首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conjugative transposon Tn916 and a derivative Tn916 delta E was transferred from Bacillus subtilis into Clostridium difficile CD37 by filter mating. All the C. difficile transconjugants appeared to contain one copy of the transposon integrated into the same position in the genome. Transposition from the original site of integration was not observed. Like Tn916 the transferable tetracycline resistance determinant (Tc-CD) of C. difficile has a preferred site of integration in C. difficile and is homologous with Tn916 along the whole length of Tn916. However comparisons of the distribution of TaqI and Sau3AI sites in the homologous regions of the two elements did not demonstrate any hybridizing fragments in common.  相似文献   

2.
Radioligand binding studies with the water-soluble cannabinoid [3H]5'-trimethylammonium delta 8-tetrahydrocannabinol ([3H]TMA) have revealed a saturable high-affinity site in brain that is specific for cannabinoids. To determine whether endogenous compounds of brain might act upon the site physiologically, we sought inhibitors in extracts of brain. An endogenous inhibitor has been purified to homogeneity by acid extraction of rat brain followed by adsorption to a reverse-phase matrix and gel filtration chromatography. The purified inhibitor has a subunit molecular mass of 14,500 daltons by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Inhibition of [3H]TMA binding by the purified inhibitor occurs with a Ki of about 4 nM in a noncompetitive manner. The molecular weight, abundance, and extraction properties are the same as a species of myelin basic protein (MBP). The MBPs of rat, rabbit, pig, and cow also inhibit [3H]TMA binding noncompetitively with similar potencies. The purified inhibitor comigrates with rat MBP-small form on SDS-PAGE, has a similar amino acid composition, and is recognized by antibody directed against MBP. Studies of fragments of rabbit MBP suggest that the determinants of affinity for the [3H]TMA site are contained primarily within the C-terminal half of the rabbit MBP. Synthetic polycationic peptides such as polylysine and polyarginine mimic the effects of MBP, suggesting that the high-affinity cannabinoid binding site recognizes large polycations. The identification of the endogenous inhibitor of [3H]TMA binding as MBP suggests that MBP interacts physiologically with the high-affinity cannabinoid site.  相似文献   

3.
Under anaerobic conditions, Saccharomyces cerevisiae uses NADH-dependent glycerol-3-phosphate dehydrogenase (Gpd1p and Gpd2p) to re-oxidize excess NADH, yielding substantial amounts of glycerol. In a Deltagpd1 Deltagpd2 double-null mutant, the necessary NAD+ regeneration through glycerol production is no longer possible, and this mutant does not grow under anaerobic conditions. The excess NADH formed can potentially be used to drive other NADH-dependent reactions or pathways. To investigate this possibility, a double-null mutant was transformed with a heterologous gene (mtlD) from Escherichia coli, coding for NADH-dependent mannitol-1-phosphate dehydrogenase. Expression of this gene in S. cerevisiae should result in NADH oxidation by the NADH-requiring formation of mannitol-1-phosphate from fructose-6-phosphate. The strain was characterized using step-change experiments, in which, during the exponential growth phase, the inlet gas was changed from air to nitrogen. It was found that the mutant produced mannitol only under anaerobic conditions. However, anaerobic growth was not regained, which was probably due to the excessive accumulation of mannitol in the cells.  相似文献   

4.
In the peripheral nervous system, progesterone (PROG) has a stimulatory effect on myelination. It could be derived from local synthesis, as Schwann cells in culture express the 3beta-hydroxysteroid dehydrogenase (3beta-HSD) and convert pregnenolone (PREG) to PROG. Although 3beta-HSD mRNA can be detected by RT-PCR in peripheral nerves, the activity of the enzyme has so far not been demonstrated and characterized in nerve tissue. In this study, we show that homogenates prepared from rat sciatic nerves contain a functional 3beta-HSD enzyme and we have analysed its kinetic properties and its regulation by steroids. The activity of 3beta-HSD in homogenates was evaluated using 3H-labelled PREG as a substrate and NAD+ as a cofactor, the levels of steroids formed were calculated either by extrapolating the relationship between tritiated peaks obtained by TLC to the initial amount of PREG, or by gas chromatography/mass spectrometry determination. A rapid increase in PROG formation was found between 0 and 50 min of incubation and no further significant changes were observed between 1 and 4 h. The calculated Km value (1.06 +/- 0.19 microm) was close to the values described for the 3beta-HSD type-I and type-IV isoforms. Trilostane, a competitive inhibitor of the 3beta-HSD caused a potent inhibition of the rate of conversion of PREG to PROG (IC50 = 4.06 +/- 2.58 microm). When the effects of different steroids were tested, both oestradiol and PROG significantly inhibited the conversion of PREG to PROG.  相似文献   

