首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Using different stains, wheat chromosomes could be distinguished from rye chromosomes by preferential staining. C-bands of rye chromosomes were preferentially stained with Giemsa while those of wheat chromosomes were preferentially stained with either Leishman or Wright stain. Preferential staining aids the identification of wheat and rye chromosomes and chromosome segments and in particular the recognition of wheat/rye chromosome substitutions and translocations.  相似文献   

2.
Summary Using in situ hybridization techniques, we have been able to identify the translocated chromosomes resulting from whole arm interchanges between homoeologous chromosomes of wheat and rye. This was possible because radioactive probes are available which recognize specific sites of highly repeated sequence DNA in either rye or wheat chromosomes. The translocated chromosomes analysed in detail were found in plants from a breeding programme designed to substitute chromosome 2R of rye into commercial wheat cultivars. The distribution of rye highly repeated DNA sequences showed modified chromosomes in which (a) most of the telomeric heterochromatin of the short arm and (b) all of the telomeric heterochromatin of the long arm, had disappeared. Subsequent analyses of these chromosomes assaying for wheat highly repeated DNA sequences showed that in type (a), the entire short arm of 2R had been replaced by the short arm of wheat chromosome 2B and in (b), the long arm of 2R had been replaced by the long arm of 2B. The use of these probes has also allowed us to show that rye heterochromatin has little effect on the pairing of the translocated wheat arm to its wheat homologue during meiosis. We have also characterized the chromosomes resulting from a 1B-1R translocation event.From these results, we suggest that the observed loss of telomeric heterochromatin from rye chromosomes in wheat is commonly due to wheat-rye chromosome translocations.  相似文献   

3.
C-banded wheat chromosomes in wheat and triticale   总被引:4,自引:0,他引:4  
Summary The C-banding patterns of wheat chromosomes in 7 hexaploid triticale and 7 wheat genotypes are described and compared. All 14 wheat chromosome pairs were individually identified in the triticales and a tetraploid wheat, and all the B and two A genome chromosome pairs in the hexaploid wheat genotypes. Little variation was found between genotypes in the distribution of C-bands but considerable variation was found in their size, total number and total length.  相似文献   

4.
Summary Although Giemsa C-banding techniques have been used extensively for assaying cereal heterochromatin, a more specific technique for analyzing cereal heterochromatin has been developed recently with the isolation of DNA sequences present in heterochromatin and their employment in in situ hybridization to cereal chromosomes. A number of triticales were examined for the occurrence of modified rye chromosomes using the in situ hybridization technique. With a heterogeneous sequence probe the amount of rye heterochromatin appears to be relatively constant in wheat backgrounds but when a specific sequence probe was employed variation was observed. Whether this variation reflects polymorphism in rye or whether it is a result of adaption of the rye genome to coexistence with the wheat genome in triticales is discussed. — The triticale Rosner was examined in detail and it was established that the rye chromosome 2R had been replaced by the wheat chromosome 2D.  相似文献   

5.
Summary The relative DNA content of individual chromosomes of Secale cereale L. was determined in 25 cells by microdensitometry of Feulgen stained preparations. The correlation value between relative DNA content and relative chromosome length was r=0.61 for all 328 chromosomes measured. However, the correlation coefficients calculated for individual cells as well as for mean values always approached 1. Taking into account the structure of rye chromosomes, this indicates that microdensitometric results may not be accurate when large quantities of heterochromatic DNA sequences are present in analyzed material.  相似文献   

6.
Summary The meiotic identification of nine pairs of chromosomes at metaphase I of meiosis of Triticum aestivum (B genome, 4A and 7A) has been achieved using a Giemsa C-banding technique. As a result, the analysis of the pairing of each chromosome arm in disomic and monosomic intervarietal hybrids between Chinese Spring and the Spanish cultivar Pané 247 could be carried out. Differences in the chiasmata frequencies per chromosome arm cannot be explained on the basis of relative arm lengths only. Possible effects of arm-to-arm heterochromatic differences on meiotic pairing are discussed.  相似文献   

7.
Summary Wheat-rye homoeologous pairing in both ABRR and (0–7)A(0–7)BRR plants takes place preferentially between homoeologous chromosomes of group 1. This suggests either a much greater affinity between wheat and rye chromosomes for this group or more efficient pairing initiation because of common nucleolar organizer activities. 1A–1R associations were more frequent than 1B–1R associations though in both cases pairing was restricted mostly to the long arms. From the variation in these particular chromosome arms the three following factors might hinder the wheat-rye pairing: regular homologous pairing of rye chromosomes, presence of prominent telomeric C-bands in rye chromosomes or occurrence of wheat-wheat homoeologous pairing.  相似文献   

