首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leukotrienes (LTs) are biologically active compounds derived from arachidonic acid which have important pathophysiological roles in asthma and inflammation. The cysteinyl leukotriene LTC(4) and its metabolites LTD(4) and LTE(4) stimulate bronchoconstriction, airway mucous formation and generalized edema formation. LTC(4) is formed by addition of glutathione to LTA(4), catalyzed by the integral membrane protein, LTC(4) synthase (LTCS). We now report the use of bioluminescence resonance energy transfer (BRET) to demonstrate that LTCS forms homo-oligomers in living cells. Fusion proteins of LTCS and Renilla luciferase (Rluc) and a variant of green fluorescent protein (GFP), respectively, were prepared. High BRET signals were recorded in transiently transfected human embryonic kidney (HEK 293) cells co-expressing Rluc/LTCS and GFP/LTCS. Homo-oligomer formation in living cells was verified by co-transfection of a plasmid expressing non-chimeric LTCS. This resulted in dose-dependent attenuation of the BRET signal. Additional evidence for oligomer formation was obtained in cell-free assays using glutathione S-transferase (GST) pull-down assay. To map interaction domains for oligomerization, GFP/LTCS fusion proteins were prepared with truncated variants of LTCS. The results obtained identified a C-terminal domain (amino acids 114-150) sufficient for oligomerization of LTCS. Another, centrally located, interaction domain appeared to exist between amino acids 57-88. The functional significance of LTCS homo-oligomer formation is currently being investigated.  相似文献   

2.
Leukotriene C4 is a potent inflammatory mediator formed from arachidonic acid and glutathione. 5-Lipoxygenase (5-LO), 5-lipoxygenase activating protein (FLAP) and leukotriene C4 synthase (LTC4S) participate in its biosynthesis. We report evidence that LTC4S interacts in vitro with both FLAP and 5-LO and that these interactions involve distinct parts of LTC4S. FLAP bound to the N-terminal part/first hydrophobic region of LTC4S. This part did not bind 5-LO which bound to the second hydrophilic loop of LTC4S. Fluorescent FLAP- and LTC4S-fusion proteins co-localized at the nuclear envelope. Furthermore, GFP-FLAP and GFP-LTC4S co-localized with a fluorescent ER marker. In resting HEK293/T or COS-7 cells GFP-5-LO was found mainly in the nuclear matrix. Upon stimulation with calcium ionophore, GFP-5-LO translocated to the nuclear envelope allowing it to interact with FLAP and LTC4S. Direct interaction of 5-LO and LTC4S in ionophore-stimulated (but not un-stimulated) cells was demonstrated by BRET using GFP-5-LO and Rluc-LTC4S.  相似文献   

3.
Leukotrienes (LTs) are fatty acid derivatives formed by oxygenation of arachidonic acid via the 5-lipoxygenase (5-LO) pathway. Upon activation of inflammatory cells 5-LO is translocated to the nuclear envelope (NE) where it converts arachidonic acid to the unstable epoxide LTA4. LTA4 is further converted to LTC4 by conjugation with glutathione, a reaction catalyzed by the integral membrane protein LTC4 synthase (LTC4S), which is localized on the NE and endoplasmic reticulum (ER). We now report the mapping of regions of LTC4S that are important for its subcellular localization. Multiple constructs encoding fusion proteins of green fluorescent protein (GFP) as the N-terminal part and various truncated variants of human LTC4S as C-terminal part were prepared and transfected into HEK 293/T or COS-7 cells. Constructs encoding hydrophobic region 1 of LTC4S (amino acids 6-27) did not give distinct membrane localized fluorescence. In contrast hydrophobic region 2 (amino acids 60-89) gave a localization pattern similar to that of full length LTC4S. Hydrophobic region 3 (amino acids 114-135) directed GFP to a localization indistinguishable from that of full length LTC4S. A minimal directing sequence, amino acids 117-132, was identified by further truncation. The involvement of the hydrophobic regions in the homo-oligomerization of LTC4S was investigated using bioluminescence resonance energy transfer (BRET) analysis in living cells. BRET data showed that hydrophobic regions 1 and 3 each allowed oligomerization to occur. These regions most likely form transmembrane helices, suggesting that homo-oligomerization of LTC4S is due to helix-helix interactions in the membrane.  相似文献   