5.
Neurosteroids may play a major role in the regulation of various neurophysiological and behavioural processes. However, while the biochemical pathways involved in the synthesis of neuroactive steroids in the central nervous system are now elucidated, the mechanisms controlling the activity of neurosteroid-producing cells remain almost completely unknown. In the present study, we have investigated the effect of the octadecaneuropeptide (ODN), an endogenous ligand of benzodiazepine receptors, in the control of steroid biosynthesis in the frog hypothalamus. Glial cells containing ODN-like immunoreactivity were found to send their thick processes in the close vicinity of neurones expressing the steroidogenic enzyme 3 beta-hydroxysteroid dehydrogenase. Exposure of frog hypothalamic explants to graded concentrations of ODN (10(-10)-10(-5) M) produced a dose-dependent increase in the conversion of tritiated pregnenolone into various radioactive steroids, including 17-hydroxypregnenolone, progesterone, 17-hydroxyprogesterone, dehydroepiandrosterone and dihydrotestosterone. The ODN-induced stimulation of neurosteroid biosynthesis was mimicked by the central-type benzodiazepine receptor (CBR) inverse agonists methyl beta-carboline-3-carboxylate (beta-CCM) and methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM). The stimulatory effects of ODN, beta-CCM and DMCM on steroid formation was markedly reduced by the CBR antagonist flumazenil. The ODN-evoked stimulation of neurosteroid production was also significantly attenuated by GABA. Collectively, these data indicate that the endozepine ODN, released by glial cell processes in the vicinity of 3 beta-hydroxysteroid dehydrogenase-containing neurones, stimulates the biosynthesis of neurosteroids through activation of central-type benzodiazepines receptors.  相似文献   

6.
Plants synthesize an astonishing diversity of isoprenoids, some of which play essential roles in photosynthesis, respiration, and the regulation of growth and development. Two independent pathways for the biosynthesis of isoprenoid precursors coexist within the plant cell: the cytosolic mevalonic acid (MVA) pathway and the plastidial methylerythritol phosphate (MEP) pathway. However, little is known about the effects of plant hormones on the regulation of these pathways. In the present study we investigated the effect of gibberellic acid (GA3) on changes in the amounts of many produced terpenoids and the activity of the key enzymes, 1-deoxy-D-xylulose 5-phosphate synthase (DXS) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), in these pathways. Our results showed GA3 caused a decrease in DXS activity in both sexes that it was accompanied by a decrease in chlorophylls, carotenoids and Δ9-tetrahydrocannabinol (THC) contents and an increase in α-tocopherol content. The treated plants with GA3 showed an increase in HMGR activity. This increase in HMGR activity was followed by accumulation of stigmasterol and β-sitosterol in male and female plants and campestrol in male plants. The pattern of the changes in the amounts of sterols was exactly similar to the changes in the HMGR activity. These data suggest that GA3 can probably influence the MEP and MVA pathways oppositely, with stimulatory and inhibitory effects on the produced primary terpenoids in MVA and DXS pathways, respectively.  相似文献   

7.
8.
The dynamics of T cells expressing the ΓΔ T-cell receptor in mucosae and other compartments during the course of human immunodeficiency virus (HIV)-1 infection are poorly understood. To examine the impact of an acquired immunodeficiency syndrome virus on the ΓΔ+ T-cell population, rectal inoculation of macaques with simian immunodeficiency virus (SIV)-PBj14 was used as a model. After rectal inoculation, five macaques were sacrificed on days 4, 5, or 7 and then assessed for changes in the ΓΔ T-cell receptor repertoire in different lymphoid compartments. There was decreased representation of ΓΔ+ T cells in the intestinal mucosae, blood, and spleens. Overall, the reduced number of total ΓΔ+ T cells was consistent with decreases in the VΓ or VΔ T-cell sub-populations. Nevertheless, there was no consistent deletion or expansion of a selected VΓ+ or VΔ+ cell sub-population. These results demonstrate that SIV-PBj14 replication and dissemination after mucosal inoculation resulted in a decline of detectable ΓΔ+ T cells, suggesting that macaque ΓΔ+ T cells are susceptible to down-regulation or destruction during acute SIV-PBj14 infection.  相似文献   

