首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

The fatty acid and mineral matter compositions of the visceral mass and pedal mass of wild and farmed Cornu aspersum were compared. The relative fatty acid amounts of the visceral and pedal masses of wild and farmed snails are: polyunsaturated fatty acid (PUFA) > saturated fatty acid (SFA) > monounsaturated fatty acid (MUFA), PUFA?>?SFA?>?MUFA, MUFA?>?PUFA?>?SFA and PUFA?>?MUFA?>?SFA, respectively. Wild snails had a higher concentration of iron and zinc than farmed snails. Selenium was 2.82 times higher in the pedal mass of farmed snails than the pedal mass of wild snails. Ca:P ratios in the visceral mass of wild snails, visceral mass and pedal mass of farmed snails were 1.76:1, 1.12:1 and 3.87:1 respectively. Both wild and farmed snails have high contents of oleic, linoleic, eicosapentaenoic and docosahexaenoic fatty acids and are a good source of minerals. Careful attention should be paid, however, as to which diet will be used during farming because the composition of fatty acid in the snail is affected by diet.  相似文献   

2.
Tomosugi M  Ichihara K  Saito K 《Planta》2006,223(2):349-358
The major fatty acid component of castor (Ricinus communis L.) oil is ricinoleic acid (12-hydroxy-cis-9-octadecenoic acid), and unsaturated hydroxy acid accounts for >85% of the total fatty acids in triacylglycerol (TAG). TAG had a higher ricinoleate content at position 2 than at positions 1 and 3. Although lysophosphatidic acid (LPA) acyltransferase (EC 2.3.1.51), which catalyzes acylation of LPA at position 2, was expected to utilize ricinoleoyl-CoA preferentially over other fatty acyl-CoAs, no activity was found for ricinoleoyl-CoA in vitro at concentrations at which other unsaturated acyl-CoAs were incorporated rapidly. However, activity for ricinoleoyl-CoA appeared with addition of polyamines (putrescine, spermidine, and spermine), while polyamines decreased the rates of incorporation of other acyl-CoAs into position 2. The order of effect of polyamines on LPA acyltransferase activity was spermine > spermidine >> putrescine. At concentrations of spermine and spermidine of >0.1 mM, ricinoleoyl-CoA served as an effective substrate for LPA acyltransferase reaction. The concentrations of spermine and spermidine in the developing seeds were estimated at ∼0.09 and ∼0.63 mM, respectively. These stimulatory effects for incorporation of ricinoleate were specific to polyamines, but basic amino acids were ineffective as cations. In contrast, in microsomes from safflower seeds that do not contain ricinoleic acid, spermine and spermidine stimulated the LPA acyltransferase reaction for all acyl-CoAs tested, including ricinoleoyl-CoA. Although the fatty acid composition of TAG depends on both acyl-CoA composition in the cell and substrate specificity of acyltransferases, castor bean polyamines are crucial for incorporation of ricinoleate into position 2 of LPA. Polyamines are essential for synthesis of 2-ricinoleoyl phosphatidic acid in developing castor seeds.  相似文献   

3.
The effects of two polyunsaturated fatty acids, 18:4n-3 and 16:4n-3 purified from the marine algae, Undaria pinnatifida and Ulva pertusa, on icosanoid production in MC/9 mouse mast cells were assessed. Both fatty acids suppressed the production of leukotriene B4 (LTB4), leukotriene C4 (LTC4), and 5-hydroxyeicosatetraenoic acid (5-HETE). The order of the suppressive activity for the two marine algae-derived fatty acids and three other common polyunsaturated fatty acids was as follows; 22:6n-3=18:4n-3=18:3n-3>20:5n-3=16:4n-3 for LTB4; 22:6n-3=18:4n-3=18:3n-3>16:4n-3>20:5n-3 (no suppression) for LTC4; 22:6n-3=18:4n-3>18:3n-3>20:5n-3=16:4n-3 for 5-HETE.  相似文献   

4.
The activation of the carotene biosynthetic pathway in Blakeslea trispora was found to occur by trisporic acid and many other compounds such as abscisic acid, β-ionone, α-ionone and vitamin A which share significant structural similarity with trisporic acid. The magnitude of stimulatory activities of these effectors was in the order trisporic acid > abscisic acid > β-ionone > α-ionone > vitamin A. Comparison of structures and stimulatory activities of all the effectors indicated that the short length of the side chain and the presence of a keto group in the ring structure of the trisporic acid molecule contributed significantly to the biological activity towards carotenogenesis.  相似文献   

