首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
We have implemented an orthogonal 3-D intact protein analysis system (IPAS) to quantitatively profile protein differences between human serum and plasma. Reference specimens consisting of pooled Caucasian-American serum, citrate-anticoagulated plasma, and EDTA-anticoagulated plasma were each depleted of six highly abundant proteins, concentrated, and labeled with a different Cy dye (Cy5, Cy3, or Cy2). A mixture consisting of each of the labeled samples was subjected to three dimensions of separation based on charge, hydrophobicity, and molecular mass. Differences in the abundance of proteins between each of the three samples were determined. More than 5000 bands were found to have greater than two-fold difference in intensity between any pair of labeled specimens by quantitative imaging. As expected, some of the differences in band intensities between serum and plasma were attributable to proteins related to coagulation. Interestingly, many proteins were identified in multiple fractions, each exhibiting different pI, hydrophobicity, or molecular mass. This is likely reflective of the expression of different protein isoforms or specific protein cleavage products, as illustrated by complement component 3 precursor and clusterin. IPAS provides a high resolution, high sensitivity, and quantitative approach for the analysis of serum and plasma proteins, and allows assessment of PTMs as a potential source of biomarkers.  相似文献   

2.
The current state of proteomics technologies has sufficiently advanced to allow in-depth quantitative analysis of the plasma proteome and development of a related knowledge base. Here we review approaches that have been applied to increase depth of analysis by mass spectrometry given the substantial complexity of plasma and the vast dynamic range of protein abundance. Fractionation strategies resulting in reduced complexity of individual fractions followed by mass spectrometry analysis of digests from individual fractions has allowed well in excess of 1000 proteins to be identified and quantified with high confidence that span more than seven logs of protein abundance. Such depth of analysis has contributed to elucidation of plasma proteome variation in health and of protein changes associated with disease states.  相似文献   

3.
In-depth analysis of the serum and plasma proteomes by mass spectrometry is challenged by the vast dynamic range of protein abundance and substantial complexity. There is merit in reducing complexity through fractionation to facilitate mass spectrometry analysis of low-abundance proteins. However, fractionation reduces throughput and has the potential of diluting individual proteins or inducing their loss. Here, we have investigated the contribution of extensive fractionation of intact proteins to depth of analysis. Pooled serum depleted of abundant proteins was fractionated by an orthogonal two-dimensional system consisting of anion-exchange and reversed-phase chromatography. The resulting protein fractions were aliquotted; one aliquot was analyzed by shotgun LC-MS/MS, and another was further resolved into protein bands in a third dimension using SDS-PAGE. Individual gel bands were excised and subjected to in situ digestion and mass spectrometry. We demonstrate that increased fractionation results in increased depth of analysis based on total number of proteins identified in serum and based on representation in individual fractions of specific proteins identified in gel bands following a third-dimension SDS gel analysis. An intact protein analysis system (IPAS) based on a two-dimensional plasma fractionation schema was implemented that resulted in identification of 1662 proteins with high confidence with representation of protein isoforms that differed in their chromatographic mobility. Further increase in depth of analysis was accomplished by repeat analysis of aliquots from the same set of two-dimensional fractions resulting in overall identification of 2254 proteins. We conclude that substantial depth of analysis of proteins from milliliter quantities of serum or plasma and detection of isoforms are achieved with depletion of abundant proteins followed by two-dimensional protein fractionation and MS analysis of individual fractions.  相似文献   

4.
Proteomic analysis of plasma is challenging because of its large dynamic range, which prevents the detection of low abundance proteins. Immunodepletion of high abundance proteins, such as albumin and IgG, has emerged as a favored technology to overcome this problem; however its suitability in quantitative expression proteomics has not yet been adequately addressed. In this study, albumin and IgG immunodepletion was evaluated by ELISAs and the reproducibility of depletion was tested with 2-DGE. Depletion of plasma resulted in removal of 62+/-1.2% of the total protein, 93+/-1.4% of the albumin (0.43 microg/microL, residual), and 94+/-1.5% of the IgG (0.21 microg/microL, residual). These results were confirmed by immunoblotting. Computerized image analysis of 2-D gels using Progenesis SameSpots software revealed an enhancement in the number of visible spots (675-1325), with 10+/-6% inter-gel variability in spot density. LC-ESI-MS/MS identification of newly resolved protein spots further validated the procedure. An innovative application of the software employed led to identification of 11 proteins lost non-specifically during depletion. This study demonstrates the effectiveness of immunodepletion of albumin and IgG in quantitative 2-DGE-based differential analysis of plasma proteins.  相似文献   

