockage at the mitochondrial IDH reactions. We were able to generate only 50% knockdown of Idh1 mRNA in multiple cell lines (without inhibition of insulin release) possibly because greater knockdown of IDH1 was not compatible with cell line survival.

Conclusions

The mitochondrial IDHs are redundant for insulin secretion. When both enzymes are severely knocked down, their low activities (possibly assisted by transport of IDH products and other metabolic intermediates from the cytosol into mitochondria) are sufficient for cell growth, but inadequate for insulin secretion when the requirement for intermediates is certainly more rapid. The results also indicate that IDH2 can support the citric acid cycle.

General significance

As almost all mammalian cells possess substantial amounts of all three IDH enzymes, the biological principles suggested by these results are probably extrapolatable to many tissues.  相似文献   

8.
Both monomeric and dimeric NADP+-dependent isocitrate dehydrogenase (IDH) belong to the metal-dependent beta-decarboxylating dehydrogenase family and catalyze the oxidative decarboxylation from 2R,3S-isocitrate to yield 2-oxoglutarate, CO2, and NADPH. It is important to solve the structures of IDHs from various species to correlate with its function and evolutionary significance. So far, only two crystal structures of substrate/cofactor-bound (isocitrate/NADP) NADP+-dependent monomeric IDH from Azotobacter vinelandii (AvIDH) have been solved. Herein, we report for the first time the substrate/cofactor-free structure of a monomeric NADP+-dependent IDH from Corynebacterium glutamicum (CgIDH) in the presence of Mg2+. The 1.75 A structure of CgIDH-Mg2+ showed a distinct open conformation in contrast to the closed conformation of AvIDH-isocitrate/NADP+ complexes. Fluorescence studies on CgIDH in the presence of isocitrate/or NADP+ suggest the presence of low energy barrier conformers. In CgIDH, the amino acid residues corresponding to the Escherichia coli IDH phosphorylation-loop are alpha-helical compared with the more flexible random-coil region in the E. coli protein where IDH activation is controlled by phosphorylation. This more structured region supports the idea that activation of CgIDH is not controlled by phosphorylation. Monomeric NADP+-specific IDHs have been identified from about 50 different bacterial species, such as proteobacteria, actinobacteria, and planctomycetes, whereas, dimeric NADP+-dependent IDHs are diversified in both prokaryotes and eukaryotes. We have constructed a phylogenetic tree based on amino acid sequences of all bacterial monomeric NADP+-dependent IDHs and also another one with specifically chosen species which either contains both monomeric and dimeric NADP+-dependent IDHs or have monomeric NADP+-dependent, as well as NAD+-dependent IDHs. This is done to examine evolutionary relationships.  相似文献   

9.
The regulatory role of divalent metal cations in the NADP-linked isocitrate dehydrogenase (EC 1.1.1.42) from porcine heart was analysed. Saturation curves with respect to the substrate threo-Ds-isocitrate complexed with the metals including manganous, cadmium, cobaltous and zinc ions showed sigmoid relationships characteristic of allosteric enzymes. The Hill's interaction coefficients were 1.90, 1.75, 1.28 and 1.12, respectively. Saturation kinetics of the substrate-metal complexes including magnesium, ferrous and nickel ions exhibited normal hyperbolic curves with Hill's coefficients of 1. The ionic radii of metal cations were closely correlated with the maximal velocity, the enzyme affinity and the Hill's n values for the substrate-metal complexes. Cooperative interactions of metal-substrate complexes with NADP-isocitrate dehydrogenase are discussed in relation to the sites of the enzyme for the binding of the metal-substrate complex.  相似文献   

10.
Abstract A naturally occurring Klebsiella pneumoniae plasmid of 114 MDa was able to complement isocitrate dehydrogenase deficiencies in K. pneumoniae and Salmonella typhimurium . The plasmid encoded isocitrate dehydrogenase, which differed from that of S. typhimurium in the kinetic parameters for NADP and isocitrate, in its isoelectric point, and in its response to repression by cAMP. This is the first report of a naturally occurring plasmid encoding a Krebs cycle enzyme.  相似文献   

