首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synovial fluid (SF) contains lubricant macromolecules, hyaluronan (HA), and proteoglycan 4 (PRG4). The synovium not only contributes lubricants to SF through secretion by synoviocyte lining cells, but also concentrates lubricants in SF due to its semi‐permeable nature. A membrane that recapitulates these synovium functions may be useful in a bioreactor system for generating a bioengineered fluid (BF) similar to native SF. The objectives were to analyze expanded polytetrafluoroethylene membranes with pore sizes of 50 nm, 90 nm, 170 nm, and 3 µm in terms of (1) HA and PRG4 secretion rates by adherent synoviocytes, and (2) the extent of HA and PRG4 retention with or without synoviocytes adherent on the membrane. Experiment 1: Synoviocytes were cultured on tissue culture (TC) plastic or membranes ± IL‐1β + TGF‐β1 + TNF‐α, a cytokine combination that stimulates lubricant synthesis. HA and PRG4 secretion rates were assessed by analysis of medium. Experiment 2: Bioreactors were fabricated to provide a BF compartment enclosed by membranes ± adherent synoviocytes, and an external compartment of nutrient fluid (NF). A solution with HA (1 mg/mL, MW ranging from 30 to 4,000 kDa) or PRG4 (50 µg/mL) was added to the BF compartment, and HA and PRG4 loss into the NF compartment after 2, 8, and 24 h was determined. Lubricant loss kinetics were analyzed to estimate membrane permeability. Experiment 1: Cytokine‐regulated HA and PRG4 secretion rates on membranes were comparable to those on TC plastic. Experiment 2: Transport of HA and PRG4 across membranes was lowest with 50 nm membranes and highest with 3 µm membranes, and transport of high MW HA was decreased by adherent synoviocytes (for 50 and 90 nm membranes). The permeability to HA mixtures for 50 nm membranes was ~20 × 10?8 cm/s (? cells) and ~5 × 10?8 cm/s (+ cells), for 90 nm membranes was ~35 × 10?8 cm/s (? cells) and ~19 × 10?8 cm/s (+ cells), for 170 nm membranes was ~74 × 10?8 cm/s (± cells), and for 3 µm membranes was ~139 × 10?8 cm/s (± cells). The permeability of 450 kDa HA was ~40× lower than that of 30 kDa HA for 50 nm membranes, but only ~2.5× lower for 3 µm membranes. The permeability of 4,000 kDa HA was ~250× lower than that of 30 kDa HA for 50 nm membranes, but only ~4× lower for 3 µm membranes. The permeability for PRG4 was ~4 × 10?8 cm/s for 50 nm membranes, ~48 × 10?8 cm/s for 90 nm membranes, ~144 × 10?8 cm/s for 170 nm membranes, and ~336 × 10?8 cm/s for 3 µm membranes. The associated loss across membranes after 24 h ranged from 3% to 92% for HA, and from 3% to 93% for PRG4. These results suggest that semi‐permeable membranes may be used in a bioreactor system to modulate lubricant retention in a bioengineered SF, and that synoviocytes adherent on the membranes may serve as both a lubricant source and a barrier for lubricant transport. Biotechnol. Bioeng. 2010; 106: 149–160. © 2009 Wiley Periodicals, Inc.  相似文献   

2.
Influence of membrane physical state on the proton permeability of isolated lysosomes was assessed by measuring the membrane potential with 3,3′-dipropylthiadicarbocyanine iodide and monitoring their proton leakage with p-nitrophenol. Changes in the membrane order were examined by the steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene. Both the membrane potential and proton leakage increased with fluidizing the lysosomal membranes by benzyl alcohol and decreased with rigidifying the membranes by cholesteryl hemisuccinate. The proton permeability increased to the maximum of 42% by the benzyl alcohol treatment and decreased to the minimum of 38.1% by the cholesteryl hemisuccinate treatment. Treating the lysosomes with protonophore CCCP increased the proton permeability by 58%. The effects of the membrane fluidization and rigidification can be reversed by rigidifying the fluidized membranes and fluidizing the rigidified membranes, respectively. The results indicate that the proton permeability of lysosomes increased and decreased with increasing and decreasing their membrane fluidity, respectively. Moreover, the lysosomal proton permeability did not alter further if the changes, either an increase or a decrease, in the fluidity exceeded some amount. The results suggest that the proton permeability of lysosomes can be modulated finitely by the alterations in their membrane physical state. Received: 27 September 1999 / Revised: 27 December 1999  相似文献   