5.
Strategies for removal of high abundance proteins have been increasingly utilized in proteomic studies of serum/plasma and other body fluids to enhance the detection of low abundance proteins and achieve broader proteome coverage; however, both the reproducibility and specificity of the high abundance protein depletion process still represent common concerns. Here we report a detailed evaluation of immunoaffinity subtraction performed applying the ProteomeLab IgY-12 system that is commonly used in human serum/plasma proteome characterization in combination with high resolution LC-MS/MS. Plasma samples were repeatedly processed using this approach, and the resulting flow-through fractions and bound fractions were individually analyzed for comparison. The removal of target proteins by the immunoaffinity subtraction system and the overall process was highly reproducible. Non-target proteins, including one spiked protein standard (rabbit glyceraldehyde-3-phosphate dehydrogenase), were also observed to bind to the column at different levels but also in a reproducible manner. The results suggest that multiprotein immunoaffinity subtraction systems can be readily integrated into quantitative strategies to enhance detection of low abundance proteins in biomarker discovery studies.  相似文献   

6.
Analysis of the human serum proteome   总被引:1,自引:0,他引:1  
Changes in serum proteins that signal histopathological states, such as cancer, are useful diagnostic and prognostic biomarkers. Unfortunately, the large dynamic concentration range of proteins in serum makes it a challenging proteome to effectively characterize. Typically, methods to deplete highly abundant proteins to decrease this dynamic protein concentration range are employed, yet such depletion results in removal of important low abundant proteins. A multi-dimensional peptide separation strategy utilizing conventional separation techniques combined with tandem mass spectrometry (MS/MS) was employed for a proteome analysis of human serum. Serum proteins were digested with trypsin and resolved into 20 fractions by ampholyte-free liquid phase isoelectric focusing. These 20 peptide fractions were further fractionated by strong cation-exchange chromatography, each of which was analyzed by microcapillary reversed-phase liquid chromatography coupled online with MS/MS analysis. This investigation resulted in the identification of 1444 unique proteins in serum. Proteins from all functional classes, cellular localization, and abundance levels were identified. This study illustrates that a majority of lower abundance proteins identified in serum are present as secreted or shed species by cells as a result of signalling, necrosis, apoptosis, and hemolysis. These findings show that the protein content of serum is quite reflective of the overall profile of the human organism and a conventional multidimensional fractionation strategy combined with MS/MS is entirely capable of characterizing a significant fraction of the serum proteome. We have constructed a publicly available human serum proteomic database (http://bpp.nci.nih.gov) to provide a reference resource to facilitate future investigations of the vast archive of pathophysiological content in serum. These authors contributed equally to this work.  相似文献   

7.
The emerging scientific field of proteomics encompasses the identification, characterization, and quantification of the protein content or proteome of whole cells, tissues, or body fluids. The potential for proteomic technologies to identify and quantify novel proteins in the plasma that can function as biomarkers of the presence or severity of clinical disease states holds great promise for clinical use. However, there are many challenges in translating plasma proteomics from bench to bedside, and relatively few plasma biomarkers have successfully transitioned from proteomic discovery to routine clinical use. Key barriers to this translation include the need for "orthogonal" biomarkers (i.e., uncorrelated with existing markers), the complexity of the proteome in biological samples, the presence of high abundance proteins such as albumin in biological samples that hinder detection of low abundance proteins, false positive associations that occur with analysis of high dimensional datasets, and the limited understanding of the effects of growth, development, and age on the normal plasma proteome. Strategies to overcome these challenges are discussed.  相似文献   