9.
The psychoactive ingredient of marijuana, Δ9-tetrahydrocannabinol (Δ9-THC), can evoke apoptosis in cultured cortical neurones. Whilst the intracellular mechanisms responsible for this apoptotic pathway remain to be fully elucidated, we have recently identified a role for the CB1 type of cannabinoid (CB) receptor and the tumour suppressor protein, p53. In the current study, we demonstrate the Δ9-THC promotes a significant increase in lysosomal permeability in a dose- and time-dependent manner. The increase in lysosomal permeability was blocked by the CB1 receptor antagonist, AM251. Δ9-THC increased the localization of phospho-p53Ser15 at the lysosome and stimulated the release of the lysosomal cathepsin enzyme, cathepsin-D, into the cytosol. The p53 inhibitor, pifithrin-α and small interfering RNA-mediated knockdown of p53 prevented the Δ9-THC-mediated increase in lysosomal permeability. Furthermore, the Δ9-THC -mediated induction of apoptosis was abrogated by a cell-permeable cathepsin-D inhibitor (10 μM). Thus, the study demonstrates that Δ9-THC impacts on the lysosomal system, via p53, to evoke lysosomal instability as an early event in the apoptotic cascade. This provides evidence for a novel link between the CB1 receptor and the lysosomal branch of the apoptotic pathway which is crucial in regulating neuronal viability following exposure to Δ9-THC.  相似文献   

10.
11.
The Delta(6)-desaturase gene isoform II involved in the formation of gamma-linolenic acid (GLA) was identified from Mucor rouxii. To study the possibility of alteration of the synthetic pathway of essential fatty acids in the methylotrophic yeast, Hansenula polymorpha, the cloned gene of M. rouxii under the control of the methanol oxidase (MOX) promoter of H. polymorpha, was used for genetic modification of this yeast. Changes in flux through the n-3 and n-6 pathways in the transgenic yeast were observed. The proportion of GLA varied dramatically depending on the growth temperature and media composition. This can be explained by the effects of either substrate availability or enzymatic activity. In addition to the potential application for manipulating the fatty acid profile, this study provides an attractive model system of H. polymorpha for investigating the deviation of fatty acid metabolism in eukaryotes.  相似文献   

12.
ABSTRACT A cDNA encoding pheromone Δ9 acyl-CoA desaturase, Slit KPSE was isolated from sex pheromone gland of the tobacco cutworm, Spodoptera litura which uses a diene unsaturated fatty acid (UFA) derivative, Z9E11-14 : 2 as a major pheromone component. The fulllength open reading frame coding region of Slit KPSE was inserted in a yeast shuttle vector, YEpOLEX, and two kinds of yeast ( Saccharomyces cerevisiae ) mutant strains were transformed with the recombinant vector. In the desaturase-deficient ole 1 strain, Slit KPSE expressed a complementary enzyme producing two kinds of diene UFAs, more 9–16 : 1 and less 9–18 : 1 at a ratio of 1 : 0.74 exhibiting a typical functional characteristics as one of the pheromone Δ9 acyl-CoA desaturase lineage group, KPSE, but no Δ9 14C monoene was detectable because of too small amount of 14C saturated fatty acid precursor to be reliably used by Slit KPSE in the transformed cells. However, the another transformed yeast strain elo 1 which is deficient of elongase 1, an enzyme converting 14C to 16C hydrocarbon substrate, was supplemented with some myristic acid (14 : 0) in the medium, and produced a significant amount of 9–14 : 1 in due to a much enhanced level of the 14C substrate suggesting that Slit KPSE may be responsible for making the Δ9 double bond on the diene pheromone component.  相似文献   