8.
Summary Plants were regenerated from cultured immature embryos of two pairs of sister lines of triticale (X Triticosecale) cvs Rosner and Drira and five sister lines of rye (Secale cereale). The triticale lines differ in heterochromatic content of a particular rye chromosome (6R or 7R), while the rye lines differ in only one heterochromatic band. Variation in morphogenetic response was present between the triticale cultivars and between the rye lines. One of the rye lines (7RL+ +) showed a distinctive superior response in terms of somatic embryogenesis. These findings are discussed in relation to factors affecting morphogenetic response and genetic stability in culture.  相似文献   

9.
Summary Two NAD-dependent alcohol dehydrogenases ADH-1 and ADH-2, under independent genetic control of genes designated as Adh-1 and Adh-2 located on chromosomes 4A, 4B and 4D, have been reported in aestivum wheat (Hart 1980). Only ADH-1 is expressed in developing seeds, dry seeds, pollen and germinating seedlings. ADH-2 can be induced in seedling roots or shoots under conditions of partial anaerobiosis or by certain chemicals. Expression of ADH-1 and ADH-2 isoenzymes was investigated in undifferentiated calli from aestivum and durum wheats, rye, triticale and also in in vitro regenerated roots and leaves from aestivum cultures. Wheat callus cultures originating from seed, mature and immature embryos, mesocotyl and root, as well as cultures grown on media containing different supplements did not show any variation in the overall expression of ADH-1 or ADH-2, although differences in the band intensities were observed. The callus isoenzyme pattern was similar to that observed in roots under anaerobic conditions. Both ADH-1 and ADH-2 were expressed in in vitro regenerated roots but were absent in regenerated leaves. Expression of ADH-1 and ADH-2 in wheat calli seems to be related to the type of differentiation.  相似文献   

10.
Summary Triticales (XTriticosecale Wittmack) at three ploidy levels (8x, 6x, 4x, x=7) were crossed with diploid rye (Secale cereale L.) to produce a solitary hypopentaploid hybrid (2n=32), and a number of tetraploid (2n=4x=28) and triploid (2n=3x=21) hybrids. The hybrids exhibited a morphology which was intermediate between the parents. The number of bivalents ranged from 1–7 (4.65 per cell) in hypopentaploid, from 2–12 (7.13 per cell) in tetraploid and from 4–9 (6.84 per cell) in triploid hybrids. In 4x and 3x hybrids, trivalents and quadrivalents were also observed at low frequencies (range 0–1; mean 0.01–0.03 per cell). Chiasmata frequency was highest in triploid hybrids (12.44 per cell), lowest in hypopentaploid (5.37 per cell) and intermediate in tetraploids (10.54 per cell). More than 711 were found in 39.7% pollen mother cells (PMC's) in the 4x hybrids and in 5.0% PMCs in 3x hybrids. It is concluded that an increase in the relative proportion of wheat chromosomes in the hybrids had a slight suppression effect on homologous as well as homoeologous pairing of rye chromosomes. Contrary to this, the relative increase in rye complement promoted homoeologous pairing between wheat chromosomes. In triploid hybrids, the chiasmata frequency as well as the c value were the highest, suggesting that in tetraploid hybrids rye chromosomes had a reduced pairing (low frequency of ring bivalents).  相似文献   

11.
Summary Thirteen wheat-like advanced-generation triticale x wheat derivatives, having tetraploid wheat cytoplasm from triticale, were reciprocally crossed with three improved bread wheats, and the resulting F1s were evaluated for determining the comparative performance of the bread wheat and triticale cytoplasms for different traits. Significant reciprocal differences in the mean performance were observed for days to heading, days to maturity, spikes/plant, flag-leaf area, peduncle length, plant height, spike length, grains/spike, 1,000-grain weight, grain yield and grain protein content, and most of them were in favour of hexaploid wheat cytoplasm. However, this superiority of the hexaploid cytoplasm was not universal for a particular trait, implying that the differences in the performance of the evaluated reciprocal crosses depended not solely on the cytoplasmic background, but also on the interplay of the specific genotype with the cytoplasm.  相似文献   