3.
Strains of the bacteria Zymomonas sp. were studied for their ability to form higher alcohols. In a complex growth medium, six strains were shown to produce significant amounts of 1-propanol, 1-butanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 2-methyl-2-butanol, pentanols, secondary hexyl-alcohols, and trace amounts of n-hexanol. When resting cells of these organisms were placed into a fermentation medium containing glucose and Tris-buffer, Z. mobilis 8938 produced increased levels of 1-butanol, and secondary hexyl-alcohols at concentrations of 13.5 mg/liter and 5.8 mg/liter, respectively. Another strain, Z. mobilis subsp. mobilis B 806, stimulated the formation of 1-propanol and 1-butanol at concentrations of 14.9 mg/liter and 23.52 mg/liter, respectively. Amino acids or amino acid precursors were then added to the fermentation medium. The presence of threonine and α-ketobutyric acid stimulated Z. mobilis 8938 to produce 82.6 mg/liter secondary hexyl-alcohols and 8.0 mg/liter n-hexanol, respectively. Isoleucine and valine increased the production of 2-methyl-1-butanol (394.0 mg/liter) and 3-methyl-1-butanol (113.4 mg/liter), respectively, by Z. mobilis subsp. mobilis B 806. Glutamine enhanced the formation of 2-methyl-2-butanol production to concentrations 38.8 mg/liter in Zymomonas strain B 806. Additional experiments suggested that higher alcohol production could also be accomplished in the absence of glucose when cells were allowed to metabolize the precursors only. The effect of aromatic amino acids on phenol production was determined using resting cells of Zymomonas sp. The maximum yield of phenol (111.6 mg/liter) was found by Zymomonas strain 8938 in the presence of tyrosine. The addition of phenylalanine also stimulated this strain to form 71.4 mg/liter of phenol.  相似文献   

4.
Shao J  Ge H  Yang Y 《Biotechnology letters》2007,29(6):901-905
A partially purified potato polyphenol oxidase (PPO) was immobilized in a cross-linked chitosan–SiO2 gel and used to treat phenol solutions. Under optimized conditions (formaldehyde 20 mg/ml, PPO 4 mg/ml and pH 7.0), the activity of immobilized PPO was 1370 U/g and its K m value for catechol was 12 mm at 25°C. The highest activity of immobilized enzyme was at pH 7.4. Immobilization stabilized the enzyme with 73 and 58% retention of activity after 10 and 20 days, respectively, at 30°C whereas most of the free enzyme was inactive after 7 days. The efficiency of removing phenol (10 mg phenol/l) by the immobilized PPO was 86%, and about 60% removal efficiency was retained after five recycles. The immobilized PPO may thus be a useful for removing phenolic compounds from industrial waste-waters.  相似文献   

5.
Summary Spores of Fusarium flocciferum were inserted in porous celite beads. The effects of bead size, adsorption time course, washing cycle and spore concentration on spore loading were investigated. Cell loadings up to 50% (dry weight/beads) were obtained. The degradation of phenol using adsorbed cells was studied in batch experiments. The immobilized cell system was shown to efficiently degrade high concentrations of the substrate (up to 2.0 g/l) and to remain active for more than 2 motths. The oxygen uptake rate of free and immobilized cells was determined at various concentrations of phenol. The kinetic constants K s=85 mg/l, K i=345 mg/l and SMI=170 mg/l were estimated from the experimental data by linearization of the Haldane function for the free cells. The uptake rates exhibited by the confined cells were lower (30%) than those obtained for free cells and no significant differences were found for phenol concentrations between 150 and 1200 mg/l.  相似文献   