8.
The plasma proteome has a wide dynamic range of protein concentrations and is dominated by a few highly abundant proteins. Discovery of novel cancer biomarkers using proteomics is particularly challenging because specific biomarkers are expected to be low abundance proteins with normal blood concentrations of low nanograms per milliliter or less. Conventional, one- and two-dimensional proteomic methods including 2D PAGE, 2D DIGE, LC-MS/MS, and LC/LC-MS/MS do not have the capacity to consistently detect many proteins in this range. In contrast, new higher dimensional (Hi-D) separation strategies, utilizing more than two dimensions of fractionation, can profile the low abundance proteome.  相似文献   

9.
Immunodepletion of clinical fluids to overcome the dominance by a few very abundant proteins has been explored but studies are few, commonly examining only limited aspects with one analytical platform. We have systematically compared immunodepletion of 6, 14, or 20 proteins using serum from renal transplant patients, analysing reproducibility, depth of coverage, efficiency, and specificity using 2-D DIGE ('top-down') and LC-MS/MS ('bottom-up'). A progressive increase in protein number (≥2 unique peptides) was found from 159 in unfractionated serum to 301 following 20 protein depletion using a relatively high-throughput 1-D-LC-MS/MS approach, including known biomarkers and moderate-lower abundance proteins such as NGAL and cytokine/growth factor receptors. On the contrary, readout by 2-D DIGE demonstrated good reproducibility of immunodepletion, but additional proteins seen tended to be isoforms of existing proteins. Depletion of 14 or 20 proteins followed by LC-MS/MS showed excellent reproducibility of proteins detected and a significant overlap between columns. Using label-free analysis, greater run-to-run variability was seen with the Prot20 column compared with the MARS14 column (median %CVs of 30.9 versus 18.2%, respectively) and a corresponding wider precision profile for the Prot20. These results illustrate the potential of immunodepletion followed by 1-D nano-LC-LTQ Orbitrap Velos analysis in a moderate through-put biomarker discovery process.  相似文献   

10.
The proteomic analysis of plasma and serum samples represents a formidable challenge due to the presence of a few highly abundant proteins such as albumin and immunoglobulins. Detection of low abundance protein biomarkers requires therefore either the specific depletion of high abundance proteins with immunoaffinity columns and/or optimized protein fractionation methods based on charge, size or hydrophobicity. Here we describe the depletion of seven abundant rat plasma proteins with an immunoaffinity column with coupled antibodies directed against albumin, IgG, transferrin, IgM, haptoglobin, fibrinogen and alpha1-anti-trypsin. The IgY-R7-LC2 (Beckman Coulter) column showed high specificity for the targeted proteins and was able to efficiently remove most of the albumin, IgG and transferrin from rat plasma samples as judged by Western blot analysis. Depleted rat plasma protein samples were analyzed by SELDI-TOF MS, 2D SDS-PAGE and 2D-LC and compared to non-depleted plasma samples as well as to the abundant protein fraction that was eluted from the immunoaffinity column. Analysis of the depleted plasma protein fraction revealed improved signal to noise ratios, regardless of which proteomic method was applied. However, only a small number of new proteins were observed in the depleted protein fraction. Immunoaffinity depletion of abundant plasma proteins results in the significant dilution of the original sample which complicates subsequent analysis. Most proteomic approaches require specialized sample preparation procedures during which significant losses of less abundant proteins and potential biomarkers can occur. Even though abundant protein depletion reduces the dynamic range of the plasma proteome by about 2-3 orders of magnitude, the difference between medium-abundant and low abundant plasma proteins is still in the range of 7-8 orders of magnitude and beyond the dynamic range of current proteomic technologies. Thus, exploring the plasma proteome in greater detail remains a daunting task.  相似文献   