5.
Abstract

La3+ adsorption isotherms to five soil constituents (quartz, feldspar, kaolinite, goethite and humic acid) are studied. EDTA, fulvic acid and pH effects are also investigated on the adsorption of lanthanum by goethite and humic acid because of their relative importance in affecting metal environmental behavior. Adsorption isotherms of La3+ to five constituents show differences in adsorption capacity and in shape in the studied range of La3+. These constituents can be classified according to their adsorption capacity: humic acid > goethite ≈ kaolinite > feldspar ≈ quartz. pH increase could promote humic acid and goethite adsorption of La3+ while EDTA could reduce the adsorption by these two adsorbents. Fulvic acid can reduce humic acid adsorption but has less effect on adsorption by goethite.  相似文献   

6.
The roles of CYP lipid-metabolizing pathways in endothelial cells are poorly understood. Human endothelial cells expressed CYP2J2 and soluble epoxide hydrolase (sEH) mRNA and protein. The TLR-4 agonist LPS (1 μg/ml; 24 h) induced CYP2J2 but not sEH mRNA and protein. LC–MS/MS analysis of the stable commonly used human endothelial cell line EA.Hy926 showed active epoxygenase and epoxide hydrolase activity: with arachidonic acid (stable epoxide products 5,6-DHET, and 14,15-DHET), linoleic acid (9,10-EPOME and 12,13-EPOME and their stable epoxide hydrolase products 9,10-DHOME and 12,13-DHOME), docosahexaenoic acid (stable epoxide hydrolase product 19,20-DiHDPA) and eicosapentaenoic acid (stable epoxide hydrolase product 17,18-DHET) being formed. Inhibition of epoxygenases using either SKF525A or MS-PPOH induced TNFα release, but did not affect LPS, IL-1β, or phorbol-12-myristate-13-acetate (PMA)-induced TNFα release. In contrast, inhibition of soluble epoxide hydrolase by AUDA or TPPU inhibited basal, LPS, IL-1β and PMA induced TNFα release, and LPS-induced NFκB p65 nuclear translocation. In conclusion, human endothelial cells contain a TLR-4 regulated epoxygenase CYP2J2 and metabolize linoleic acid > eicosapentaenoic acid > arachidonic acid > docosahexaenoic acid to products with anti-inflammatory activity.  相似文献   

7.
The chemical composition and structures of several ulvan extracts isolated from various Ulva species were studied. They were all composed mainly of rhamnose, glucuronic acid, xylose, glucose and sulphate with smaller amounts of iduronic acid and traces of galactose. Proteins were also present, most likely as contaminants. Precise quantification of the uronic acid content by chemical-enzymatic hydrolysis coupled to HPAEC-PAD analysis and by colorimetry was not achieved, most likely due to the incomplete hydrolysis of glucuronan segments, inadequate HPAEC-pulsed-amperometric response factor for iduronic acid and to a possible differential colorimetric response of the two uronic acids. 13C NMR spectroscopic investigation of different ulvans demonstrated that they were all based on ulvanobiuronic acid 3-sulphate A and B repeating units [β-D-Glc pA-(1->4)-α-L-Rhap3S and α-L-IdopA-(1->4)-α-L-Rha p3S, respectively] as well as contiguous β 1->4 linked D-glucuronic acids possibly occurring either in ulvan or as a separate glucuronan. Marked variations in the content of the repeating structures were seen among the different samples. However, due to the limited number of samples studied, no conclusion was reached concerning the effects of species and ecophysiological conditions on the chemistry of ulvan. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Ruminal microorganisms hydrogenate polyunsaturated fatty acids (PUFA) present in forages and thereby restrict the availability of health-promoting PUFA in meat and milk. The aim of this study was to investigate PUFA metabolism and the influence of PUFA on members of the ruminal microflora. Eleven of 26 predominant species of ruminal bacteria metabolised linoleic acid (LA; cis-9,cis-12–18:2) substantially. The most common product was vaccenic acid (trans-11–18:1), produced by species related to Butyrivibrio fibrisolvens. α-Linolenic acid (LNA; cis-9,cis-12,cis-15–18:3) was metabolised mostly by the same species. The fish oil fatty acids, eicosapentaenoic acid (EPA; 20:5(n − 3)) and docosahexaenoic acid (DHA; 22:6(n − 3)) were not metabolised. Cellulolytic bacteria did not grow in the presence of any PUFA at 50 μg ml−1, nor did some butyrate-producing bacteria, including the stearate producer Clostridium proteoclasticum, Butyrivibrio hungatei and Eubacterium ruminantium. Toxicity to growth was ranked EPA > DHA > LNA > LA. Cell integrity, as measured using propidium iodide, was damaged by LA in all 26 bacteria, but to different extents. Correlations between its effects on growth and apparent effects on cell integrity in different bacteria were low. Combined effects of LA and sodium lactate in E. ruminantium and C. proteoclasticum indicated that LA toxicity is linked to metabolism in butyrate-producing bacteria. PUFA also inhibited the growth of the cellulolytic ruminal fungi, with Neocallimastix frontalis producing small amounts of cis-9,trans-11–18:2 (CLA) from LA. Thus, while dietary PUFA might be useful in suppressing the numbers of biohydrogenating ruminal bacteria, particularly C. proteoclasticum, care should be taken to avoid unwanted effects in suppressing cellulolysis.  相似文献   