6.
Cross-linked dimers of ribonuclease, added at a concentration of 0.05 mg/ml to the culture medium of hepatoma (HTC) cells, were previously shown to inhibit intracellular degradation of peroxidase taken up by endocytosis. Intracellular localization showed that endocytosed peroxidase does not reach lysosomes in dimer-treated cells. The present study shows that preloading of lysosomes with fluorescent anti-peroxidase IgG, obtained by exposing HTC cells for 48 h to 0.1 mg of antibody/ml, restores intracellular degradation of endocytosed peroxidase. Moreover, accumulation of peroxidase into lysosomes, which no longer occurs in dimer-treated cells, occurs again under these conditions. We conclude that inhibition of transfer of peroxidase from phagosomes to lysosomes is most likely to be the alteration resulting from the exposure of the cells to ribonuclease dimer, rather than inhibition of fusion between phagosomes and lysosomes. The dimer of another basic protein, lysozyme added at a concentration of 0.2 mg/ml to the culture medium, is shown to induce the same type of effects as does the dimer of ribonuclease; the half-life of endocytosed peroxidase increased from 5 to 15 h after 2 h exposure of HTC cells to dimerized lysozyme. The effect of both dimers on intracellular protein processing can be reversed by addition of 100 mm-galactose to the culture medium, up to 5 h after pretreatment of the cells. The dimers of ribonuclease A or of lysozyme have thus probably the same mechanism of action. Evidence that the two dimers share the same binding sites on the cells is presented.  相似文献   

7.
Specific features of cytotoxic (against tumor cells), hemolytic, and liposomal (effect on permeability) activities of triterpenoids isolated from sea cucumbers and ginseng roots were studied. It was shown that oleanolic acid, protopanaxatriol, and protopanaxadiol at 5 to 20 g/ml inhibited the growth of tumor cells, while at doses up to 100 g/ml, they did not induce hemolysis or changes in liposome permeability. Monoglucosides of protopanaxadiol, Rh 2, Rg 3, and substance K exerted moderate cytotoxic and membrane activities. The membrane sensitivity to these glucosides was inversely proportional to the membrane content of cholesterol. The cytotoxicity of the protopanaxadiol-active glycosides increased with a decrease of pH of the medium. All studied glycosides did not affect the cell and model lipid membranes. The activity of the oleanolic acid glycoside, ginsenoside Z-R1, depended to a great extent on the pH of the medium. The decrease of pH from 7.4 to 5.6 increased the membranolytic activities by more than one order of magnitude. Glycosides from sea cucumbers, echinosides A and B, holothurins A and B, holotoxin 1, and cucumarioside G 1, had very high cytotoxic and liposomal activities. Addition of cholesterol to cell membranes enhanced the cytotoxic effects of these glycosides. The ginsenosides with two carbohydrate moieties (bisdesmosides), as well as all the panaxatriol glycosides we studied did not exhibit cytotoxic activities against tumor cells or alter the permeability of model lipid and lipid-sterol membranes. The triterpenoids studied were classified into four categories in accordance with their membranotropic activities. A possible protective role of these glycosides in the organism-producent is discussed.  相似文献   

8.
Summary Biological treatment of waste water containing a large amount of phenol was carried out by using a phenolassimilating fungus,Aureobasidium pullulans No. 14 adhered (semi-immobilized) to fibrous asbestos. The column reactor employed for oxidative degradation of phenol consisted of a cylindrical glass column containing plastic nets.During 27 days operation, it was observed that: 1) The phenol removal capacity of the reactor gradually increased during the first 10 days, reaching a stable level. 2) The best phenol removal capacity (50 mg phenol removed/h/ liter of reactor volume) was obtained when an artificial waste water containing up to 1,200 g/ml phenol was applied to the reactor. 3) Much higher concentrations of phenol (e.g. 1,700 g/ml) brought about a marked decrease in the phenol removal capacity (40–50 mg/h/liter). 4) Satisfactorily stable operation was achieved using the semiimmobilized mycelia ofAureobasidium pullulans, whose active state could be checked by observing the thick, black-colored biomass which is characteristic of the genusAureobasidium and covered the plastic nets inside the glass column reactor.  相似文献   

