首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The conformational properties of fragment 18–47 of rabbit uteroglobin in aqueous solution containing SDS micelles were investigated by two-dimensional nmr spectroscopy and molecular dynamics calculations. The fragment comprises helices II and III and the β-turn connecting the two helices. The nmr results and nmr-restrained molecular dynamics calculations showed that in the isolated fragment the elements of secondary structure present in the intact protein are preserved only in part. Specifically, a well-defined α-helix was found in the sequence 33–44, corresponding to helix III of uteroglobin, while the regions of helix II and β-turn are characterized by high flexibility in the fragment. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
Structure and energetic properties of base pair mismatches in duplex RNA have been the focus of numerous investigations due to their role in many important biological functions. Such efforts have contributed to the development of models for secondary structure prediction of RNA, including the nearest-neighbor model. In RNA duplexes containing GU mismatches, 5'-GU-3' tandem mismatches have a different thermodynamic stability than 5'-UG-3' mismatches. In addition, 5'-GU-3' mismatches in some sequence contexts do not follow the nearest-neighbor model for stability. To characterize the underlying atomic forces that determine the structural and thermodynamic properties of GU tandem mismatches, molecular dynamics (MD) simulations were performed on a series of 5'-GU-3' and 5'-UG-3' duplexes in different sequence contexts. Overall, the MD-derived structural models agree well with experimental data, including local deviations in base step helicoidal parameters in the region of the GU mismatches and the model where duplex stability is associated with the pattern of GU hydrogen bonding. Further analysis of the simulations, validated by data from quantum mechanical calculations, suggests that the experimentally observed differences in thermodynamic stability are dominated by GG interstrand followed by GU intrastrand base stacking interactions that dictate the one versus two hydrogen bonding scenarios for the GU pairs. In addition, the inability of 5'-GU-3' mismatches in different sequence contexts to all fit into the nearest-neighbor model is indicated to be associated with interactions of the central four base pairs with the surrounding base pairs. The results emphasize the role of GG and GU stacking interactions on the structure and thermodynamics of GU mismatches in RNA.  相似文献   

4.
Ionisation equilibria in proteins are influenced by conformational flexibility, which can in principle be accounted for by molecular dynamics simulation. One problem in this method is the bias arising from the fixed protonation state during the simulation. Its effect is mostly exhibited when the ionisation behaviour of the titratable groups is extrapolated to pH regions where the predetermined protonation state of the protein may not be statistically relevant, leading to conformational sampling that is not representative of the true state. In this work we consider a simple approach which can essentially reduce this problem. Three molecular dynamics structure sets are generated, each with a different protonation state of the protein molecule expected to be relevant at three pH regions, and pK calculations from the three sets are combined to predict pK over the entire pH range of interest. This multiple pH molecular dynamics approach was tested on the GCN4 leucine zipper, a protein for which a full data set of experimental data is available. The pK values were predicted with a mean deviation from the experimental data of 0.29 pH units, and with a precision of 0.13 pH units, evaluated on the basis of equivalent sites in the dimeric GCN4 leucine zipper.  相似文献   

5.
The conformational properties of the homo oligomers of increasing chain length Boc-(Asn)(n)-NHMe (n = 2, 4, 5), (GlcNAc-beta-Asn)(n)-NHMe (n = 2, 4, 5, 8) and Boc-[GlcNAc(Ac)(3)-beta-Asn](n)-NHMe (n = 2, 4, 5) were studied by using NOE experiments and molecular dynamic calculations (MD). Sequential NOEs and medium range NOEs, including (i,i+2) interactions, were detected by ROESY experiments and quantified. The calculated inter-proton distances are longer than those characteristic of beta-turn secondary structures. Owing to the large conformational motions expected for linear peptides, MD simulations were performed without NMR constraints, with explicit water and by applying different treatments of the electrostatic interactions. In agreement with the NOE results, the simulations showed, for all peptides, the presence of both folded and unfolded structures. The existence of significant populations of beta-turn structures can be excluded for all the examined compounds, but two families of structures were more often recognized. The first one with sinusoidal or S-shaped forms, and another family of large turns together with some more extended conformations. Only the glycosylated pentapeptide shows in vacuo a large amount of structures with helical shaped form. The results achieved in water and in DMSO are compared and discussed, together with the effect of the glycosylation.  相似文献   

6.
In this study, we construct novel RNA nanoclusters, RNA nanotubes made of several nanorings up to the size of 20 nm, utilizing the molecular dynamics simulation, and study their structural properties [i.e., the root mean square deviation, the radius of gyration and the radial distribution function (RDF)] in physiological solutions that can be used for drug delivery into the human body. The patterns of energy and temperature variations of the systems are also discussed. Furthermore, we study the concentration of ions around the tube as a function of time at a particular temperature. We have found that when the temperature increases, the number of ions increases within a certain distance of the tube. We report that the number of ions within this distance around the tubes decreases in quenched runs. This indicates that some ions evaporate with decrease in temperature, as has been observed in the case of the nanoring. RDF plots also demonstrate a similar trend with temperature, as was found in the case of RNA nanorings.  相似文献   

