首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The RecBCD-K177Q enzyme has a lysine-to-glutamine mutation in the putative ATP-binding sequence of the RecD protein (Korangy, F., and Julin, D.A. (1992) J. Biol. Chem. 267, 1727-1732). We have compared the enzymatic properties of the RecBCD-K177Q enzyme with those of the wild-type RecBCD enzyme from Escherichia coli. The purified RecBCD-K177Q enzyme has ATP-dependent nuclease activity on double-stranded or denatured DNA which is reduced (4-14-fold less) compared with the wild type. The kcat and Km(ATP) for ATP hydrolysis stimulated by double-stranded DNA are both reduced in RecBCD-K177Q, so that kcat/Km(ATP) is relatively unaffected. The mutant enzyme is impaired in its ability to unwind DNA in an assay where single-stranded DNA is trapped by the single-stranded DNA binding protein and subsequently degraded by S1 nuclease. The mutant enzyme also produces fewer acid-soluble DNA nucleotides per ATP hydrolyzed than does the wild type, at low ATP concentrations (less than 20 microM).  相似文献   

2.
An endo-exonuclease (designated nuclease III) has been purified to near homogeneity from adult flies of Drosophila melanogaster. The enzyme degrades single- and double-stranded DNA and RNA. It has a sedimentation co-efficient of 3.1S and a strokes radius of 27A The native form of the purified enzyme appears to be a monomer of 33,600 dalton. It has a pH optimum of 7-8.5 and requires Mg2+ or Mn2+ but not Ca2+ or Co2+ for its activity. The enzyme activity on double-stranded DNA was inhibited 50% by 30 mM NaCl, while its activity on single-stranded DNA required 100 mM NaCl for 50% inhibition. Under the latter conditions, its activity on double-stranded DNA was inhibited approximately 98%. The enzyme degrades DNA to complete acid soluble products which are a mixture of mono- and oligonucleotides with 5'-P and 3'-OH termini. Supercoiled DNA was converted by the enzyme to nicked and subsequently to linear forms in a stepwise fashion under the condition in which the enzyme works optimally on single-stranded DNA. The amino acid composition and amino acid sequencing of tryptic peptides from purified nuclease III is also reported.  相似文献   

3.
A sugar-unspecific nuclease has been purified 260-fold from barley malt diastase. The enzyme, a glycoprotein of 37 000 MW, is highly active on single-stranded polynucleotides at pH 5–6. The nuclease is inhibited by several adenine nucleotides, and it binds weakly to NADP-agarose and ATP-agarose.  相似文献   

4.
Kriukiene E 《FEBS letters》2006,580(26):6115-6122
A two-domain structure of the Type IIS restriction endonuclease MnlI has been identified by limited proteolysis. An N-terminal domain of the enzyme mediates the sequence-specific interaction with DNA, whereas a monomeric C-terminal domain resembles bacterial colicin nucleases in its requirement for alkaline earth as well as transition metal ions for double- and single-stranded DNA cleavage activities. The results indicate that the fusion of the non-specific HNH-type nuclease to the DNA binding domain had transformed MnlI into a Mg(2+)-, Ni(2+)-, Co(2+)-, Mn(2+)-, Zn(2+)-, Ca(2+)-dependent sequence-specific enzyme. Nevertheless, MnlI retains a residual single-stranded DNA cleavage activity controlled by its C-terminal colicin-like nuclease domain.  相似文献   

5.
DFF40/CAD, the major apoptotic nuclease, is specific for double-stranded DNA. However, RNA and single-stranded DNA, though not substrates for the enzyme, compete with double-stranded DNA and inhibit its cleavage by the nuclease. In addition, other anionic polymers, like poly-glutamic acid and heparin also inhibit DFF40/CAD, the latter one being highly effective at nanomolar concentrations. The inhibitory poly-anions bind to the nuclease and impair its ability to bind double-stranded DNA. We propose that such poly-anions bind to the positively charged surface formed by α4 helices of the DFF40/CAD homodimer. This surface has been proposed recently to bind to either the major groove of DNA or poly (ADP-ribose), another inhibitor of the nuclease.  相似文献   