9.
The kinetics of bio-oxidation by a microbial ensemble of a model mixture of contaminants that mimicked the ground-water pollution plume at an existing contaminated site was investigated. Phenol at 50 mg/l and a mixture of ten organic contaminants (MOC) (benzene, tetrachloromethane, trichloroethylene, toluene, o-xylene, 1,4-dichlorobenzene, o-cresol, nitrobenzene, naphthalene and 2,6-dichlorophenol) at individual concentrations ranging from 150 g/l to 600 g/l were the components of the model mixture. The microbial ensemble consisted of at least three Pseudomonas spp. isolated from the polluted site. Patterns of oxygen uptake rate (OUR) for the oxidation of phenol alone and with added MOC were treated mathematically. The values for kinetic parameters that gave the best fit to the data were respectively 11.29 and 15.03 ml O2 h–1 (mg protein)–1 for the OUR maximum (OURmax), 75.89 mg/l and 33.66 mg/l for the saturation constant (K s), 105.92 mg/l and 36.44 mg/l for the inhibitor constant (K i), and 89.66 mg/l and 35.02 mg/l the substrate minimum inhibitory concentration (S mic). This study also scrutinised interference between the two components of the model mixture of contaminants (phenol and MOC) on the basis of variations in kinetic patterns. MOC was shown to be toxic at milligram per litre levels. The microbial ensemble increased phenol oxidation in response to MOC, possibly to obtain the energy to overcome this toxic effect. This was indicated by an acceleration of phenol oxidation in response to increasing concentrations of MOC and higher OURmax for oxidation of phenol in the presence of MOC. The toxicity of MOC also resulted in enhanced vulnerability of the microbial ensemble to a phenol inhibitory effect, indicated by the diminution of K i and S mic. The microbial ensemble showed high resistance to inhibition by the sole presence of phenol possibly because of adaptation to toxic features of MOC during the processes of enrichment and cultivation.  相似文献   

10.
Summary In rabbit luteal cells embedded in glycolmethacrylate and stained with PTA at low pH highly glycosylated membrane patches can be observed after vesiculation of the trans-Golgi network. As these membranes could be prelysosomal, their sialic acid content was investigated by postembedding labeling with Limax flavus agglutinin (LFA)/fetuin-Au. Additional labeling of the Golgi apparatus was performed with Wheat germ agglutinin (WGA)/ovomucoid Au, Ricinus communis agglutininI (RCAI)/Au and Helix pomatia agglutinin (HPA)/Au. The sections were then counterstained with PTA at low pH, which allows a clear distinction between the elements of the trans-Golgi network (G2-G1) and the saccules of the stack (g).With WGA, LFA and RCAI the trans-Golgi network was observed to be clearly more reactive than the stack. After vesiculation most intense labeling was found over the highly glycosylated vacuolar membranes derived from the G2-element. The limiting membrane of lysosomes, the MvB's and the plasma membrane also reacted strongly. Colloidal gold particles were also found over the membranes of the vacuoles derived from G1. The Golgi stack showed a lower reactivity and label for all three lectins could be found over three to four saccules of the stack (g3-g4). The matrix of the lysosomes was slightly labeled. Labeling with HPA was absent from the trans saccules and was consistently found in the cis and cis-most (g4-g5) saccules of the stack. Some cytoplasmic vesicles near the cell border were also labeled. With our procedure the Golgi apparatus can easily be detected and it is apparent that in rabbit luteal cells the highest lectin reactivity is found in the trans-Golgi network. A striking similarity is observed between the highly glycosylated membrane structures derived from G2 and the border of the lysosomes.  相似文献   