9.
Experiments were conducted to evaluate the effects of different competitive exclusion (CE) cultures on the concentration of cecal propionic acid in 3-day-old broiler chicks, and the correlation between cecal propionic acid concentration and protection againstSalmonellacolonization. CE cultures that significantly (P < 0.05) increased cecal propionic acid in 3-day-old chicks decreased (P < 0.05) cecalSalmonellacolonization in 10-day-old chicks compared with the untreated controls. CE cultures that failed to significantly (P > 0.05) increase cecal propionic acid concentrations in 3-day-old chicks failed to protect (P > 0.05) against cecalSalmonellacolonization in 10-day-old chicks compared with untreated controls. A significant (P < .05) correlation (−.88) was found between cecal propionic acid concentration in 3-day-old chicks and cecalSalmonellacolonization in 10-day-old chicks.  相似文献   

10.
Hairy root cultures of Salvia miltiorrhiza were established by infecting sterile plantlets with Agrobacterium rhizogenes ATCC 15834, and the transformation was proved by direct detection of the inserted T-DNA by the polymerase chain reaction. As determined by HPLC, these hairy root cultures had the ability to produce lithospermic acid B (LAB), rosmarinic acid (RA) and other related phenolic compounds, the water-soluble active components of the plant. The effect of five different basal media, MS, MS-NH<INF>4</INF> (MS without ammonium nitrate), B5, WPM and 6,7-V on the root growth and phenolic compound production was studied. It was found that MS-NH<INF>4</INF> and 6,7-V media were superior to MS, B5 and WPM media in terms of both root growth and phenolic compound production. The time course of biomass accumulation and phenolic compound formation was also examined in the culture using MS-NH<INF>4</INF>medium. During cultivation, the content of RA in the roots was stable being approximately 0.48% of dry weight while the content of LAB fluctuated between 0.73% and 1.61% of dry weight, and decreased gradually at the stationary phase of growth. The highest production of LAB and RA was about 64 mg L−1 and 23 mg L−1, respectively. Received 05 November 1998/ Accepted in revised form 06 February 1999  相似文献   

11.
Secretion of pectin methylgalacturonase (PMG) byAlternaria solani was suppressed in the following sequence of active agents (100 ppm): kinetin > indolebutyric acid > vanillin > gibberellic acid > ferulic acid > 3-hydroxybenzaldehyde > phloroglucinol > indolepropionic acid > indoleacetic acid. InA. tenuis the sequence was kinetin=gibberellic acid=indoleacetic acid=indolebutyric acid (all completely inhibitory) > phloroglucinol > indolepropionic acid > ferulic acid. Of ten fungicides tested, most potent in both species were thiram, brassicol, blimix and sultaf (at 1000 ppm). Mycelial growth was relatively less affected by the active agents and fungicides inA. tenuis (range of % inhibition from 10 to 21) than inA. solani (range from 25 to 67%). There was no clear correlation between the inhibitory effect of the various agents on PMG secretion and on mycelial growth.  相似文献   

12.
We have developed an elution-digestion-sequencing (EDS) method, which yields the internal amino acid sequence of partially purified proteins. The overall yield for the method was greater than 60%. The method yielded peptide peaks that could be sequenced on HPLC for all tested proteins with masses from 45 to 200·103 and yielded internal amino acid sequence information when as little as 10 pmol of partially purified protein was used as the starting material. The EDS method was extremely reliable and gave sequence information for each of 25 proteins tested, including high-molecular-mass proteins (Mr>100·103) that were difficult to sequence by other methods.  相似文献   