6.
Birnboim, H. C. (Albert Einstein College of Medicine, New York, N.Y.). Cellular site in Bacillus subtilis of a nuclease which preferentially degrades single-stranded nucleic acids. J. Bacteriol. 91:1004-1011. 1966.-A nuclease, identified by a marked preference for single-stranded nucleic acids, has been demonstrated in extracts of Bacillus subtilis. The enzyme was associated with the cell wall-membrane fraction of mechanically disrupted cells and was released from cells which had been converted to protoplasts by lysozyme. The nuclease activity prepared by the latter procedure was found to be activated and solubilized by treatment with trypsin. The enzyme had about 2% activity on native deoxyribonucleic acid (DNA) as compared with denatured DNA. By use of CsCl analytical density gradient ultracentrifugation, this preparation was shown to degrade denatured DNA selectively in mixtures of native and denatured DNA.  相似文献   

7.
A small endodeoxyribonuclease )2.3 S) that is active on single-stranded DNA has been extensively purified from Escherichia coli so as to be free of other known DNases. It has an alkaline pH optimum (9.5), requires Mg2+, and makes 3'-hydroxy and 5'-phosphate termini. The nuclease nicks duplex DNA, particularly if treated with OsO4, irradiated with ultraviolet light, or exposed to pH 5. The uracil-containing duplex DNA from the Bacillus subtilis phage PBS-2 is an especially good substrate; it is made acid-soluble by levels of the enzyme which fail to produce any acid-soluble material in other single-stranded or duplex DNAs. Neither RNA nor RNA-DNA hybrid are degraded by the enzyme. The enzyme specificity suggests that it might act at abnormal regions in DNA, so that its in vivo function could be to initiate an excision repair sequence. Its high activity on uracil-containing DNA could imply that the enzyme provides an alternative mechanism for excising uracil residues from DNA to the pathway utilizing uracil-DNA N-glycosidase. We suggest that this enzyme be designated as endonuclease V of E. coli.  相似文献   

8.
The RecB and RecD subunits of the RecBCD enzyme of Escherichia coli contain amino acid sequences similar to a consensus mononucleotide binding motif found in a large number of other enzymes. We have constructed by site-directed mutagenesis a lysine-to-glutamine mutation in this sequence in the RecB protein. The mutant enzyme (RecB-K29Q-CD) has essentially no nuclease or ATP hydrolysis activity on double-stranded DNA, showing the importance of RecB for unwinding double-stranded DNA. However, ATP hydrolysis stimulated by single-stranded DNA is reduced by only about 5-8-fold compared to the wild-type, nuclease activity on single-stranded DNA is reduced by less than 2-fold, and the nuclease activity of the RecB-K29Q-CD enzyme requires ATP. The effects of the RecB mutation suggest that the RecD protein hydrolyzes ATP and can stimulate the RecBCD enzyme nuclease activity on single-stranded DNA.  相似文献   

9.
RecBCD enzyme is a heterotrimeric helicase/nuclease that initiates homologous recombination at double-stranded DNA breaks. Several of its activities are regulated by the DNA sequence chi (5'-GCTGGTGG-3'), which is recognized in cis by the translocating enzyme. When RecBCD enzyme encounters chi, the intensity and polarity of its nuclease activity are changed, and the enzyme gains the ability to load RecA protein onto the chi-containing, unwound single-stranded DNA. Here, we show that interaction with chi also affects translocation by RecBCD enzyme. By observing translocation of individual enzymes along single molecules of DNA, we could see RecBCD enzyme pause precisely at chi. Furthermore, and more unexpectedly, after pausing at chi, the enzyme continues translocating but at approximately one-half the initial rate. We propose that interaction with chi results in an enzyme in which one of the two motor subunits, likely the RecD motor, is uncoupled from the holoenzyme to produce the slower translocase.  相似文献   

