首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of alcoholysis of methyl propionate and n-propanol catalyzed by Candida antarctica lipase B supported onto silanized Chromosorb P was studied in a continuous solid/gas reactor. In this system the solid phase is composed of a packed enzymatic sample and is percolated by nitrogen as carrier gas, which simultaneously carries substrates to the enzyme while removing reaction products. In this reactor the thermodynamic activity of substrates and effectors can be perfectly adjusted allowing kinetic studies to be performed under different operating conditions. The kinetics obtained for alcoholysis were suggested to fit a Ping Pong Bi Bi mechanism with dead-end inhibition by the alcohol. The values of all apparent kinetic parameters were calculated and the apparent dissociation constant of enzyme for gaseous ester was found very low compared with the one obtained for liquid ester in organic medium, certainly due to the more efficient diffusion in the gaseous phase. The effect of water thermodynamic activity was also investigated. Water was found to act as a competitive inhibitor, with a higher inhibition constant than n-propanol. Thus alcoholysis of gaseous methyl propionate and n-propanol catalyzed by C. antarctica lipase B was found to obey the same kinetic mechanism as in other non-conventional media such as organic liquid media and supercritical carbon dioxide, but with much higher affinity for the substrates.  相似文献   

2.
The influence of water on the kinetics of alcoholysis of methyl propionate and n-propanol catalyzed by immobilized lipase B from Candida antarctica was studied in a continuous solid/gas reactor. In this reactor, the solid phase is composed of a packed enzymatic sample which is percolated by gaseous nitrogen, simultaneously carrying gaseous substrates to the enzyme while removing reaction products. In this system, interactions between the enzyme and nonreacting molecules are avoided, since no solvent is present, and it is thus more easy to assess the role of water. To this end, alcohol inhibition constant, substrates dissociation constants as well as acylation rate constant and ratio of acylation to deacylation rate constants have been determined as a function of water activity (a(w)). Data obtained highlight that n-propanol inhibition constant and dissociation constant of methyl propionate are a lot affected by a(w) variations whereas water has no significant effect on the catalytic acylation step nor on the ratio of acylation to deacylation rate constants. These results suggest the water-independent character of the transition step.  相似文献   

3.
The pentanol isomers 2-methyl-1-butanol and 3-methyl-1-butanol represent commercially interesting alcohols due to their potential application as biofuels. For a sustainable microbial production of these compounds, Corynebacterium glutamicum was engineered for producing 2-methyl-1-butanol and 3-methyl-1-butanol via the Ehrlich pathway from 2-keto-3-methylvalerate and 2-ketoisocaproate, respectively. In addition to an already available 2-ketoisocaproate producer, a 2-keto-3-methylvalerate accumulating C. glutamicum strain was also constructed. For this purpose, we reduced the activity of the branched-chain amino acid transaminase in an available C. glutamicum l-isoleucine producer (K2P55) via a start codon exchange in the ilvE gene enabling accumulation of up to 3.67 g/l 2-keto-3-methylvalerate. Subsequently, nine strains expressing different gene combinations for three 2-keto acid decarboxylases and three alcohol dehydrogenases were constructed and characterized. The best strains accumulated 0.37 g/l 2-methyl-1-butanol and 2.76 g/l 3-methyl-1-butanol in defined medium within 48 h under oxygen deprivation conditions, making these strains ideal candidates for additional strain and process optimization.  相似文献   