4.
We demonstrated in vitro small ubiquitin-like modifier (SUMO)-mediated modification (SUMOylation) of RanGTPase activating protein-1 (RanGAP1) by using bioluminescence resonance energy transfer (BRET) for studying protein interactions. Renilla luciferase (Rluc) was fused to SUMO, and RanGAP1, the binding partner of SUMO, was fused to enhanced yellow fluorescence protein (EYFP). Upon binding of SUMO and RanGAP1, BRET was observed between EYFP (donor) and Rluc (acceptor) in the presence of E1 (Aos1/Uba2) and E2 (Ubc9) enzymes, whereas mutation (K524A) of RanGAP1 at its SUMO binding site prevented significant energy transfer. Comparing BRET and fluorescence resonance energy transfer (FRET) efficiencies using this in vitro model system, we observed that BRET efficiency was 3-fold higher than FRET efficiency, due to the lower background signal intensity of EYFP in the BRET system. Consequently, BRET system is expected to be useful for in vitro analysis of SUMOylation as well as studying other protein interactions.  相似文献   

5.
Cysteinyl leukotrienes (cysLTs), which include leukotriene C4 (LTC4), are the predominant class of LTs synthesized by mast cells. CysLTs can induce many of the abnormalities seen in asthma. LTC4 is generated by the conjugation of LTA4 with reduced glutathione (GSH) by LTC4 synthase. During screening of the effects of prostanoids on high-affinity IgE receptor (FcεRI)-mediated LTC4 release from mast cells, we realized that some prostanoids, including ONO-AE1-259-01 and ONO-AE-248, inhibited LTC4 release, which was associated with a decrease in the amount of intracellular total GSH. We ascertained that l-buthionine-S,R-sulfoximine (BSO), a selective inhibitor of glutamate-cysteine ligase, inhibited LTC4 release. In addition, cell-permeable GSH, the glutathione reduced form ethyl ester (GSH-OEt), enhanced LTC4 release in accordance with the change in intracellular total GSH. Depletion of intracellular total GSH induced by ONO-AE-248 or BSO enhanced FcεRI-mediated LTB4 release in contrast to LTC4. Oxidative stress contributes to many pathological conditions including asthma. GSH is a major soluble antioxidant and a cofactor for several detoxifying enzymes including GSH peroxidase. Exposure of mast cells to hydrogen peroxide (H2O2) or diamide to mimic oxidative stress unexpectedly increased rather than decreased the intracellular reduced GSH content as well as total GSH in the late phase (i.e., 24 or 48 h after exposure), which was accompanied by an increase in LTC4 release. In conclusion, FcεRI-mediated LTC4 release from mast cells is mainly regulated by the amount of intracellular GSH. In some cases, oxidative stress may induce a late-phase increase in intracellular GSH, resulting in enhanced LTC4 release from mast cells.  相似文献   

6.
Green fluorescent proteins (GFPs) and calcium-activated photoproteins of the aequorin/clytin family, now widely used as research tools, were originally isolated from the hydrozoan jellyfish Aequora victoria. It is known that bioluminescence resonance energy transfer (BRET) is possible between these proteins to generate flashes of green light, but the native function and significance of this phenomenon is unclear. Using the hydrozoan Clytia hemisphaerica, we characterized differential expression of three clytin and four GFP genes in distinct tissues at larva, medusa and polyp stages, corresponding to the major in vivo sites of bioluminescence (medusa tentacles and eggs) and fluorescence (these sites plus medusa manubrium, gonad and larval ectoderms). Potential physiological functions at these sites include UV protection of stem cells for fluorescence alone, and prey attraction and camouflaging counter-illumination for bioluminescence. Remarkably, the clytin2 and GFP2 proteins, co-expressed in eggs, show particularly efficient BRET and co-localize to mitochondria, owing to parallel acquisition by the two genes of mitochondrial targeting sequences during hydrozoan evolution. Overall, our results indicate that endogenous GFPs and photoproteins can play diverse roles even within one species and provide a striking and novel example of protein coevolution, which could have facilitated efficient or brighter BRET flashes through mitochondrial compartmentalization.  相似文献   