13.
The filamentous fungi of the genus Mortierella are known to produce arachidonic acid from glucose, and the species alpina is currently used in industrial production of arachidonic acid in Japan. In anticipation of a large excess of the co-product glycerol from the national biodiesel program, we are trying to find new uses for bioglycerin. We screened 12 Mortierella species: M. alpina NRRL 6302, M. claussenii NRRL 2760, M. elongata NRRL 5246, M. epigama NRRL 5512, M. humilis NRRL 6369, M. hygrophila NRRL 2591, M. minutissima NRRL 6462, M. multidivaricata NRRL 6456, M. nantahalensis NRRL 5216, M. parvispora NRRL 2941, M. sepedonioides NRRL 6425, and M. zychae NRRL 2592 for their production of arachidonic acid (AA) and dihomo-γ-linolenic acid (DGLA) from glycerol. With glucose as substrate all of the strains tested produced AA and DGLA. The total fatty acid content of 125 mg/g cell dry weight (CDW) and fatty acid composition for AA (19.63%) and DGLA (5.95%) in the mycelia of M. alpina grown on glucose were comparable with those reported by Takeno et al. (Appl Environ Microbiol 71:5124–5128, 2005). With glycerol as substrate all species tested grew on glycerol and produced AA and DGLA except M. nantahalensis NRRL 5216, which could not grow on glycerol. The amount of AA and DGLA produced were comparable with those obtained with glucose-grown mycelia. The top five AA producers (mg AA/CDW) from glycerol were in the following order: M. parvispora > M. claussenii > M. alpina > M. zychae > M. minutissima. The top five dry mycelia weights were: M. zychae > M. epigama > M. hygrophila > M. humilis > M. minutissima. The top five species for total fatty acids production (mg /g CDW) were: M. claussenii > M. parvispora > M. minutissima > M. hygrophila > M. maltidivaricata. We selected two species, M. alpina and M. zychae for further studies with glycerol substrate. Their optimum production conditions were determined. Time course studies showed that the maximum cell growth and AA production for both species were at 6 days of incubation. Therefore, glycerol can be considered for industrial use in the production of AA and DGLA.  相似文献   

14.
In this report, we describe the semisynthesis of two series of ursolic and betulinic acid derivatives through designed by modifications at the C-3 and C-28 positions and demonstrate their antimalarial activity against chloroquine-resistant P. falciparum (W2 strain). Structural modifications at C-3 were more advantageous to antimalarial activity than simultaneous modifications at C-3 and C-28 positions. The ester derivative, 3β-butanoyl betulinic acid (7b), was the most active compound (IC50?=?3.4?µM) and it did not exhibit cytotoxicity against VERO nor HepG2 cells (CC50?>?400?µM), showing selectivity towards parasites (selectivity index?>?117.47). In combination with artemisinin, compound 7b showed an additive effect (CI?=?1.14). While docking analysis showed a possible interaction of 7b with the Plasmodium protease PfSUB1, with an optimum binding affinity of ?7.02?kcal/mol, the rather low inhibition displayed on a Bacillus licheniformis subtilisin A protease activity assay (IC50?=?93?µM) and the observed accumulation of ring forms together with a delay of appearance of trophozoites in vitro suggests that the main target of 3β-butanoyl betulinic acid on Plasmodium may be related to other molecules and processes pertaining to the ring stage. Therefore, compound 7b is the most promising compound for further studies on antimalarial chemotherapy. The results obtained in this study provide suitable information about scaffolds to develop novel antimalarials from natural sources.  相似文献   

15.
The effectiveness of eight thiol ligands for removing methylmercury (CH3Hg(II)) from its glutathione and hemoglobin complexes in hemolyzed erythrocytes has been studied by 1H nuclear magnetic resonance spectroscopy. These complexes are the predominant methylmercury species in human erythrocytes. The effectiveness was determined from the exchange-averaged chemical shift of the resonance for the proton on the α-carbon of the cysteinyl residue and from the intensity of the resonance for the methylene protons of the glycine residue of reduced glutathione (GSH), both of which provide a measure of the amount of glutathione in the CH3Hg(II)-complexed form. The thiol ligands were found to release GSH from its CH3Hg(II) complex in the order 2, 3-dimercap-tosuccinic acid > mercaptosuccinic acid > cysteine > mercaptoacetic acid > D-penicillamine > 2, 3-dimercaptopropanesulfonic acid > N-acetyl-D,L-penicillamine > D.L-homocysteine.  相似文献   