4.
Strains of the bacteria Zymomonas sp. were studied for their ability to form higher alcohols. In a complex growth medium, six strains were shown to produce significant amounts of 1-propanol, 1-butanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 2-methyl-2-butanol, pentanols, secondary hexyl-alcohols, and trace amounts of n-hexanol. When resting cells of these organisms were placed into a fermentation medium containing glucose and Tris-buffer, Z. mobilis 8938 produced increased levels of 1-butanol, and secondary hexyl-alcohols at concentrations of 13.5 mg/liter and 5.8 mg/liter, respectively. Another strain, Z. mobilis subsp. mobilis B 806, stimulated the formation of 1-propanol and 1-butanol at concentrations of 14.9 mg/liter and 23.52 mg/liter, respectively. Amino acids or amino acid precursors were then added to the fermentation medium. The presence of threonine and α-ketobutyric acid stimulated Z. mobilis 8938 to produce 82.6 mg/liter secondary hexyl-alcohols and 8.0 mg/liter n-hexanol, respectively. Isoleucine and valine increased the production of 2-methyl-1-butanol (394.0 mg/liter) and 3-methyl-1-butanol (113.4 mg/liter), respectively, by Z. mobilis subsp. mobilis B 806. Glutamine enhanced the formation of 2-methyl-2-butanol production to concentrations 38.8 mg/liter in Zymomonas strain B 806. Additional experiments suggested that higher alcohol production could also be accomplished in the absence of glucose when cells were allowed to metabolize the precursors only. The effect of aromatic amino acids on phenol production was determined using resting cells of Zymomonas sp. The maximum yield of phenol (111.6 mg/liter) was found by Zymomonas strain 8938 in the presence of tyrosine. The addition of phenylalanine also stimulated this strain to form 71.4 mg/liter of phenol.  相似文献   

5.
Inhibition of the fermentation of propionate to methane and carbon dioxide by hydrogen, acetate, and propionate was analyzed with a mesophilic propionate-acclimatized sludge that consisted of numerous flocs (size, 150 to 300 μm). The acclimatized sludge could convert propionate to methane and carbon dioxide stoichiometrically without accumulating hydrogen and acetate in a propionate-minimal medium. Inhibition of propionate utilization by propionate could be analyzed by a second-order substrate inhibition model (shown below) given that the substrate saturation constant, Ks, was 15.9 μM; the substrate inhibition constant, Ki, was 0.79 mM; and the maximum specific rate of propionate utilization, qm, was 2.15 mmol/g of mixed-liquor volatile suspended solids (MLVSS) per day: qs = qmS/[Ks + S + (S2/Ki)], where qs is the specific rate of propionate utilization and S is the initial concentration of undissociated propionic acid. For inhibition by hydrogen and acetate to propionate utilization, a noncompetitive product inhibition model was used: qs = qm/[1 + (P/Kp)n], where P is the initial concentration of hydrogen or undissociated acetic acid and Kp is the inhibition constant. Kinetic analysis gave, for hydrogen inhibition, Kp(H2) = 0.11 atm (= 11.1 kPa, 71.5 μM), qm = 2.40 mmol/g of MLVSS per day, and n = 1.51 and, for acetate inhibition, Kp(HAc) = 48.6 μM, qm = 1.85 mmol/g of MLVSS per day, and n = 0.96. It could be concluded that the increase in undissociated propionic acid concentration was a key factor in inhibition of propionate utilization and that hydrogen and acetate cooperatively inhibited propionate degradation, suggesting that hydrogenotrophic and acetoclastic methanogens might play an important role in enhancing propionate degradation to methane and carbon dioxide.  相似文献   

6.
Curve-fitting procedures indicated that exo-2-amino-bicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) modified V and Km for one of two systems serving for histidine transport into the S37 ascites tumor cells. When this system was obliterated by leucine in the medium, BCH had no effect on histidine transport.Curve-fitting procedures similarly suggest N-methyl-α-aminoisobutyric acid affected the Km and V values for the other histidine-transporting system and that carboxymethylhistidine (His(Cm)) inhibited both transport systems. His(Cm) further inhibited histidine uptake into leucine-inhibited cells. Km and V values were altered simultaneously in the presence of several inhibitory analogs.Alanine methyl ester markedly inhibited high-concentration histidine uptake, whereas leucine methyl ester markedly inhibited low-concentration histidine uptake.The present results confirm earlier suggestions that our high c system is Christensen's A system and our low c system his L system. We also confirm a very high degree of specificity of N-methyl-α-aminoisobutyric acid for the A or high c system, and of BCH for the L or low c system. We suggest the utility of combining two approaches to the study of transport system properties; use of specific analogs and modification of biphasic plots. We demonstrate that the carboxyl group is not a prerequisite molecular feature for inhibitory interaction with the A or L system.  相似文献   