12.
Summary Investigations were made on the rye chromosome constitution and on the presence of telomeric heterochromatin in rye chromosomes of the 26 most widely and 24 most narrowly adapted triticale strains. Among widely adapted lines, 22 (85%) had a complete rye genome and four triticales only had chromosomal R-D genome substitutions. Twenty-three (96%) of the 24 most narrowly adapted triticales had substitutions between the chromosomes of the R and D genomes. The most widely adapted triticales accumulated fewer modified rye chromosomes in comparison to narrowly adapted lines. They had from one to three rye chromosomes with heterochromatic deletions: 46% of widely adapted lines had two modified rye chromosomes; 34% had three modified rye chromosomes, and 19% had a single modified rye chromosome. In widely adapted strains, the 1R, 4R, 5R and 6R modified chromosomes were observed; they were present in 80%, 73%, 50% and 11% of the cases, respectively. The most narrowly adapted triticales had from two to four modified rye chromosomes: 58% of the strains had three modified rye chromosomes; 29% had four modified rye chromosomes and 12% had two modified rye chromosomes. The modified 4R and 5R chromosomes were present in all of these lines. The 1R (modified), 6R (modified) and 7R (modified) were found in 83%, 25% and 16%, respectively, of the narrowly adapted strains.Results support the previous observations (Pilch 1980b) that a wide adaptation of hexaploid triticales is associated with the presence of the full potential of rye genome, and that it is independent of the amount of telomeric heterochromatin possessed by rye chromosomes.  相似文献   

13.
Summary Polymorphism for six C-bands on chromosome 1R was used to study the frequency and distribution of recombination along the chromosome in a diploid rye (Secale cereale L.) and in a hexaploid triticale (X Triticosecale Wittmack) derived from it. In rye, the total recombination frequency in five segments of chromosome 1R was 93.7%. Recombination was concentrated in the distal regions of both chromosome arms and was infrequent in the proximal regions. In hexaploid triticale the total recombination frequency in the same chromosome was reduced to 51.7%. In both backgrounds the distal half of the long arm showed similar recombination frequencies, 51.4% and 45.7% for rye and triticale, respectively. The remaining about two-thirds of the chromosome length showed 42.3% recombination in rye but only 6% recombination in triticale. The results demonstrate that the genetic background in which mapping is performed not only affects the total amount of recombination, but also its distribution along the chromosome length.  相似文献   

14.
Summary Six primary triticale lines were produced from two advanced breeding lines of Triticum durum and three inbred genotypes of Secale cereale. The wheat and rye parents and the triticale derivatives were crossed in all possible combinations within each species group. Chiasma and univalent frequency of parents and hybrids were determined. The primary triticale lines had more univalents and less chiasmata per pollen mother cell than the corresponding wheat and rye parents together. The parental wheat F1 exhibited negative heterosis for chiasma frequency whereas all rye hybrids had much higher chiasma frequencies than their inbred parents. Triticale F1s generally showed lower chiasma frequencies and more univalents than their parents, but the degree of pairing failure was dependent upon which of the parental species within the triticale, wheat or rye, was in the heterozygous state. F1s with heterozygous wheat genome only showed the least reduction in chiasma number (presumably caused by gene actions within the wheat genome), while F1s with heterozygous rye genome showed high reduction in chiasma frequency and an increase in pairing failure (induced by negative interactions between the heterozygous rye and the wheat genome in triticale). A high correlation was found between the frequency of undisturbed pollen mother cells and the frequency of aneuploids in the subsequent generation. A higher number of aneuploids occurred in those populations which were heterozygous for the rye genome.  相似文献   

15.
Summary R genome chromosomes were studied in two forms of primary triticales (hexaploid TPG-1/1-78 and octoploid AD 825) and in their parent rye forms (Secale cereale L. cv. Kharkovskaya 60 and VSKhI, respectively) using the methods of C-banding and morphometric analysis. The size of some heterochromatic segments was shown to alter in the karyotype of triticale. An increase in size was detected approximately in half of all telomeric C-bands; the size of the other C-bands either decreased or did not change. The frequencies of these alterations were 11. The variability in the size of telomeric C-bands in rye chromosomes diminished in both triticales studied. The two triticale forms inherited variants of R genome chromosome polymorphism predominantly with the medium size range of telomeric C-bands. The centromeric C-bands in both triticale forms either enlarged or did not alter. Possible mechanisms responsible for the observed pattern of alterations are discussed.  相似文献   