10.
A nuclease with novel activities has been isolated and purifiedto apparent homogeneity from pea chloroplasts. The enzyme preferssingle-stranded (ss) circular DNA; its activity being 1500-foldhigher with the ss circular DNA than with the linear double-strandedDNA substrates. The single-stranded DNase activity is stableat moderately high temperature (50 C) and inhibited in thepresence of 75 mM NaCl. It binds negatively supercoiled DNAin the stoichiometric fashion, but behaves catalytically onthe single-stranded circular DNA. Although the DNase activitydoes not recognize any specific nucleotide sequence, the co-operativemode of activity seems to be a novel one. The protein is a monomerof 35 kDa and binds with DNA predominantly through electrostaticinteractions. The drug distamycin blocks the endonuclease activitysuggesting that the protein binds at the minor groove of DNA.A RNase activity has also been found associated with the ss-DNAendonuclease. Key words: Pea, chloroplast, endonuclease  相似文献   

11.
The Dna2 protein is a multifunctional enzyme with 5'-3' DNA helicase, DNA-dependent ATPase, 3' exo/endonuclease, and 5' exo/endonuclease. The enzyme is highly specific for structures containing single-stranded flaps adjacent to duplex regions. We report here two novel activities of both the yeast and human Dna2 helicase/nuclease protein: single strand annealing and ATP-independent strand exchange on short duplexes. These activities are independent of ATPase/helicase and nuclease activities in that mutations eliminating either nuclease or ATPase/helicase do not inhibit strand annealing or strand exchange. ATP inhibits strand exchange. A model rationalizing the multiple catalytic functions of Dna2 and leading to its coordination with other enzymes in processing single-stranded flaps during DNA replication and repair is presented.  相似文献   

12.
A single-stranded DNA-binding protein (SSB) affinity column was prepared by optimizing the coupling of Escherichia coli single-stranded DNA-binding protein to Affi-Gel 10. The bound SSB retained its ability to specifically bind single-stranded DNA. When nuclease-treated cell extracts were incubated with the SSB beads overnight at 4 degrees C, a major protein of Mr = 25,000 was bound. At shorter incubation times, two additional proteins of Mr = 32,000 and 36,000 were also detected. In the absence of nuclease treatment, eight additional proteins ranging from Mr = 14,000 to 160,000 also bound to the affinity column. The major Mr = 25,000 protein has been shown to be a folded chromosome-associated protein. Its binding to SSB is strongly enhanced by the addition of DNA polymerase III or DNA polymerase III holoenzyme.  相似文献   

13.
Generation of a catalytic sequence-specific hybrid DNase   总被引:1,自引:0,他引:1  
D R Corey  D Pei  P G Schultz 《Biochemistry》1989,28(21):8277-8286
Hybrid nucleases consisting of an oligonucleotide fused to a unique site on the relatively nonspecific phosphodiesterase staphylococcal nuclease have been shown to sequence specifically cleave DNA. We have introduced mutations into the binding pocket of the nuclease which lower the kcat/Km of the enzyme. Hybrid nucleases generated from these mutants sequence selectively hydrolyze single-stranded DNA in a catalytic fashion, and under a much wider range of conditions than was previously possible. One such hybrid nuclease (Y113A, K116C) was able to site selectively cleave single-stranded M13mp7 DNA (7214 nt), primarily at one phosphodiester bond. Another hybrid nuclease (Y113A, L37A, K116C) catalyzed the hydrolysis of a 78-nt DNA substrate with a kcat of 1.2 min-1 and a Km of 120 nM. The effects of variations in the length and sequence of the oligonucleotide binding region were examined, as were changes in the length of the tether between the oligonucleotide and the enzyme. Cleavage specificity was also assayed as a function of substrate DNA primary and secondary structure and added poly(dA).  相似文献   