7.
Basal rot is a common onion disease and is mainly caused by Fusarium oxysporum f. sp. cepae and Fusarium proliferatum. To study the possibility of using volatile organic compounds (VOCs) as biomarkers for these fungi, pathogenic isolates of F. oxysporum and F. proliferatum from onions were cultivated in onion medium and VOCs were measured by solid phase microextraction (SPME). Forty-two compounds were detected, and thirty of these compounds were highly related to fungal metabolic activity. Allyl mercaptan was specific to F. oxysporum isolate Fox006. Analysis of the VOCs showed significant differences between the two species and among different isolates within the same species. Sixteen of the VOCs showed were highly positively correlated with the fungal biomass estimated by real-time polymerase chain reaction (PCR). Ethanol, ethyl formate, ethyl acetate, 2-methyl-1-propanol, methyl thioacetate, n-propyl acetate and 3-methyl-1-butanol are volatile metabolites that were potential indicators of Fusarium growth on onions.  相似文献   

8.
The formation of acetone and n-butanol by Clostridium acetobutylicum NCIB 8052 (ATCC 824) was monitored in batch culture at 35°C in a glucose (2% [wt/vol]) minimal medium maintained throughout at either pH 5.0 or 7.0. At pH 5, good solvent production was obtained in the unsupplemented medium, although addition of acetate plus butyrate (10 mM each) caused solvent production to be initiated at a lower biomass concentration. At pH 7, although a purely acidogenic fermentation was maintained in the unsupplemented medium, low concentrations of acetone and n-butanol were produced when the glucose content of the medium was increased (to 4% [wt/vol]). Substantial solvent concentrations were, however, obtained at pH 7 in the 2% glucose medium supplemented with high concentrations of acetate plus butyrate (100 mM each, supplied as their potassium salts). Thus, C. acetobutylicum NCIB 8052, like C. beijerinckii VPI 13436, is able to produce solvents at neutral pH, although good yields are obtained only when adequately high concentrations of acetate and butyrate are supplied. Supplementation of the glucose minimal medium with propionate (20 mM) at pH 5 led to the production of some n-propanol as well as acetone and n-butanol; the final culture medium was virtually acid free. At pH 7, supplementation with propionate (150 mM) again led to the formation of n-propanol but also provoked production of some acetone and n-butanol, although in considerably smaller amounts than were obtained when the same basal medium had been fortified with acetate and butyrate at pH 7.  相似文献   

9.
The present work reports the use of biocatalyst and ultrasound for greener synthesis of cinnamyl propionate. The lipase Pseudomonas cepacia was immobilized on a copolymer of hydroxypropyl methyl cellulose and polyvinyl alcohol. This biocatalyst was used for ultrasound-assisted synthesis of cinnamyl propionate with the detailed optimization of various reaction parameters. Besides this, protocol was extended to synthesize various industrially important propionate esters. In addition to this, different enzyme-kinetic parameters such as r max and K m(vinyl propionate), K m(cinnamyl alcohol) and K i(cinnamyl alcohol) were studied which presented ordered bi–bi mechanism with an inhibition by cinnamyl alcohol. The developed biocatalyst demonstrated enhancement in catalytic activity and recyclability up to five recycles. Moreover, the biocatalyst was tested to investigate the effects of sonication via various characterization techniques such as scanning electron microscopy, thermogravimetry, and water content analysis.  相似文献   

10.
Mutant strains of the yeast Saccharomyces cerevisiae that require branched-chain amino acids must be supplemented with large concentrations (up to 10 mM) of these amino acids to satisfy their nutritional requirement. The utilization of one branched-chain amino acid, leucine, was examined in several leul strains of yeast grown aerobically in a glucose-ammonium salts minimal medium containing a limiting concentration (0.2 mM) of leucine. In this medium, the leucine requirement of the auxotrophic strains could be reduced by valine, another branched-chain amino acid. Increasing the valine concentration increased the cell yields of cultures and also reduced the levels of 3-methyl-1-butanol detected in the medium by gas chromatography. The concentration of 3-methyl-1-butanol was reduced from 122.0 to 48.9 μM when 5.0 mM valine was supplemented to limiting-leucine cultures. The amino acids isoleucine, threonine, norleucine, norvaline, α-amino-butyrate, alanine, and glycine also spared the leucine requirement of leucine auxotrophs, most likely because they resembled leucine and competed for its uptake. We propose that leucine analogs restrict the entry and degradation of leucine and thus reduce its conversion to 3-methyl-1-butanol, a major component of fusel oil.  相似文献   