11.
Protein signaling between tissues, or tissue cross‐talk is becoming recognized as a fundamental biological process that is incompletely understood. Shotgun proteomic analyses of tissues and plasma to explore this concept are regularly challenged by high dynamic range of protein abundance, which limits the identification of lower abundance proteins. In this viewpoint article, it is highlighted how a focus on proteins contained within extracellular vesicles (EVs) not only partially addresses this issue, but can also reveal an underappreciated complexity of the circulating proteome in various physiological and pathological contexts. Furthermore, how quantitative proteomics can inform EV mediated crosstalk is highlighted and the importance of high coverage, sensitive proteomic analyses of EVs to identify both the optimal methods to isolate EV subtypes of interest and proteins that characterize them is stressed.  相似文献   

12.
Automated multidimensional capillary liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been increasingly applied in various large scale proteome profiling efforts. However, comprehensive global proteome analysis remains technically challenging due to issues associated with sample complexity and dynamic range of protein abundances, which is particularly apparent in mammalian biological systems. We report here the application of a high efficiency cysteinyl peptide enrichment (CPE) approach to the global proteome analysis of human mammary epithelial cells (HMECs) which significantly improved both sequence coverage of protein identifications and the overall proteome coverage. The cysteinyl peptides were specifically enriched by using a thiol-specific covalent resin, fractionated by strong cation exchange chromatography, and subsequently analyzed by reversed-phase capillary LC-MS/MS. An HMEC tryptic digest without CPE was also fractionated and analyzed under the same conditions for comparison. The combined analyses of HMEC tryptic digests with and without CPE resulted in a total of 14 416 confidently identified peptides covering 4294 different proteins with an estimated 10% gene coverage of the human genome. By using the high efficiency CPE, an additional 1096 relatively low abundance proteins were identified, resulting in 34.3% increase in proteome coverage; 1390 proteins were observed with increased sequence coverage. Comparative protein distribution analyses revealed that the CPE method is not biased with regard to protein M(r) , pI, cellular location, or biological functions. These results demonstrate that the use of the CPE approach provides improved efficiency in comprehensive proteome-wide analyses of highly complex mammalian biological systems.  相似文献   

13.
The identification of disease markers in human body fluids requires an extensive and thorough analysis of its protein constituents. In the present study, we have extended our analysis of the human cerebrospinal fluid (CSF) proteome using protein prefractional followed by shotgun mass spectrometry. After the removal of abundant protein components from the mixture with the help of immunodepletion affinity chromatography, we used either anion exchange chromatography or sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to further subfractionate the proteins present in CSFs. Each protein subfraction was enzyme digested and analyzed by tandem mass spectrometry and the resulting data evaluated using the Spectrum Mill software. Different subfractionation methods resulted in the identification of a grant total of 259 proteins in CSF from a patient with normal pressure hydrocephalus. The greatest number of protein, 240 in total, were identified after prefractionating the CSF proteins by immunodepletion and SDS-PAGE. Immuno-depletion combined with anion exchange fractionation resulted in 112 proteins and 74 proteins were found when only immunodepletion of the CSF samples was carried out. All methods used showed a significant increase in the number of identified proteins as compared with nondepleted and unfractionated CSF sample analysis, which yielded only 38 protein identifications. The present work establishes a platform for future studies aimed at a detailed comparative proteome analysis of CSFs from different groups of patients suffering from various psychiatric and neurological disorders.  相似文献   

14.
《Journal of Proteomics》2010,73(2):352-356
Blood is recognised as a highly important source of disease-related biomarkers, and proteomic approaches for identifying novel blood-borne biomarkers are in demand. The complexity and dynamic protein concentration range of plasma/serum however complicates the analysis process. A number of strategies for simplification of blood prior to proteomic analysis have been developed. In addition, methods for quantifying the levels of proteins in samples, such as isobaric tags for relative and absolute quantification (iTRAQ) are emerging. However, the successful application of these procedures is not always straightforward and technical hurdles must be overcome. Here we provide a technically detailed working protocol for iTRAQ-based quantification of serum proteins following immunodepletion of high abundance proteins. To improve the number of proteins identified and quantified we have introduced several modifications to the standard iTRAQ protocol. We report identifications of 217 proteins (5773 peptides) with a false discovery rate of 1% or 254 proteins with 95% confidence, respectively. Relative quantification data were obtained for 234 (95% confidence) serum proteins, including species present in the concentration range of tissue leakage factors. The samples described here relate to pancreatic cancer; however the protocol can be applied to serum from other control or disease types.  相似文献   