7.
During our research on apelin receptor (APJ) signalling in living cells with BRET and FRET, we demonstrated that apelin-13 stimulation can lead to the activation of Gαi2 or Gαi3 through undergoing a molecular rearrangement rather than dissociation in HEK293 cells expressing APJ. Furthermore, Gαo and Gαq also showed involvement in APJ activation through a classical dissociation model. However, both FRET signal and BRET ratio between fluorescent Gαi1 subunit and Gβγ subunits demonstrated little change after apelin-13 stimulation. These results demonstrated that stimulation of APJ with apelin-13 causes activation of Gαi2, Gαi3, Gαo, Gαq; among which Gαi2, Gαi3 were activated through a novel rearrangement process. These results provide helpful data for understanding APJ mediated G-protein signalling.  相似文献   

8.
Leukotriene-C4 synthase (LTC4S) generates LTC4 from arachidonic acid metabolism. LTC4 is a proinflammatory factor that acts on plasma membrane cysteinyl leukotriene receptors. Recently, however, we showed that LTC4 was also a cytosolic second messenger that activated store-independent LTC4-regulated Ca2+ (LRC) channels encoded by Orai1/Orai3 heteromultimers in vascular smooth muscle cells (VSMCs). We showed that Orai3 and LRC currents were up-regulated in medial and neointimal VSMCs after vascular injury and that Orai3 knockdown inhibited LRC currents and neointimal hyperplasia. However, the role of LTC4S in neointima formation remains unknown. Here we show that LTC4S knockdown inhibited LRC currents in VSMCs. We performed in vivo experiments where rat left carotid arteries were injured using balloon angioplasty to cause neointimal hyperplasia. Neointima formation was associated with up-regulation of LTC4S protein expression in VSMCs. Inhibition of LTC4S expression in injured carotids by lentiviral particles encoding shRNA inhibited neointima formation and inward and outward vessel remodeling. LRC current activation did not cause nuclear factor for activated T cells (NFAT) nuclear translocation in VSMCs. Surprisingly, knockdown of either LTC4S or Orai3 yielded more robust and sustained Akt1 and Akt2 phosphorylation on Ser-473/Ser-474 upon serum stimulation. LTC4S and Orai3 knockdown inhibited VSMC migration in vitro with no effect on proliferation. Akt activity was suppressed in neointimal and medial VSMCs from injured vessels at 2 weeks postinjury but was restored when the up-regulation of either LTC4S or Orai3 was prevented by shRNA. We conclude that LTC4S and Orai3 altered Akt signaling to promote VSMC migration and neointima formation.  相似文献   