11.
The enzymatic acylation of polar dipeptides was investigated. First, the Novozym435®-catalyzed acylation of Lys-Ser, HCl exhibiting three potential acylable sites was carried out in organic media (2-methyl-2-butanol, oleic acid) and in an ionic liquid ([Bmim]+[PF6]?). In these reactions, the chemo-selectivity of the acylation was exclusively in favour of the N?-lysine acylation and the efficiency (substrate conversion) was demonstrated to be under control of the peptide solubility. The use of [Bmim]+[PF6]? permitted to significantly improve the dipeptide solubility, and to enhance both substrates conversion and initial rates of acylation reaction. In the three reaction media used, the O-acylated derivative of the dipeptide was never detected suggesting a weak reactivity of the serine hydroxyl group due to its molecular environment and particularly to the presence of a free carboxylic group known for its electroattractor property.Last, the acylation of a natural dipeptide (carnosine), exhibiting a very low solubility in organic solvents, was also performed. Carnosine was successfully N-acylated in 2-methyl-2-butanol, and a yield of 39% was obtained when improving the substrate solubility: a better dispersibility was obtained by application of a high pressure on the reaction medium just before starting the reaction.  相似文献   

12.
The objective of this study was to elucidate the biosynthetic route to 4-methyl-1-nonanol, the female-produced sex pheromone of the yellow mealworm beetle, Tenebrio molitor L. The biosynthetic route to the pheromone was examined by (i) allowing the females to feed on defatted bran coated with a stable isotope-labeled putative precursor ([1-13C]acetate, [1-13C]propionate, [1-13C]pentanoate, [1-13C]2-methylheptanoic acid, or [2H2]4-methylnonanoic acid); (ii) determining if the precursors were incorporated by analyzing the emitted pheromone by gas chromatography/selected ion monitoring-mass spectroscopy (GC/SIM-MS); (iii) where the pheromone was isotopically-enriched, determining the position of the isotopic label(s) through comparison of the MS fragmentation pattern with that of unlabelled 4-methyl-1-nonanol. Although the incorporation of [1-13C]acetate into 4-methyl-1-nonanol could not be detected, relatively large proportions of the pheromone were produced from the other precursors tested: 81% from [2H2]4-methylnonanoic acid, 45% from [1-13C]2-methylheptanoic acid, 16% from [1-13C]pentanoate, and 35% from [1-13C]propionate (27% from only one unit, and 7.8% from two units). The results indicate that 4-methyl-1-nonanol is produced through a modification of normal fatty acid biosynthesis: initiation of the pathway with one unit of propionate results in the uneven number of carbons in the chain; incorporation of another unit of propionate during elongation provides the methyl branch; reduction of 4-methylnonanoic acid produces the alcohol pheromone. The elucidation of the biosynthetic pathway of 4-methyl-1-nonanol biosynthesis in the yellow mealworm is the first step towards understanding the biochemistry of sex pheromone production in this species.  相似文献   

13.
Gas phase transesterification reactions catalyzed by lipolytic enzymes   总被引:1,自引:0,他引:1  
Porcine pancreatic lipase and Fusarium solani cutinase were used to catalyze transesterification reactions between methyl propionate, ethyl propionate, and a series of primary alcohols at high temperatures in a continuous packed-bed gas-solid reactor, in which the solid phase is composed of the enzyme and the substrates and products are in a gaseous form. In this type of system, enzyme activity was found to depend essentially on the water activity (A(w)) of the enzyme preparation.  相似文献   