13.
Aims:  Bio-process development for isomer selective and efficient production of cis -9, trans -11-octadecadienoic acid (CLA) from trans -vaccenic acid ( t -VA, trans -11-octadecenoic acid) through microbial fatty acid Δ9-desaturation reaction.
Methods and Results:  A total of 550 strains of fungi and yeasts were screened for CLA production from t -VA through Δ9 desaturation. Delacroixia coronata IFO 8586 was selected as a potent producer of CLA from t -VA. Efficient CLA production was observed during cultivation in medium supplemented with the methyl ester of t -VA ( t -VAME). Under the optimal conditions with 33·3 mg ml−1 of t -VAME as substrate, 10·5 mg ml−1 CLA was produced by D. coronata IFO 8586 after 7 days of cultivation in the medium containing dextrin (5·0%), tryptone (2·0%) and thiourea (0·83 μmol ml−1). The strain produced the cis -9, trans -11 isomer of CLA selectively (98% of total CLA), with a small amount of the trans -9, trans -11 isomer (2% of total CLA), mainly in the form of triacylglycerols (69% of total CLA).
Conclusions:  A practical bio-process for selective production of cis -9, trans -11 isomer of CLA using filamentous fungus D. coronata IFO 8586 was successfully established.
Significance and Impact of the Study:  Isomer selective bio-process for the practical production of cis -9, trans -11-CLA was first established. The process is benefitable for expanding the application of CLA for medicinal and nutraceutical purposes.  相似文献   

14.
Gene transfer into human CD34+ haematopoietic progenitor cells (HPC) and multi-potent mesenchymal stromal cells (MSC) is an essential tool for numerous in vitro and in vivo applications including therapeutic strategies, such as tissue engineering and gene therapy. Virus based methods may be efficient, but bear risks like tumorigenesis and activation of immune responses. A safer alternative is non-viral gene transfer, which is considered to be less efficient and accomplished with high cell toxicity. The truncated low affinity nerve growth factor receptor (ALNGFR) is a marker gene approved for human in vivo application. Human CD34+ HPC and human MSC were transfected with in vitro-transcribed mRNA for DeltaLNGFR using the method of nucleofection. Transfection efficiency and cell viability were compared to plasmid-based nucleofection. Protein expression was assessed using flow cytometry over a time period of 10 days. Nucleofection of CD34+ HPC and MSC with mRNA resulted in significantly higher transfection efficiencies compared to plasmid transfection. Cell differentiation assays were performed after selecting DeltaLNGFR positive cells using a fluorescent activating cell sorter. Neither cell differentiation of MSC into chondrocytes, adipocytes and osteoblasts, nor differentiation of HPC into burst forming unit erythroid (BFU-E) colony forming unit-granulocyte, erythrocyte, macrophage and megakaryocyte (CFU-GEMM), and CFU-granulocyte-macrophage (GM) was reduced. mRNA based nucleofection is a powerful, highly efficient and non-toxic approach for transient labelling of human progenitor cells or, via transfection of selective proteins, for transient manipulation of stem cell function. It may be useful to transiently manipulate stem cell characteristics and thus combine principles of gene therapy and tissue engineering.  相似文献   

15.
4-Aminobutyraldehyde Dehydrogenase Activity in Rat Brain   总被引:4,自引:2,他引:2  
Abstract: An enzyme with NAD+-dependent 4-aminobutyraldehyde dehydrogenase activity was purified about 360-fold from rat brain extract. AMP-Sepharose chromatography was effective in separating the enzyme from other NAD+-dependent aldehyde dehydrogenases included in the extract. The K ms for the substrates NAD+ and 4-aminobutyraldehyde were 4.8 × 10−4 and 8.3 × 10−5 M , respectively. The pH optimum for the enzyme was about 8.0. The ratio of activities toward 4-aminobutyraldehyde, propionaldehyde, succinate semialdehyde, and benzaldehyde was 1.00:0.17:0.24:0.09:0.03 when the activity toward 4-aminobutyraldehyde was set equal to 1.00. The enzyme activity in subcellular fractions of rat brain was localized in cytosol.  相似文献   