11.
Sequence alignment of pig mitochondrial NADP-dependent isocitrate dehydrogenase with eukaryotic (human, rat, and yeast) and Escherichia coli isocitrate dehydrogenases reveals that Tyr316 is completely conserved and is equivalent to the E. coli Tyr345, which interacts with the 2'-phosphate of NADP in the crystal structure [Hurley et al., Biochemistry 30 (1991) 8671-8678]. Lys321 is also completely conserved in the five isocitrate dehydrogenases. Either an arginine or lysine residue is found among the enzymes from other species at the position corresponding to the pig enzyme Arg314. While Arg323 is not conserved among all species, its proximity to the coenzyme site makes it a good candidate for investigation. The importance of these four amino acids to the function of pig mitochondrial NADP-isocitrate dehydrogenase was studied by site-directed mutagenesis. Mutants (R314Q, Y316F, Y316L, K321Q, and R323Q) were generated by a megaprimer polymerase chain reaction method. Wild-type and mutant enzymes were expressed in E. coli and purified to homogeneity. All mutant and wild-type enzymes exhibited comparable molecular weights indicative of the dimeric enzyme. Mutations do not cause an appreciable change in enzyme secondary structure as revealed by circular dichroism measurements. The kinetic parameters (V(max) and K(M) values) of K321Q and R323Q are similar to those of wild-type, indicating that Lys321 and Arg323 are not involved in enzyme function. R314Q exhibits a 10-fold increase in K(M) for NADP as compared to that of wild-type, while they have comparable V(max) values. These results suggest that Arg314 contributes to the affinity between the enzyme and NADP. The hydroxyl group of Tyr316 is not required for enzyme function since Y316F exhibits similar kinetic parameters to those of wild-type. Y316L shows a 4-fold increase in K(M) for NADP and a decrease in V(max) as compared to wild-type, suggesting that the aromatic ring of the Tyr of isocitrate dehydrogenase contributes to the affinity for coenzyme, as well as to catalysis. The K(i) for NAD of R314Q, Y316F, and Y316L is comparable to that of wild-type, indicating that the Arg314 and Tyr316 may be located near the 2'-phosphate of enzyme-bound NADP.  相似文献   

12.
Lee SM  Huh TL  Park JW 《Biochimie》2001,83(11-12):1057-1065
Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and the cellular defense against oxidative damage is one of the primary functions of NADP(+)-dependent isocitrate dehydrogenase (ICDH) through supply of NADPH for antioxidant systems. When exposed to various reactive oxygen species such as hydrogen peroxide, singlet oxygen generated by photoactivated dye, superoxide anion, and hydroxyl radical produced by metal-catalyzed Fenton reactions, ICDH was susceptible to oxidative modification and damage, which was indicated by the loss of activity, fragmentation of the peptide as well as by the formation of carbonyl groups. Oxidative damage to ICDH was inhibited by antioxidant enzymes, free radical scavengers, and spin-trapping agents. The structural alterations of modified enzymes were indicated by the increase in thermal instability and binding of the hydrophobic probe 8-anilino-1-naphthalene sulfonic acid (ANSA). The reactive oxygen species-mediated damage to ICDH may result in the perturbation of cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition.  相似文献   

13.
R S Ehrlich  R F Colman 《Biochemistry》1989,28(5):2058-2065
The metal activator site of NADP-dependent isocitrate dehydrogenase from pig heart has been probed by using 113Cd and 25Mg NMR as well as manganese paramagnetic relaxation of nuclei in the fast-exchanging ligands alpha-ketoglutarate and adenosine 2'-monophosphate. Cadmium NMR shows that cadmium, bound to the enzyme in the presence of isocitrate, has a resonance at 9 ppm relative to cadmium perchlorate, while the free Cd-isocitrate complex has a resonance at -23 ppm. Comparison with model compounds and previously studied proteins indicates that cadmium is coordinated with six oxygen ligands. Measurements as a function of cadmium concentration give a dissociation constant of 66 microM and a dissociation rate constant of 1.5 X 10(4) s-1 at pH 7.0. 25Mg NMR demonstrates that the line width of the magnesium resonance is increased upon binding to isocitrate dehydrogenase. A further increase in line width is observed upon addition of isocitrate. Measurement of line widths as a function of temperature reveals that in the binary complex between magnesium and enzyme, exchange is the major contributor to broadening while in the ternary complex containing isocitrate, the intrinsic relaxation in the bound state is also important, suggesting an increase in the dissociation rate constant for magnesium from the ternary complex. Paramagnetic relaxation studies of nuclei of alpha-ketoglutarate, bicarbonate, and adenosine 2'-monophosphate locate the divalent metal within the active site. The results with adenosine 2'-monophosphate show that atoms in the adenosine moiety of the coenzyme are at least 8 A from the metal site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We examined a temporal series of embryos from 14 full-sib families of rainbow trout with starch gel electrophoresis to determine the time of initial detection of enzyme produced by ldh-3. Maternal enzyme was detected in unfertilized eggs, whereas paternal alleles showed evidence of initial expression after gastrulation and epiboly. Two alleles, 40 and 71, were expressed synchronously several days before the 114 allele. Measurement of enzyme activity by spectrophotometric analysis and serial dilution supported these observations. The degree of delay of expression of the 114 allele between families was coupled with other estimates of developmental rate. These data suggest the existence of allelic variation at a cis-acting genetic element controlling the pattern of ontogenetic expression of structural alleles at Idh-3.  相似文献   