14.
Rhodospirillum rubrum (F1) maintained electron balance mainly by producing propionate, formate and H2 during fermentation metabolism. H2 formation was inversely correlated with the production of propionate.In diluted, growing cultures high amounts of H2 and only traces or no propionate were produced from pyruvate. In dense cultures or in resting cultures without (NH4)2SO4, however, propionate was formed from pyruvate in relatively high amounts Cultures always produced much more propionate than H2 from fructose in contrast to cells with pyruvate. Kinetic studies of growth and excretion of fermentation products indicated that the enzyme system for H2 formation is adaptive. Chloramphenicol (3 μg/ml) completely inhibited the formation of H2 if the cells were not adapted to fermentation metabolism. The production of propionate, on the other hand, was not prevented by chloramphenicol after shifting the cells from aerobic dark culture with malate to fermentation conditions with pyruvate.H2 formation was not influenced by sodium ascorbate but it was significantly decreased by K3[Fe(CN)6].Poly(β-hydroxybutyric acid) was also synthesized by the cells during anaerobic dark metabolism especially in dense cultures, probably favoured by the rapid acidification of the medium. Formate can also accumulate in the fermentation metabolism, especially in young growing cultures.These results give an explanation for the differing reports in the literature on the fermentation metabolism of R. rubrum.  相似文献   

15.
Metabolism of propionate involves the activated acyl-thioester propionyl-CoA intermediate. We employed LC-MS/MS, LC-selected reaction monitoring/MS, and LC-high-resolution MS to investigate metabolism of propionate to acyl-CoA intermediates. We discovered that propionyl-CoA can serve as a precursor to the direct formation of a new six-carbon mono-unsaturated acyl-CoA. Time course and dose-response studies in human hepatocellular carcinoma HepG2 cells demonstrated that the six-carbon mono-unsaturated acyl-CoA was propionate-dependent and underwent further metabolism over time. Studies utilizing [13C1]propionate and [13C3]propionate suggested a mechanism of fatty acid synthesis, which maintained all six-carbon atoms from two propionate molecules. Metabolism of 2,2-[2H2]propionate to the new six-carbon mono-unsaturated acyl-CoA resulted in the complete loss of two deuterium atoms, indicating modification at C2 of the propionyl moiety. Coelution experiments and isotopic tracer studies confirmed that the new acyl-CoA was trans-2-methyl-2-pentenoyl-CoA. Acyl-CoA profiles following treatment of HepG2 cells with mono-unsaturated six-carbon fatty acids also supported this conclusion. Similar results were obtained with human platelets, mouse hepatocellular carcinoma Hepa1c1c7 cells, human bronchoalveolar carcinoma H358 cells, and human colon adenocarcinoma LoVo cells. Interestingly, trans-2-methyl-2-pentenoyl-CoA corresponds to a previously described acylcarnitine tentatively described in patients with propionic and methylmalonic acidemia. We have proposed a mechanism for this metabolic route consistent with all of the above findings.  相似文献   

16.
Nineteen new C2 to C4n-alkane-grown cultures were isolated from lake water from Warinanco Park, Linden, N.J., and from lake and soil samples from Bayway Refinery, Linden, N.J. Fifteen known liquid alkane-utilizing cultures were also found to be able to grow on C2 to C4n-alkanes. Cell suspensions of these C2 to C4n-alkane-grown bacteria oxidized 2-alcohols (2-propanol, 2-butanol, 2-pentanol, and 2-hexanol) to their corresponding methyl ketones. The product methyl ketones accumulated extracellularly. Cells grown on 1-propanol or 2-propanol oxidized both primary and secondary alcohols. In addition, the activity for production of methyl ketones from secondary alcohols was found in cells grown on either alkanes, alcohols, or alkylamines, indicating that the enzyme(s) responsible for this reaction is constitutive. The optimum conditions for in vivo methyl ketone formation from secondary alcohols were compared among selected strains: Brevibacterium sp. strain CRL56, Nocardia paraffinica ATCC 21198, and Pseudomonas fluorescens NRRL B-1244. The rates for the oxidation of secondary alcohols were linear for the first 3 h of incubation. Among secondary alcohols, 2-propanol and 2-butanol were oxidized at the highest rate. A pH around 8.0 to 9.0 was found to be the optimum for acetone or 2-butanone formation from 2-alcohols. The temperature optimum for the production of acetone or 2-butanone from 2-propanol or 2-butanol was rather high at 60°C, indicating that the enzyme involved in the reaction is relatively thermally stable. Metal-chelating agents inhibit the production of methyl ketones, suggesting the involvement of a metal(s) in the oxidation of secondary alcohols. Secondary alcohol dehydrogenase activity was found in the cell-free soluble fraction; this activity requires a cofactor, specifically NAD. Propane monooxygenase activity was also found in the cell-free soluble fraction. It is a nonspecific enzyme catalyzing both terminal and subterminal oxidation of n-alkanes.  相似文献   