11.
The presence of hexavalent chromium salt in culture medium negatively affected the growth dynamics and physiological parameters of the benthic microalga Attheya ussurensis. After 1 day of exposure to toxicant at concentrations of 2, 4, 7, and 10 mg/l, the cell counts were 10, 7.9, 5.6, and 4.3 × 103 cells/ml, respectively (versus 13 × 103 cells/ml in the control). A tendency towards a decrease in cell number remained until the end of the experiments; after 7 days of exposure the cell counts were 133, 102, 11, and 7.5 × 103 cells/ml (versus 204 × 103 cells/ml in the control). With increase in potassium bichromate concentration in the culture medium, there was an increase in the ratio of cell height to width and a change in the form of the cell to horseshoe shaped. The contents of chlorophyll a in microalgal cells after 1 day of exposure to 2, 4, 7, and 10 mg/l were 40, 37, 34, and 30 μg/l, respectively (45 μg/l in the control). After 7 days, at chromium salt concentrations of 2 and 4 mg/l, the chlorophyll a content was higher (670 and 647 μg/l) than in the control (605 μg/l); at 7 and 10 mg/l, it significantly decreased to 87 and 65 μg/l, respectively. The contents of carotinoids in microalgal cells after 7 days of exposure to 2 and 4 mg/l were comparable to the control values, while at 7 and 10 mg/l they decreased sharply. The amount of phaeophytin (as a percentage of total chlorophyll a content) increased with increasing potassium bichromate concentration.  相似文献   

12.
Specific nitrogenase activity inAzospirillum brasilense ATCC 29145 in surface cultures under air is enhanced from about 50 nmol C2H4·mg protein-1·h-1 to 400 nmol C2H4 by the addition of 1 mM phenol. 0.5 and 2 mM phenol added increase the rate 5-fold and 4-fold. This enhancement effect is observed only between 2 and 3 days after inoculation, with only a small reduction of the growth of the cells by the phenol added. In surface cultures under 1% O2, nitrogenase activity is slightly reduced by the addition of 1–0.01 mM phenol. Utilization of succinate is enhanced during the period of maximum enhancement of nitrogenase activity by 60% by addition of 1 mM phenol. The cells did not produce14CO2 from [U-14C] phenol, neither in surface cultures nor in liquid cultures and less than 0.1% of the phenol was incorporated into the cells. A smaller but significant enhancement of nitrogenase activity by about 100% in surface cultures under air was found withKlebsiella pneumoniae K 11 after addition of 1 mM phenol. However, inRhizobium japonicum 61-A-101 all phenol concentrations above 0.01 mM reduced nitrogenase activity. With 1 mM phenol added activity was reduced to less than 10% with no effect on the growth in the same cultivation system. With thisRhizobium japonicum strain significant quantities of phenol (25 mol in 24 h by 2·1012 cells) were metabolized to14CO2, with phenol as sole carbon source. WithAzospirillum brasilense in liquid culture under 1% and 2% O2 in the gas phase, no enhancement of nitrogenase activity by phenol was noticed.  相似文献   

13.
Biodegradation of phenol has been investigated using a bacterial consortium consisting of two bacterial isolates; one of them used for the first time in phenol biodegradation. This consortium was isolated from activated sludge and identified as Providencia stuartii PL4 and Pseudomonas aeruginosa PDM (accession numbers KY848366 and MF445102, respectively). The degradation of phenol by this consortium was optimal at pH 7 with using 1500?mg?l?1 ammonium chloride as a nitrogen source. Interestingly, after optimizing the biodegradation conditions, this consortium was able to degrade phenol completely up to 1500?mg?l?1 within 58?h. The immobilization of this consortium on various supporting materials indicated that polyvinyl alcohol (PVA)-alginate beads and polyurethane foam (PUF) were more suitable for biodegradation process. The freely suspended cells could degrade only 6% (150?mg?l?1) of 2500?mg?l?1 phenol, whereas, the immobilized PVA-alginate beads and the immobilized PUF degraded this concentration completely within 120?h of incubation with degradation rates (q) 0.4839 and 0.5368 (1/h) respectively. Thus, the immobilized consortium of P. stuartii PL4 and P. aeruginosa PDM can be considered very promising in the treatment of effluents containing phenol.  相似文献   