15.
Although peroxisomal localization of NADP-linked isocitrate dehydrogenase (Idp) was first demonstrated in Candida tropicalis, the mitochondrial isozyme has not been found in this yeast. Here we report that the presence of mitochondrial Idp in the yeast was demonstrated by screening for its gene with a DNA probe containing conserved sequences of Idps from various organisms. The nucleotide sequence of the gene (CtIDP1) revealed a 1,290-bp open reading frame corresponding to a 430-amino-acid protein with a high similarity to previously reported Idps. Overexpression of CtIDP1 in Saccharomyces cerevisiae gave a high intracellular Idp activity, and the purified recombinant Idp was shown to be a homodimer with a subunit molecular mass of approximately 44 kDa, different from that of peroxisomal Idp (45 kDa) previously purified from C. tropicalis. Western blot analysis of the subcellular fractions from acetate-grown C. tropicalis with polyclonal antibodies raised against the recombinant CtIdp1 showed that the CtIdp1 in C. tropicalis was localized in mitochondria but not in peroxisomes. Similar levels of CtIDP1 mRNA and its protein product were detected in cells grown on glucose, acetate, and n-alkane, although a slight decrease was observed in n-alkane-grown cells. From these results, CtIdp1 was demonstrated to be mitochondrial Idp. The properties of mitochondrial Idp and peroxisomal Idp isozymes were proven to be similar, but they were immunochemically distinct, suggesting the presence of another gene responsible for peroxisomal Idp in C. tropicalis. Received: 11 March 1997 / Accepted: 24 June 1997  相似文献   

16.
17.
Reinitz  Gary L. 《Biochemical genetics》1977,15(5-6):445-454
The genetics of allelic variation for NADP-dependent isocitrate dehydrogenase (IDH-s) found in the supernatant of liver and white muscle extracts of rainbow trout (Salmo gairdneri) was examined. Twenty progeny from each of 50 controlled matings were examined for IDH phenotypes. Progeny data clearly indicated that the IDH-s variation in the muscle is controlled by two loci—one fixed and one with two alleles producing molecules of different electrophoretic mobilities. IDH-s variation in the liver is controlled by two disomic loci which code for four alleles. No linkage between the loci controlling IDH-s in the liver and the loci controlling it in the muscle was detected.  相似文献   

18.
NAD+-依赖型异柠檬酸脱氢酶的结构和功能研究进展   总被引:4,自引:0,他引:4  
NAD^ —依赖型异柠檬酸脱氢酶是一个核编码线粒体酶,参与三羧酸循环,负责催化异柠檬酸氧化脱羧成α-酮戊二酸,是循环路径中的限速酶。目前在酶学性质、亚基组成、基因克隆、蛋白组装与转运,以及功能等方面开展了许多研究。本文就这些方面的新进展进行综述。  相似文献   

19.
Ultraviolet (UV) radiation is known as a major cause of skin photoaging and photocarcinogenesis. Many harmful effects of UV radiation are associated with the generation of reactive oxygen species. Recently, we have shown that NADP(+)-dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study we investigated the role of cytosolic form of NADP(+)-dependent isocitrate dehydrogenase (IDPc) against UV radiation-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to UVB (312 nm), the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage, and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly overexpressed IDPc exhibited enhanced resistance against UV radiation, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against UV radiation-induced oxidative injury.  相似文献   

20.
The current report documents the molecular cloning of the mouse mitochondrial NADP-dependent isocitrate dehydronegase (mNADP-IDH) cDNA. The cDNA was 1,863 bp in length and contained one open reading frame encoding a 523-residue polypeptide with a predicted molecular weight of 58 kDa. The cDNA and the deduced amino acid (AA) sequence of the mouse mNADP-IDH had a high degree of homology with those of porcine, bovine, alfalfa, and yeast. The recombinant mNADP-IDH expressed in Escherichia coli had active enzymatic function, as well as an expected molecular weight. The heart had the highest constitutive expression of the steady-state mNADP-IDH mRNA, followed by the kidney, while the expression of the gene in other tissues was low. The enzymatic activity of different tissues was in agreement with their mNADP-IDH mRNA levels. The resting lymphocytes had low constitutive expression of the gene, but the steady-state mRNA could be induced 48 h after mitogen stimulation. At the protein level, the resting lymphocytes had low enzymatic activity of mNADP-IDH, but the activity was augmented fivefold after mitogen stimulation. The cytosolic NADP-IDH, on the contrary, remained low or undetectable before and after the mitogen stimulation. Based on our current findings as well as the known roles of the mNADP-IDH in anabolism and in the isocitrate shuttle, it is conceivable that the mNADP-IDH is necessary for optimizing proliferation in lymphocytes. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号