9.
Cysteinyl leukotrienes (cys-LTs) cause bronchoconstriction in anaphylaxis and asthma. They are formed by 5-lipoxygenase (5-LOX) from arachidonic acid (AA) yielding the unstable leukotriene A4 (LTA4) that is subsequently conjugated with glutathione (GSH) by LTC4 synthase (LTC4S). Cys-LT receptor antagonists and LTC4S inhibitors have been developed, but only the former have reached the market. High structural homology to related enzymes and lack of convenient test systems due to instability of added LTA4 have hampered the development of LTC4S inhibitors. We present smart cell-free and cell-based assay systems based on in situ-generated LTA4 that allow studying LTC4S activity and investigating LTC4S inhibitors. Co-incubations of microsomes from HEK293 cells expressing LTC4S with isolated 5-LOX efficiently converted exogenous AA to LTC4 (~ 1.3 μg/200 μg protein). Stimulation of HEK293 cells co-expressing 5-LOX and LTC4S with Ca2 +-ionophore A23187 and 20 μM AA resulted in strong LTC4 formation (~ 250 ng/106 cells). MK-886, a well-known 5-LOX activating protein (FLAP) inhibitor that also acts on LTC4S, consistently inhibited LTC4 formation in all assay types (IC50 = 3.1–3.5 μM) and we successfully confirmed TK04a as potent LTC4S inhibitor in these assay systems (IC50 = 17 and 300 nM, respectively). We demonstrated transcellular LTC4 biosynthesis between neutrophils or 5-LOX-expressing HEK293 cells that produce LTA4 from AA and HEK293 cells expressing LTC4S that transform LTA4 to LTC4. In conclusion, our assay approaches are advantageous as the substrate LTA4 is generated in situ and are suitable for studying enzymatic functionality of LTC4S including site-directed mutations and evaluation of LTC4S inhibitors.  相似文献   

10.
Obesity results in increased macrophage recruitment to adipose tissue that promotes a chronic low-grade inflammatory state linked to increased fatty acid efflux from adipocytes. Activated macrophages produce a variety of pro-inflammatory lipids such as leukotriene C4 (LTC4) and 5-, 12-, and 15-hydroxyeicosatetraenoic acid (HETE) suggesting the hypothesis that fatty acids may stimulate eicosanoid synthesis. To assess if eicosanoid production increases with obesity, adipose tissue of leptin deficient ob/ob mice was analyzed. In ob/ob mice, LTC4 and 12-HETE levels increased in the visceral (but not subcutaneous) adipose depot while the 5-HETE levels decreased and 15-HETE abundance was unchanged. Since macrophages produce the majority of inflammatory molecules in adipose tissue, treatment of RAW264.7 or primary peritoneal macrophages with free fatty acids led to increased secretion of LTC4 and 5-HETE, but not 12- or 15-HETE. Fatty acid binding proteins (FABPs) facilitate the intracellular trafficking of fatty acids and other hydrophobic ligands and in vitro stabilize the LTC4 precursor leukotriene A4 (LTA4) from non-enzymatic hydrolysis. Consistent with a role for FABPs in LTC4 synthesis, treatment of macrophages with HTS01037, a specific FABP inhibitor, resulted in a marked decrease in both basal and fatty acid-stimulated LTC4 secretion but no change in 5-HETE production or 5-lipoxygenase expression. These results indicate that the products of adipocyte lipolysis may stimulate the 5-lipoxygenase pathway leading to FABP-dependent production of LTC4 and contribute to the insulin resistant state.  相似文献   

11.
The multidrug resistance-related protein-1 (MRP1) is important for the management of oxidative stress in vascular cells in vivo. Substrates of MRP1 are, among others, glutathione and the leukotriene C4 (LTC4), an eicosanoid and mediator of inflammation. Angiotensin (Ang) II infusion results in MRP1?/? mice compared to wild-type mice in improved endothelial function and reduced reactive oxygen species (ROS) formation. However, the interaction between Ang II, LTC4 and MRP1 is not completely understood and has never been investigated in vitro. Ang II induced in vascular smooth muscle cells (VSMC) the release of LTC4 and the generation of ROS. Pharmacologic inhibition of MRP1 via MK 571 significantly reduced Ang II-induced ROS release (L012-luminescence) in VSMC. The release of ROS after Ang II stimulation is inhibited, to a comparable degree, by blockade of the Cys-LT1 receptor with montelukast. Incubation of VSMC with recombined LTC4 and Ang II caused enhanced rates of proliferation in VSMC. This effect can be rescued by either MRP1 or Cys-LT1 receptor inhibition. Accordingly, stimulation of VSMC with LTC4 reduces intracellular levels of glutathione, but does not affect apoptosis. LTC4 stimulation results in a significant activation of MRP1, but does not alter MRP1 expression. These findings indicate a connection between Ang II, MRP1 and LTC4. Both, MRP1 and LTC4, are potentially promising targets for atheroprotective therapy.  相似文献   