14.
Two molecularly and kinetically distinct major species of the extracellular nuclease BAL 31 from Alteromonas espejiana, previously characterized as the "fast" (F) and "slow" (S) BAL 31 nucleases, have been evidenced to derive from proteolysis starting from a still larger (approximately 120 kDa) precursor nuclease. The expected protease activity in the culture fluid has been confirmed and is strongly dependent on the cell growth phase. The disappearance of the largest nuclease species with the concomitant sequential appearance of first the F and then the S species has been demonstrated for nuclease obtained from culture supernatants as a function of cell growth phase. Nuclease from periplasmic extracts displayed very little of the F and S nucleases. Treatment of purified F nuclease with Pronase or subtilisin readily converted it to species with only a few percent of the native exonuclease activity against duplex DNA but retaining much of the initial activity against single-stranded DNA. Electrophoresis in nuclease-detecting gels demonstrated a parallel conversion of the larger species to one indistinguishable in molecular weight from the S species. The observed loss of exonuclease activity could correspond to the conversion of the F to the S nuclease. However, treatment of S nuclease with subtilisin resulted in a drastic reduction of exonuclease activity of this enzyme on duplex DNA with retention of most of the activity against single-stranded and nicked circular duplex DNA substrates. Evidence of internal proteolysis of the S nuclease could be seen after electrophoresis in denaturing gels but only after the denaturation buffer was adjusted to 6 M in urea. The preferential removal of the exonuclease activity may enhance the usefulness of the BAL 31 nuclease in such applications as heteroduplex mapping.  相似文献   

15.
16.
T T Pham  J E Coleman 《Biochemistry》1985,24(20):5672-5677
The structural gene for the single-stranded endonuclease coded for by gene 3 of bacteriophage T7 has been cloned in pGW7, a derivative of the plasmid pBR322, which contains the lambda PL promoter and the gene for the temperature-sensitive lambda repressor, cI857. The complete gene 3 DNA sequence has been placed downstream of the PL promoter, and the endonuclease is overproduced by temperature induction at mid-log phase of Escherichia coli carrying the recombinant plasmid pTP2. Despite the fact that cell growth rapidly declines due to toxic effects of the excess endonuclease, significant amounts of the enzyme can be isolated in nearly homogeneous form from the induced cells. An assay of nuclease activity has been devised using gel electrophoresis of the product DNA fragments from DNA substrates. These assays show the enzyme to have an absolute requirement for Mg(II) (10 mM), a broad pH optimum near pH 7, but significant activity from pH 3 to pH 9, and a 10-100-fold preference for single-stranded DNA (ssDNA). The enzyme is readily inactivated by ethylenediaminetetraacetic acid or high salt. The differential activity in favor of ssDNA can be exploited to map small single-stranded regions in double-stranded DNAs as shown by cleavage of the melted region of an open complex of T7 RNA polymerase and its promoter.  相似文献   

17.
Summary Phage Lambda DNA, gamma-irradiated in-situ and in-vitro, has been analyzed for unpaired bases by melting, reannealing, and cleavage with Sl nuclease which is specific for single-stranded DNA. DNA, irradiated in-situ, i.e., in the phage particle, contained sites being sensitive to Sl nuclease. These single-stranded lesions were passed over and conserved during reannealing, whereas adjacent DNA regions reannealed specifically. Complementary base-pairing was restored after Sl nuclease treatment. Comparison of the Tm,-data before and after Sl nuclease treatment indicated that the single-stranded regions were removed by the enzyme. In contrast, DNA irradiated in-vitro, i.e., gamma-irradiated in aqueous solution, failed to match complementarily and was not sensitive to Sl nuclease. Thus it appears that lesions leading to unpaired bases were randomly distributed in DNA irradiated in-vitro, but occurred in clusters after irradiation in-situ. Most probably these clusters contain damaged bases which in turn caused localized disruption of the hydrogen bonds between complementary base pairs.  相似文献   