7.
We report a 2-ns constant pressure molecular dynamics simulation of halothane, at a mol fraction of 50%, in the hydrated liquid crystal bilayer phase of dipalmitoylphosphatidylcholine. Halothane molecules are found to preferentially segregate to the upper part of the lipid acyl chains, with a maximum probability near the C(5) methylene groups. However, a finite probability is also observed along the tail region and across the methyl trough. Over 95% of the halothane molecules are located below the lipid carbonyl carbons, in agreement with photolabeling experiments. Halothane induces lateral expansion and a concomitant contraction in the bilayer thickness. A decrease in the acyl chain segment order parameters, S(CD), for the tail portion, and a slight increase for the upper portion compared to neat bilayers, are in agreement with several NMR studies on related systems. The decrease in S(CD) is attributed to a larger accessible volume per lipid in the tail region. Significant changes in the electric properties of the lipid bilayer result from the structural changes, which include a shift and broadening of the choline headgroup dipole (P-N) orientation distribution. Our findings reconcile apparent controversial conclusions from experiments on diverse lipid systems.  相似文献   

8.
The double proton transfer process in the cyclic dimer of propionic acid in the gas phase was studied using a path integral molecular dynamics method. Structures, energies and proton trajectories were determined. Very large amplitude motions of the skeleton of a propionic acid molecule were observed during the simulations, and almost free rotation of the C2H5 group around the Cα-C bond. A double-well symmetric potential with a very small energy barrier was determined from the free energy profile for the proton motions. Infrared spectra for different isotopomers were calculated, and comparative vibrational analysis was performed. The vibrational results from CPMD appear to be in qualitative agreement with the experimental ones.  相似文献   

9.
Molecular dynamics simulations of the RNA tetraloop 5'-CGCUUUUGCG-3' with high melting temperature and significant conformational heterogeneity in explicit water solvent are presented and compared to NMR studies. The NMR data allow for a detailed test of the theoretical model, including the quality of the force field and the conformational sampling. Due to the conformational heterogeneity of the tetraloop, high temperature (350 K) and locally enhanced sampling simulations need to be invoked. The Amber98 force field leads to a good overall agreement with experimental data. Based on NMR data and a principal component analysis of the 350 K trajectory, the dynamic structure of the tetraloop is revealed. The principal component free energy surface exhibits four minima, which correspond to well-defined conformational structures that differ mainly by their base stacking in the loop region. No correlation between the motion of the sugar rings and the stacking dynamics of the loop bases is found.  相似文献   

10.
Conformational equilibrium within the ubiquitous GNRA tetraloop motif was simulated at the ensemble level, including 10 000 independent all-atom molecular dynamics trajectories totaling over 110 µs of simulation time. This robust sampling reveals a highly dynamic structure comprised of 15 conformational microstates. We assemble a Markov model that includes transitions ranging from the nanosecond to microsecond timescales and is dominated by six key loop conformations that contribute to fluctuations around the native state. Mining of the Protein Data Bank provides an abundance of structures in which GNRA tetraloops participate in tertiary contact formation. Most predominantly observed in the experimental data are interactions of the native loop structure within the minor groove of adjacent helical regions. Additionally, a second trend is observed in which the tetraloop assumes non-native conformations while participating in multiple tertiary contacts, in some cases involving multiple possible loop conformations. This tetraloop flexibility can act to counterbalance the energetic penalty associated with assuming non-native loop structures in forming tertiary contacts. The GNRA motif has thus evolved not only to readily participate in simple tertiary interactions involving native loop structure, but also to easily adapt tetraloop secondary conformation in order to participate in larger, more complex tertiary interactions.  相似文献   

11.
Hydrodynamic properties of small single-stranded RNA homopolymers with three and six nucleotides in free solution are determined from molecular dynamics simulations in explicit solvent. We find that the electrophoretic mobility increases with increasing RNA length, consistent with experiment. Diffusion coefficients of RNA, corrected for finite-size effects and solvent viscosity, agree well with those estimated from experiments and hydrodynamic calculations. The diffusion coefficients and electrophoretic mobilities satisfy a Nernst-Einstein relation in which the effective charge of RNA is reduced by the charge of transiently bound counterions. Fluctuations in the counterion atmosphere are shown to enhance the diffusive spread of RNA molecules drifting along the direction of the external electric field. As a consequence, apparent diffusion coefficients measured by capillary zone electrophoresis can be significantly larger than the actual values at certain experimental conditions.  相似文献   

12.
Electrostatic calculations of pK(a-values) are reported along a 400 ps molecular dynamics trajectory of bacteriorhodopsin. The sensitivity of calculated pK(a) values to a number of structural factors and factors related to the modelling of the electrostatics are also studied. The results are very sensitive to the choice of internal dielectric constant of the protein (in the interval 2-4). Moreover it is important to include internal water molecules and to average over a long enough portion ( approximately 100 ps) of an equilibrium molecular dynamics trajectory. The internal waters are necessary to get an ion-counter ion complex with the Schiff base and Arg 82 protonated and the aspartic groups (85 and 212) deprotonated. The fluctuations along the MD-trajectory do not change the protonation state of internal residues at neutral pH. However, at other pH values the averaging along a trajectory maybe crucial to get correct protonation states. A relationship is found between the arginine group 82, the aspartic group 85 and the glutamate group 204. Glu 204 is protonated in the ground state but the pK(a) value decreases towards deprotonation when the chromophore isomerizes into the cis state.  相似文献   