15.
Liang CR  Tan S  Tan HT  Lin Q  Lim TK  Liu Y  Yeoh KG  So J  Chung MC 《Proteomics》2010,10(21):3928-3931
Gastric juice is the most proximal fluid surrounding the stomach tissue. The analysis of gastric juice protein contents will thus be able to accurately reflect the pathophysiology of the stomach. This biological fluid is also a potential reservoir of secreted biomarkers in higher concentration as compared to the serum. Unlike the rest of the gastrointestinal fluids, there were very few studies reported on gastric juice proteome. To date, the proteins that routinely populate this biofluid are largely unknown. This is partly due to the technical difficulties in processing a sample that contains a collection of other gastrointestinal fluids, especially saliva. In this study, we attempt to profile the protein components of the gastric fluids from chronic gastritis patients using a direct shotgun proteomics approach. These data represent the first report of the proteome of human gastric juice with gastritis background.  相似文献   

16.
Ideally, shotgun proteomics would facilitate the identification of an entire proteome with 100% protein sequence coverage. In reality, the large dynamic range and complexity of cellular proteomes results in oversampling of abundant proteins, while peptides from low abundance proteins are undersampled or remain undetected. We tested the proteome equalization technology, ProteoMiner, in conjunction with Multidimensional Protein Identification Technology (MudPIT) to determine how the equalization of protein dynamic range could improve shotgun proteomics methods for the analysis of cellular proteomes. Our results suggest low abundance protein identifications were improved by two mechanisms: (1) depletion of high abundance proteins freed ion trap sampling space usually occupied by high abundance peptides and (2) enrichment of low abundance proteins increased the probability of sampling their corresponding more abundant peptides. Both mechanisms also contributed to dramatic increases in the quantity of peptides identified and the quality of MS/MS spectra acquired due to increases in precursor intensity of peptides from low abundance proteins. From our large data set of identified proteins, we categorized the dominant physicochemical factors that facilitate proteome equalization with a hexapeptide library. These results illustrate that equalization of the dynamic range of the cellular proteome is a promising methodology to improve low abundance protein identification confidence, reproducibility, and sequence coverage in shotgun proteomics experiments, opening a new avenue of research for improving proteome coverage.  相似文献   

17.
The identification of circulating biomarkers holds great potential for non invasive approaches in early diagnosis and prognosis, as well as for the monitoring of therapeutic efficiency.1-3 The circulating low molecular weight proteome (LMWP) composed of small proteins shed from tissues and cells or peptide fragments derived from the proteolytic degradation of larger proteins, has been associated with the pathological condition in patients and likely reflects the state of disease.4,5 Despite these potential clinical applications, the use of Mass Spectrometry (MS) to profile the LMWP from biological fluids has proven to be very challenging due to the large dynamic range of protein and peptide concentrations in serum.6 Without sample pre-treatment, some of the more highly abundant proteins obscure the detection of low-abundance species in serum/plasma. Current proteomic-based approaches, such as two-dimensional polyacrylamide gel-electrophoresis (2D-PAGE) and shotgun proteomics methods are labor-intensive, low throughput and offer limited suitability for clinical applications.7-9 Therefore, a more effective strategy is needed to isolate LMWP from blood and allow the high throughput screening of clinical samples. Here, we present a fast, efficient and reliable multi-fractionation system based on mesoporous silica chips to specifically target and enrich LMWP.10,11 Mesoporous silica (MPS) thin films with tunable features at the nanoscale were fabricated using the triblock copolymer template pathway. Using different polymer templates and polymer concentrations in the precursor solution, various pore size distributions, pore structures, connectivity and surface properties were determined and applied for selective recovery of low mass proteins. The selective parsing of the enriched peptides into different subclasses according to their physicochemical properties will enhance the efficiency of recovery and detection of low abundance species. In combination with mass spectrometry and statistic analysis, we demonstrated the correlation between the nanophase characteristics of the mesoporous silica thin films and the specificity and efficacy of low mass proteome harvesting. The results presented herein reveal the potential of the nanotechnology-based technology to provide a powerful alternative to conventional methods for LMWP harvesting from complex biological fluids. Because of the ability to tune the material properties, the capability for low-cost production, the simplicity and rapidity of sample collection, and the greatly reduced sample requirements for analysis, this novel nanotechnology will substantially impact the field of proteomic biomarker research and clinical proteomic assessment.  相似文献   