16.
Low peanut productivity in the semi‐arid tropics is attributed mainly to drought caused by low and erratic rainfall. Genetic improvement in water‐use efficiency (WUE) could potentially lead to improved yield under limited moisture availability. In peanut, WUE is correlated with SPAD chlorophyll meter reading (SCMR), specific leaf area (SLA), and carbon isotope discrimination (Δ13C). These traits can be used as surrogates for selecting for WUE. Partitioning of assimilates as measured by the harvest index (HI) has the greatest effect on pod yield. To improve these traits for tailoring peanut genotypes well matched for water‐limited conditions, a good knowledge of genetic systems controlling the expression of these traits is essential. This study was undertaken to work out the gene action for the surrogates of WUE and HI in a 6 × 6 full diallel mating design. Two of the studied surrogates (SCMR and Δ13C) for WUE were found to be under the influence of both additive and nonadditive gene effects with preponderance of the former. SLA and HI were controlled by genes that are mainly additive in nature. Selection for these traits can be effective in the early generations. Maternal effects observed for SLA and Δ13C are suggestive of the crucial role of selection of female parent in improvement of these traits. The parental lines, TMV 2 NLM (for SCMR, SLA and Δ13C) and ICGV 86031 (for SCMR and SLA), were found to be good general combiners each for more than one character. TAG 24 and Chico (for HI) and CSMG 84‐1 (for SLA) were the other good general combiners.  相似文献   

17.
18.
Keeping a neutral cytoplasm; the bioenergetics of obligate acidophiles   总被引:1,自引:0,他引:1  
  相似文献   

19.
Recent studies have shown that the pharmacological tolerance observed after prolonged exposure to synthetic or plant-derived cannabinoids in adult rats is accompanied by down-regulation/desensitization of brain cannabinoid receptors. However, no evidence exists on possible changes in the contents of the endogenous ligands of cannabinoid receptors in the brain of cannabinoid-tolerant rats. The present study was designed to elucidate this possibility by measuring, by means of isotope dilution gas chromatography/mass spectrometry, the contents of both anandamide (arachidonoylethanolamide; AEA) and its biosynthetic precursor, N-arachidonoylphosphatidylethanolamine (NArPE), and 2-arachidonoylglycerol (2-AG) in several brain regions of adult male rats treated daily with delta9-tetrahydrocannabinol (delta9-THC) for a period of 8 days. The areas analyzed included cerebellum, striatum, limbic forebrain, hippocampus, cerebral cortex, and brainstem. The same regions were also analyzed for cannabinoid receptor binding and WIN-55,212-2-stimulated guanylyl-5'-O-(gamma-[35S]thio)-triphosphate ([35S]GTPgammaS) binding to test the development of the well known down-regulation/desensitization phenomenon. Results were as follows: As expected, cannabinoid receptor binding and WIN-55,212-2-stimulated [35S]GTPgammaS binding decreased in most of the brain areas of delta9-THC-tolerant rats. The only region exhibiting no changes in both parameters was the limbic forebrain. This same region exhibited a marked (almost fourfold) increase in the content of AEA after 8 days of delta9-THC treatment. By contrast, the striatum exhibited a decrease in AEA contents, whereas no changes were found in the brainstem, hippocampus, cerebellum, or cerebral cortex. The increase in AEA contents observed in the limbic forebrain was accompanied by a tendency of NArPE levels to decrease, whereas in the striatum, no significant change in NArPE contents was found. The contents of 2-AG were unchanged in brain regions from delta9-THC-tolerant rats, except for the striatum where they dropped significantly. In summary, the present results show that prolonged activation of cannabinoid receptors leads to decreased endocannabinoid contents and signaling in the striatum and to increased AEA formation in the limbic forebrain. The pathophysiological implications of these findings are discussed in view of the proposed roles of endocannabinoids in the control of motor behavior and emotional states.  相似文献   

20.
A robust Agrobacterium-mediated transformation procedure was developed for Rigel, a commercial cultivar of evening primrose, and used to deliver a cDNA encoding a Delta(6)-desaturase from borage under the control of a cauliflower mosaic virus (CaMV) 35S promoter. Analysis of the transformed plants demonstrated an altered profile of polyunsaturated fatty acids, with an increase in gamma-linolenic acid and octadecatetraenoic acid in leaf tissues when compared with control lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号