13.
State of the art molecular dynamics simulations are used to study the structure, dynamics, molecular interaction properties and flexibility of DNA and RNA duplexes in aqueous solution. Special attention is paid to the deformability of both types of structures, revisiting concepts on the relative flexibility of DNA and RNA duplexes. Our simulations strongly suggest that the concepts of flexibility, rigidity and deformability are much more complex than usually believed, and that it is not always true that DNA is more flexible than RNA.  相似文献   

14.
J H Kim  A G Marshall 《Biopolymers》1992,32(9):1263-1270
The structures of the helices II-III region and the helix IV region of B. megaterium 5S rRNA have been examined by means of energy minimization and molecular dynamics calculations. Calculated distances between neighboring hydrogen-bonded imino protons in helices II, III, and IV were between 3.5 and 4.5 A. The overall axis for the helices II-III region is warped rather than straight. Formation of additional Watson-Crick base pairs in loop B and loop C was not evident from the atomic positions calculated by molecular dynamics. Bases in loop C are well stacked, showing no significant change during dynamics. Bulge migration in helix III does not seem to be possible; the helices II-III region prefers one conformation. Helix II is more stable than helix III. Five base pairs in helix IV were sufficiently stable to establish that helix IV is terminated by a hairpin loop of three nucleotides. U87 protrudes from loop D. Structures of the helices II-III segment and the helix IV segment of B. megaterium 5S rRNA obtained by molecular dynamics were generally consistent with the solution structure inferred from high-field proton nmr spectroscopy.  相似文献   

15.
P Auffinger  E Westhof 《Biopolymers》2000,56(4):266-274
With the availability of accurate methods to treat the electrostatic long-range interactions, molecular dynamics simulations have resulted in refined dynamical models of the structure of the hydration shell around RNA motifs. The models reviewed here range from basic Watson-Crick to more specific noncanonical base pairs, from "simple" double helices to RNA molecules displaying more complex tertiary folds, and from DNA/RNA hybrid double helices to RNA hybrids formed with a chemically modified strand.  相似文献   

16.
The main bottleneck of molecular dynamic simulations is the estimation of nonbonded pairwise interaction, which often employs neighbour search algorithms to find out interacting atom pairs. These methods have some drawbacks in fulfilling data locality principle, which is unable to take full advantage of modern computer architecture. In this article, we developed a new method by introducing a temporary list to reduce the sparsity in data access. This list permits to obtain a compact and sequential data structure which benefits to efficiently fulfil the data locality principle. We tested and compared the performance of the new method with that of the extensively used reordering method. The new method based on linked cell list is shown to increase 13% of computation speed and have better parallelism in comparison with reordering method. The increase in parallel efficiency makes the new method a promising option for large-scale molecular simulations.  相似文献   

17.
A two-level parallel code for Ehrenfest force calculations in ab initio molecular dynamics simulations was developed for a shared memory multiprocessor cluster. Coarse-grain parallelism was implemented by atomic decomposition and a fine-grained parallelism was exploited to perform matrix multiplications. This two-level parallelism efficiently enhances the speed of computations.  相似文献   

18.
As a result of important methodological advances and of the rapid growth of experimental data, the number of molecular dynamics (MD) simulations related to RNA systems has significantly increased. However, such MD simulations are not straightforward and great care has to be exerted during the setup stage in order to choose the appropriate MD package, force fields and ionic conditions. Furthermore, the choice and a correct evaluation of the main characteristics of the starting structure are primordial for the generation of informative and reliable MD trajectories since experimental structures are not void of inaccuracies and errors. The aim of this review is to provide, through numerous examples, practical guidelines for the setup of MD simulations, the choice of ionic conditions and the detection and correction of experimental inaccuracies in order to start MD simulations of nucleic acid systems under the best auspices.  相似文献   

19.
We report on unrestrained molecular dynamics simulations of an RNA tetramer binding to a tetra-nucleotide overhang at the 5'-end of an RNA hairpin (nicked structure) and of the corresponding continuous hairpin with Na+ as counterions. The simulations lead to stable structures and in this way a structural model for the coaxially stacked RNA hairpin is generated. The stacking interface in the coaxially stacked nicked hairpin structure is characterized by a reduced twist and shift and a slightly increased propeller twist as compared to the continuous system. This leads to an increased overlap between C22 and G23 in the stacking interface of the nicked structure. In the simulations the continuous RNA hairpin has an almost straight helical axis. On the other hand, the corresponding axis for the nicked structure exhibits a marked kink of 39 degrees. The stacking interface exhibits no increased flexibility as compared to the corresponding base pair step in the continuous structure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号