18.
A ribonuclease that hydrolyzes either linear duplex or single-stranded RNA in an exonucleolytic manner has been partially purified from Ehrlich ascites tumor cell nucleoli and is free from other ribonucleases. The enzyme will also degrade the RNA complement of an RNA X DNA duplex; however, no nuclease activity is observed on linear duplex or single-stranded DNA. The exonuclease acts on RNA nonprocessively from the 3' end releasing 5'-mononucleotides. The enzyme has a broad pH optimum around pH 8.0, requires Mg2+ or Mn2+ (0.06 mM) for optimum activity, and is sensitive to ethylenediaminetetraacetic acid and N-ethylmaleimide inhibition. Monovalent cations including K+, Na+, and NH4+ are inhibitory. Gel filtration studies of this enzyme gave a Stokes radius of 40 A. Sedimentation velocity measurements in glycerol gradients yield a S20,W of 6.0 S. From these values a native molecular weight of 100 000 was calculated. Copurification of the single- and double-stranded activities, identical reaction requirements, and identical heat-inactivation curves strongly suggest that both activities reside with the same enzyme.  相似文献   

19.
The vast majority of nuclease activity in yeast mitochondria is due to a single polypeptide with an apparent molecular weight of 38,000. The enzyme is located in the mitochondrial inner membrane and requires non-ionic detergents for solubilization and activity. A combination of heparin-agarose and Cibacron blue-agarose chromatography was employed to purify the nuclease to approximately 90% homogeneity. The purified enzyme shows multiple activities: 1) RNase activity on single-stranded, but not double-stranded RNA, 2) endonuclease activity on single- and double-stranded DNA, and 3) a 5'-exonuclease activity on double-stranded DNA. Digestion products with DNA contain 5'-phosphorylated termini. Antibody raised against an analogous enzyme purified from Neurospora crassa (Chow, T. Y. K., and Fraser, M. (1983) J. Biol. Chem. 258, 12010-12018) inhibits and immunoprecipitates the yeast enzyme. This antibody inhibits 90-95% of all nuclease activity present in solubilized mitochondria, indicating that the purified nuclease accounts for the bulk of mitochondrial nucleolytic activity. Analysis of a mutant strain in which the gene for the nuclease has been disrupted supports this conclusion and shows that all detectable DNase activity and most nonspecific RNase activity in the mitochondria is due to this single enzyme.  相似文献   

20.
On the recognition of helical RNA by cobra venom V1 nuclease   总被引:35,自引:0,他引:35  
The V1 nuclease from cobra venom preferentially hydrolyzes double helical RNA and has been used extensively for detecting RNA secondary structure. To increase the utility of this enzyme as an RNA structure probe, we have investigated its properties and substrate specificity, using assays for polynucleotide hydrolysis based on fluorescent polynucleotide derivatives. Enzymatic activity requires both Na+ and Mg2+, with optima at 100 and 0.3 mM, respectively. From the sharp decrease in enzyme activity above 100 mM Na+ we estimate that 3-4 ionic interactions between the protein and polynucleotide phosphates take place. Analysis of products remaining after extensive V1 digestion also shows that the minimum size substrate is 4-6 nucleotides long. Helical RNAs and DNAs have Michaelis constants a factor of 3-10 times lower than most single-stranded RNAs. However, poly(epsilon A) has a Michaelis constant equal to the best synthetic double helices tested and is hydrolyzed at a rate comparable to helical RNA. The major V1 cutting sites in yeast tRNAPhe have Michaelis constants lower than any synthetic polymers. These data suggest that V1 nuclease recognizes any 4-6-nucleotide segment of polynucleotide backbone with an approximately helical conformation, but does not require that the bases be paired in a helix. A few single-stranded V1 cleavage sites are known in tRNA and rRNA, and their structures are consistent with the suggested V1 recognition site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号