16.
Summary The effects of A1 on the growth and mineral composition of different cultivars of triticale (X Triticosecale, Wittmack), wheat (Triticum aestivum L.) and rye (Secale cereale L.) growing in 1/5 strength Steinberg solutions containing 0 or 6 ppm A1 were evaluated after 32 days. Aluminum increased the concentrations of P and K in the roots and K in the tops of most of the cultivars tested. A1 tolerant triticale retained a lower concentration of Mg in the roots and tops than the A1 sensitive triticale, when subjected to A1 stress. In addition, A1 treatments resulted in smaller increases in root P for the A1 tolerant triticale than for the A1 sensitive cultivars.The concentration of root Ca and P of the A1 tolerant wheat cultivars were significantly below that of the more sensitive plants. Aluminum tolerance in rye appeared to be associated with lower Ca and higher Mg concentrations in the tops. The accumulation of P and A1 in the roots was characteristic of sensitivity in triticale, wheat and rye.  相似文献   

17.
Summary Hexaploid triticales were crossed with common wheats, and the resultant froms were selected for either triticale (AD 213/5-80) or common wheat (lines 381/80, 391/80, 393/80). The cytogenetic analysis showed that all forms differ in their chromosome composition. Triticale AD 213/5-80 and wheat line 381/80 were stable forms with 2n = 6x = 42. Lines 391/80 and 393/80 were cytologically unstable. In triticale AD 213/5-80, a 2R (2D) chromosome substitution was found. Each of the three wheat lines had a chromosome formed by the translocation of the short arm of IR into the long arm of the IB chromosome. In line 381/80, this chromosome seems to be inherited from the Kavkaz wheat variety. In lines 391/80 and 393/80, this chromosome apparently formed de novo since the parent forms did not have it. The karyotype of line 381/80 was found to contain rye chromosomes 4R/7R, 5R and 7R/4R. About 15% of the cells in line 391/80 contained an isochromosome for the 5R short arm and also a chromosome which arose from the translocation of the long arms of the 5D and 5R chromosomes. About one-third of the cells in the common wheat line 393/80 contained the 5R chromosome. This chromosome was normal or rearranged. Practical applications of the C-banding technique in the breeding of triticale is discussed.  相似文献   

18.
Summary Differences in salt tolerance of wheat and barley have been observed but knowledge of such differences in triticale (X Triticosecale Wittmack) cultivars is of potential importance. Effects of six salinity levels (0 to 2% NaCl) on germination of triticales Beagle and 6TA 131 in comparison to wheat and rye were determined at 15–20°C. Beagle triticale and rye showed similar trends in germination reduction as salinity increased from 0 to 1.5% NaCl and exhibited fairly high salt tolerance. However, 6TA 131 triticale and wheat showed a significant drop in germination even at 0.5% NaCl concentration and were more susceptible to salt injury.  相似文献   

19.
Summary In five genetically different inbred lines of rye and in the seven Chinese Spring/Imperial wheatrye addition lines, chiasma distribution in rye chromosomes was studied with respect to the amount and position of constitutive heterochromatin (Giemsa C-bands). In all inbred lines, rye chromosomes with one primary terminal band were more frequently found as univalents than those with primary bands on both telomeres. These chromosomes were most probably 5R and/or 6R. In the addition lines a highly significant reduction in the number of arms bound by chiasmata was found for rye chromosomes 5R and 6R. Because of the similar chiasma distribution in the inbred lines and in the rye chromosomes of the addition lines, no effect of the wheat genome on the number of chiasmata in the rye chromosomes can be ascertained. However, a relationship between chiasma frequency and chromosome arm length seems to exist, since under reduced chiasma conditions the two shortest arms of the rye complement, those of chromosomes 5R and 6R, frequently fail to form a chiasma. No effect of the large blocks of constitutive heterochromatin in the telomeres of the rye chromosomes on the position of chiasmata within a bivalent could be established.This study was financially supported by the Deutsche Forschungsgemeinschaft  相似文献   

20.
In order to elucidate the possible effects of rye B chromosomes (Bs) on synapsis and metaphase-I associations of the A set, a comparative study between pachytene and metaphase-I-cells of rye plants carrying different numbers of Bs (0–8) has been carried out. The number of Bs was found to be positively correlated with the frequency of synaptic irregularities of the A set, i.e. multivalents and foldback pairing, and with the frequency of pachytene interlockings. It is proposed that interlockings are the origin of these irregularities because both appeared in close proximity in many nuclei. Examples of A-B pairing are described. The frequency of synaptic abnormalities seems to be unrelated to the mean of A chromosome-bound arms at metaphase I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号