14.
Degradation kinetics of phenol by free and agar-entrapped cells of Candida tropicalis was studied in batch cultures. The initial phenol degradation rate achieved with free cells was higher than that obtained with immobilized cells, when phenol concentrations up to 1000 mg l–1 were used. However, at higher phenol concentrations, the behaviour was quite different. The initial degradation rate of the immobilized yeast cells was about 10 times higher than that of the free cells, at a phenol concentration of 3500 mg l–1. The semicontinuous and continuous degradation of phenol by immobilized yeast cells was also investigated in a multi-stage fluidized bed reactor. The highest phenol removal efficiencies and degradation rates as well as the lowest values of residual phenol and chemical oxygen demand were obtained in the semicontinuous culture when phenol concentrations up to 1560 mg l–1 were used.  相似文献   

15.
A locally isolated Acinetobacter sp. Strain AQ5NOL 1 was encapsulated in gellan gum and its ability to degrade phenol was compared with the free cells. Optimal phenol degradation was achieved at gellan gum concentration of 0.75% (w/v), bead size of 3 mm diameter (estimated surface area of 28.26 mm2) and bead number of 300 per 100 ml medium. At phenol concentration of 100 mg l−1, both free and immobilized bacteria exhibited similar rates of phenol degradation but at higher phenol concentrations, the immobilized bacteria exhibited a higher rate of degradation of phenol. The immobilized cells completely degrade phenol within 108, 216 and 240 h at 1,100, 1,500 and 1,900 mg l−1 phenol, respectively, whereas free cells took 240 h to completely degrade phenol at 1,100 mg l−1. However, the free cells were unable to completely degrade phenol at higher concentrations. Overall, the rates of phenol degradation by both immobilized and free bacteria decreased gradually as the phenol concentration was increased. The immobilized cells showed no loss in phenol degrading activity after being used repeatedly for 45 cycles of 18 h cycle. However, phenol degrading activity of the immobilized bacteria experienced 10 and 38% losses after the 46 and 47th cycles, respectively. The study has shown an increased efficiency of phenol degradation when the cells are encapsulated in gellan gum.  相似文献   

16.
采用不同浓度梯度的蛋氨酸脑啡肽(methionine enkephalin,MENK)体外作用于人胃癌细胞BGC823后,探讨对其增殖影响及其作用机制,为胃癌的免疫治疗提供理论依据。体外培养人胃癌细胞株BGC823,PCR检测阿片受体OGFr的表达;用不同浓度(0、1、2、3、4 mg/mL)的MENK体外作用于BGC823细胞24、48、72、96 h后,MTS检测MENK对其增殖影响;流式细胞术和Annexin V-FITC/PI双染法检测4 mg/mL MENK体外处理48、72 h后BGC823细胞凋亡变化。结果显示,人胃癌BGC823细胞有阿片受体OGFr的表达;MENK可抑制BGC823细胞增殖,且随着剂量的增加和时间的延长,其抑制作用逐渐增强(P0.05);4 mg/mL MENK48 h处理组与空白组相比细胞凋亡率增加,72 h处理组与48 h处理组结果一致(P0.05)。结果表明,MENK可抑制BGC823细胞增殖,具有显著的剂量依赖性和时间依赖性,且可通过诱导细胞凋亡抑制BGC823细胞的增殖。  相似文献   