16.
The conversion of the plant-derived omega-3 (n-3) α-linolenic acid (ALA, 18:3n-3) to the long-chain eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) can be increased by ALA sufficient diets compared to ALA deficient diets. Diets containing ALA above an optimal level result in no further increase in DHA levels in animals and humans. The present study evaluates means of maximizing plasma DHA accumulation by systematically varying both linoleic acid (LA, 18:2n-6) and ALA dietary level. Weanling rats were fed one of 54 diets for three weeks. The diets varied in the percentage of energy (en%) of LA (0.07–17.1 en%) and ALA (0.02–12.1 en%) by manipulating both the fat content and the balance of vegetable oils. The peak of plasma phospholipid DHA (>8% total fatty acids) was attained as a result of feeding a narrow dietary range of 1–3 en% ALA and 1–2 en% LA but was suppressed to basal levels (~2% total fatty acids) at dietary intakes of total polyunsaturated fatty acids (PUFA) above 3 en%. We conclude it is possible to enhance the DHA status of rats fed diets containing ALA as the only source of n-3 fatty acids but only when the level of dietary PUFA is low (<3 en%).  相似文献   

17.
Fungal laccase oxidized derivatives of hydroxycinnamic acid. The rates decreased in the order sinapic acid > ferulic acid ≥p-coumaric acid. The laccase oxidized sinapyl alcohol faster than coniferyl alcohol. The rates of oxidation of the hydroxycinnamic acid derivatives by an isoenzyme of peroxidase from horseradish decreased in the order p-coumaric acid > ferulic acid ≥ sinapic acid. The peroxidase oxidized coniferyl alcohol much faster than sinapyl alcohol. The laccase and the peroxidase predominantly oxidized (a) ferulic acid in a reaction mixture that contained p-coumaric acid and ferulic acid, (b) sinapic acid in a mixture of p-coumaric acid plus sinapic acid, and (c) sinapic acid in a mixture of ferulic acid plus sinapic acid. In a reaction mixture that contained both coniferyl and sinapyl alcohols, both fungal laccase and horseradish peroxidase predominantly oxidized sinapyl alcohol. From these results, it is concluded (1) that the p-hydroxyphenyl radical can oxidize guaiacyl and syringyl groups and produce their radicals and (2) that the guaiacyl radical can oxidize the syringyl group under formation of its radical; and that (3) in both cases the reverse reactions are very slow.  相似文献   

18.
19.
Song Z  He XP  Li C  Gao LX  Wang ZX  Tang Y  Xie J  Li J  Chen GR 《Carbohydrate research》2011,(1):1320-145
The synthesis of triazole-linked glycosyl acetophenone, benzoic acid, and α-ketocarboxylic acid derivatives was readily achieved via Cu(I)-catalyzed azide–alkyne cycloaddition (‘click’ reaction) in excellent yields of 93–97%. Among the synthesized glycoconjugates, the triazolyl α-ketocarboxylic acids were identified as the most potent protein tyrosine phosphatase 1B (PTP1B) inhibitors with micromole-ranged IC50 values and moderate-to-good selectivity over a panel of homologous PTPs including TCPTP (4.6-fold), LAR (>30-fold), SHP-1 (>30-fold) and SHP-2 (>30-fold). Moreover, a docking simulation was conducted to propose a plausible binding mode of the glucosyl α-ketocarboxylic acid triazole with the enzymatic target.  相似文献   

20.
Experiments were conducted with rice (Oryza sativa L.) by adding 0, 10, 20, 30, 40, 50 mg kg-1 of arsenic (As) to soil (with roxarsone and arsanilic acid, presented as As concentrations) at a field with an isolation chamber. The aims were to evaluate the effects of As- (roxarsone or arsanilic acid) contaminated soil on rice agronomic parameters and uptake of As in different plant parts of the rice plant. The results showed that As (roxarsone or arsanilic acid) could significantly reduce plant height, effective tiller number, straw weight and grain yield (P < 0.01). As concentrations in different parts of the plant varied with the growth stages, and behaved similarly. At the maturing stage, the level in different parts peaked in all treatments, with tissue As concentrations showing the pattern: root > leaf > stem > husk > grain. In addition, at the mature stage, the As concentrations in different parts of the rice plant increased with increasing concentrations of roxarsone and arsanilic acid. The highest concentration of As found in grain was 0.82 mg kg-1, which did not exceed the statutory permissible limit for rice grain (1.0 mg As kg-1), and in the leaf and stem it was approximately 6.0 mg kg-1, which was significantly higher than that in the controls. The results showed that rice could accumulate As from contaminated soil (roxarsone or arsanilic acid), which may be transferred to human beings via the food chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号