17.
From granular sludge of an upflow anaerobic sludge bed (UASB) reactor treating paper-mill wastewater, a sulfate-reducing bacterium (strain ASRB1) was isolated with acetate as sole carbon and energy source. The bacterium was rod-shaped, (1.4–1.9×2.5–3.4 μm), nonmotile, and gram-negative. Optimum growth with acetate occurred around 37°C in freshwater medium (doubling time: 3.5–5.0 days). The bacterium grew on a range of organic acids, such as acetate, propionate, and butyrate, and on alcohols, and grew autotrophically with H2, CO2 and sulfate. Fastest growth occurred with formate, propionate, and ethanol (doubling time: approx. 1.5 days). Strain ASRB1 clusters with the delta subdivision of Proteobacteria and is closely related toSyntrophobacter wolinii a syntrophic propionate oxidizer. Strain ASRB1 was characterized as a new genus and species:Desulforhabdus amnigenus.  相似文献   

18.
19.
The saturated and 2-enoic primary alcohols and aldehydes, ethanol, 1-propanol, 1-butanol, 3-methyl-1-butanol, 1-hexanol, phenylmethanol, 3-phenyl-1-propanol, 2-propen-1-ol, 2-buten-1-ol, 3-methyl-2-buten-1-ol, 2-hexen-1-ol, 3-phenyl-2-propen-1-ol, ethanal, 1-propanal, 1-butanal, 1-hexanal, phenylmethanal, 3-phenyl-1-propanal, 2-propen-1-al, 2-buten-1-al, 2-hexen-1-al, and 3-phenyl-2-propen-1-al, have been compared under uniform conditions as substrates for the alcohol dehydrogenase enzymes from horse and human liver and from yeast. Kinetic constants (Km arid V) have been measured for each of the substrates with each of the enzymes; equilibrium constants for the various alcohol-aldehyde pairs have also been estimated. The results obtained emphasize the similarities of yeast alcohol dehydrogenase to horse and human liver alcohol dehydrogenase, showing the specificity of yeast alcohol dehydrogenase to be less restricted than formerly believed. In general, the 2-enoic alcohols are better substrates for all three alcohol dehydrogenases than their saturated analogs; on the other hand, saturated aldehydes are better substrates than the 2-enoic aldehydes. Based on these various findings, it is suggested that a more likely candidate than ethanol for the physiological substrate of alcohol dehydrogenase in mammalian systems may well be an unsaturated alcohol, although the wide variety of substrates catalyzed at high rates is not incompatible with a general detoxifying function for alcohols or aldehydes, or both, by alcohol dehydrogenase.  相似文献   

20.
With succinic anhydride as acylating agent, three commercial lipases – Candida antarctica lipase B (CALB), Pseudomonas cepacia lipase and Pseudomonas fluorescens lipase – were employed in the kinetic resolution of a series of rac-alkyl alcohols: 2-butanol, 2-pentanol, 2-hexanol, 2-heptanol, 2-octanol, 3-hexanol, 3-methyl-2-butanol, 6-methyl-5-heptene-2-ol, 3-methyl-2-cyclohexene-1-ol and 2-methyl-1-pentanol. The most effective tested enzyme, immobilized CALB, was able to resolve most of the alcohols with high enantioselectivity, even higher (with enantiomeric ratios up to 115 and 91, for 3-hexanol and 3-methyl-2-butanol, respectively) than when vinyl acetate was used as the acylating agent. More importantly, the unreacted alcohol and the monoester succinate produced could be easily separated by a simple aqueous base-organic solvent liquid–liquid extraction. Using succinic anhydride as acylating agent and CALB, enantiomerically pure (S)-2-pentanol with 99% ee and (R)-2-pentanol with 95% ee were prepared in gram-scale reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号