17.
Zhao H  Cai Y  Santi S  Lafrenie R  Lee H 《Radiation research》2005,164(3):250-257
The anti-malarial drug chloroquine (CQ) is also thought to be a potential radiation sensitizer. To gain a better understanding of how the lysomotropic CQ can potentiate the effects of ionizing radiation, we investigated the effects of CQ on lysosomal and mitochondrial membrane stability, the subcellular localization of ceramide, plasma membrane permeability, and the mode of cell death in response to irradiation. We found that CQ accumulated in the lysosomes and thus lysosomal volumes increased. As a result, both the lysosomal and plasma membranes were destabilized. After 7 Gy irradiation, most ceramide was associated with the lysosomes in the cells treated with CQ but not in the CQ-untreated control. The elevated levels of ceramide in the lysosomes of the CQ-treated cells appeared to further destabilize the lysosomal and plasma membranes of the cell. Both CQ-treated and -untreated cells had approximately the same rate of cell death by apoptosis after 7 Gy irradiation (P > 0.05, ns). However, in contrast to the CQ-untreated control, the CQ-treated cells underwent massive cell death by necrosis at 24-48 h after irradiation (P < 0.05). Taken together, our data support the idea that the increase in cytotoxic effects by the combination of CQ and radiation is due to radiation-mediated apoptosis and CQ-mediated necrosis.  相似文献   

18.
Phenol degradation by Bacillus cereus AKG1 MTCC9817 and AKG2 MTCC 9818 was investigated and degradation kinetics are reported for the free and Ca-alginate gel-immobilized systems. The optimal pH for maximum phenol degradation by immobilized AKG1 and AKG2 was found to be 6.7 and 6.9, respectively, while 3% alginate was optimum for both the strains. The degradation of phenol by free as well as immobilized cells was comparable at lower concentrations of phenol (100–1000 mg l−1). However, the degradation efficiency of the immobilized strains was higher than that of the free strains at higher phenol concentrations (1500–2000 mg l−1), indicating the improved tolerance of the immobilized cells toward phenol toxicity. More than 50% of 2000 mg l−1 phenol was degraded by immobilized AKG1 and AKG2 within 26 and 36 days, respectively. Degradation kinetics of phenol by free and immobilized cells are well represented by the Haldane and Yano model.  相似文献   

19.
The antibacterial activity and acting mechanism of silver nanoparticles (SNPs) on Escherichia coli ATCC 8739 were investigated in this study by analyzing the growth, permeability, and morphology of the bacterial cells following treatment with SNPs. The experimental results indicated 10 μg/ml SNPs could completely inhibit the growth of 107 cfu/ml E. coli cells in liquid Mueller–Hinton medium. Meanwhile, SNPs resulted in the leakage of reducing sugars and proteins and induced the respiratory chain dehydrogenases into inactive state, suggesting that SNPs were able to destroy the permeability of the bacterial membranes. When the cells of E. coli were exposed to 50 μg/ml SNPs, many pits and gaps were observed in bacterial cells by transmission electron microscopy and scanning electron microscopy, and the cell membrane was fragmentary, indicating the bacterial cells were damaged severely. After being exposed to 10 μg/ml SNPs, the membrane vesicles were dissolved and dispersed, and their membrane components became disorganized and scattered from their original ordered and close arrangement based on TEM observation. In conclusion, the combined results suggested that SNPs may damage the structure of bacterial cell membrane and depress the activity of some membranous enzymes, which cause E. coli bacteria to die eventually.  相似文献   

20.
Phenol was absorbed unspecifically by active and by inactivated cells of a strictly anaerobic, phenol-degrading consortium to reach about twice the concentration of the medium. The absorption was temperature-dependent. A Q10 of 1.7 was determined, indicating that accumulation was due to diffusion or facilitated diffusion and not to an active transport process. At increasing phenol concentration in the medium, concentrated cell suspensions adsorpted phenol proportionally until saturation was reached at about 25 nmol phenol/mg cell dry weight. At a phenol concentration in the medium of 2 mm, the washed cell pellet contained 3.5 mm phenol. Under conditions that allowed phenol metabolism (presence of CO2), [14C]4-hydroxybenzoyl-coenzyme A and [14C]4-hydroxybenzoate were found as early intermediates of [U-14C]phenol degradation for the first time. [14C]Benzoate was excreted stoichiometrically if phenol degradation to acetate was prevented by H2. Absolutely no 14C-label was found in the phenylphosphate peak after HPLC separation, which excluded phosphorylation of phenol during uptake or during degradation in the cells. Correspondence to: J. Winter  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号