18.
Immobilized combinatorial peptide libraries have been advocated as a strategy for equalization of the dynamic range of a typical proteome. The technology has been applied predominantly to blood plasma and other biological fluids such as urine, but has not been used extensively to address the issue of dynamic range in tissue samples. Here, we have applied the combinatorial library approach to the equalization of a tissue where there is also a dramatic asymmetry in the range of abundances of proteins; namely, the soluble fraction of skeletal muscle. We have applied QconCAT and label-free methodology to the quantification of the proteins that bind to the beads as the loading is progressively increased. Although some equalization is achieved, and the most abundant proteins no longer dominate the proteome analysis, at high protein loadings a new asymmetry of protein expression is reached, consistent with the formation of complex assembles of heat shock proteins, cytoskeletal elements and other proteins on the beads. Loading at different ionic strength values leads to capture of different subpopulations of proteins, but does not completely eliminate the bias in protein accumulation. These assemblies may impair the broader utility of combinatorial library approaches to the equalization of tissue proteomes. However, the asymmetry in equalization is manifest at either low and high ionic strength values but manipulation of the solvent conditions may extend the capacity of the method.  相似文献   

19.
Global organellar proteomics   总被引:21,自引:0,他引:21  
Cataloging the proteomes of single-celled microorganisms, cells, biological fluids, tissue and whole organisms is being undertaken at a rapid pace as advances are made in protein and peptide separation, detection and identification. For metazoans, subcellular organelles represent attractive targets for global proteome analysis because they represent discrete functional units, their complexity in protein composition is reduced relative to whole cells and, when abundant cytoskeletal proteins are removed, lower abundance proteins specific to the organelle are revealed. Here, we review recent literature on the global analysis of subcellular organelles and briefly discuss how that information is being used to elucidate basic biological processes that range from cellular signaling pathways through protein-protein interactions to differential expression of proteins in response to external stimuli. We assess the relative merits of the different methods used and discuss issues and future directions in the field.  相似文献   

20.
ABSTRACT: BACKGROUND: The field of biomarker discovery, development and application has been the subject of intense interest and activity, especially with the recent emergence of new technologies, such as proteomics-based approaches. In proteomics, search for biomarkers in biological fluids such as human serum is a challenging issue, mainly due to the high dynamic range of proteins present in these types of samples. Methods for reducing the content of most highly abundant proteins have been developed, including immunodepletion or protein equalization. In this work, we report for the first time the combination of a chemical sequential depletion method based in two protein precipitations with acetonitrile and DTT, with a subsequent two-dimensional difference in-gel electrophoresis (2D-DIGE) analysis for the search of osteoarthritis (OA) biomarkers in human serum. The depletion method proposed is non-expensive, of easy implementation and allows fast sample throughput. RESULTS: Following this workflow, we have compared sample pools of human serum obtained from 20 OA patients and 20 healthy controls. The DIGE study led to the identification of 16 protein forms (corresponding to 14 different proteins) that were significantly (p < 0.05) altered in OA when compared to controls (8 increased and 7 decreased). Immunoblot analyses confirmed for the first time the increase of an isoform of Haptoglobin beta chain (HPT) in sera from OA patients. CONCLUSIONS: Altogether, these data demonstrate the utility of the proposed chemical sequential depletion for the analysis of sera in protein biomarker discovery approaches, exhibit the usefulness of quantitative 2D gel-based strategies for the characterization of disease-specific patterns of protein modifications, and also provide a list of OA biomarker candidates for validation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号