12.
A neoplastic mast cell tumor was grown in mice which had been raised since birth on a diet enriched with eicosapentaenoic acid. Intact harvest mastocytoma cells were stimulated with calcium ionophpore A23187 to produce lipoxygenase products from the polyunsaturated fatty acids liberated from the cellular membranes. Leukotriene B4, B5, C4 and C5 were isolated and characterized by HPLC retention time, ultraviolet absorption spectrometry and mass spectrometry. The arachidonic acid content of the mast cell tumor lipids was altered from 9.2 to 3.9 mole% while eicosapentaenoic acid increased from 0.5 to 4.5 mole % in response to the fish oil-supplement diet.The relative amount of arachidonic and eicosapentaenoic acids (3.9 and 4.5 mole % respectively) were associated with similar amounts of LTB4 and LTP5 synthesized by the cells. These results suggest that the epoxide leukotrine (LTA) derivative can be made efficiently from either arachidonic or eicosapentaenoic acids when both are present in cellular lipids. In contrast, the ratio of LTC4 to LTC5 (10 to 1) indicates that the reaction of LTA with glutathione may be critically dependent upon the structure of the unsaturated fatty acid with the ratio of LTC4/LTB4 (2.0) more than 10 times greater than that (0.16) for LTC5/LTP5.  相似文献   

13.
Leukotriene C4 (LTC4) is synthesized by binding of glutathione to LTA4, an epoxide derived from arachidonic acid, and further metabolized to LTD4 and LTE4. We previously prepared a monoclonal antibody with a high affinity and specificity to LTC4. To explore the structure of the antigen-binding site of a monoclonal antibody against LTC4 (mAbLTC), we isolated full-length cDNAs for heavy and light chains of mAbLTC. The heavy and light chains consisted of 461 and 238 amino acids including a signal peptide with molecular weights of 51,089 and 26,340, respectively. An expression plasmid encoding a single-chain antibody comprising variable regions of mAbLTC heavy and light chains (scFvLTC) was constructed and expressed in COS-7 cells. The recombinant scFvLTC showed a high affinity with LTC4 comparable to mAbLTC. The scFvLTC also bound to LTD4 and LTE4 with 48% and 17% reactivities, respectively, as compared with LTC4 binding, whereas the antibody showed almost no affinity for LTB4.  相似文献   

14.
Multiple interactions between human vitronectin and Staphylococcus aureus strain V8 were observed. An upward-curved Scatchard plot indicated both high-affinity binding (Kd1 = 7.4 · 10?10 M) with 260 binding sites per bacterial cell and moderate-affinity binding (Kd2 = 7.4 · 10?8 M) with 5240 copies per cell. Negative cooperativity of this binding was characterized by its Hill coeffiocient of less than unity (0.70 ± 0.08). Up to 60% of the vitronectin-bacteria interaction was unaffected by high ionic strength (i.e., 2.4 M NaCl), and was not inhibited by highly-charged heparin oligosaccharides. Various oligosaccharides (4–20 monosaccharide units) generated by partial deaminative cleavage of heparin were found to affect vitronectin binding to S. aureus. Short-chain-length oligosaccharides increase and long oligosaccharides inhibit vitronectin binding, in accordance with direct association of these saccharides with multimeric vitroectin. A protein having a molecular mass of 60 kDa was identified as a putative high-affinity staphylococcal vitronectic-binding protein. These results indicate that interaction of multimeric vitronectin, mostly present at extracellular matrix sites with multiple recognition sites on the S. aureus surface, may contribute to bacterial colonisation.  相似文献   

15.
《Luminescence》2003,18(1):1-18
An Erratum has been published for this article in Luminescence (2003) 18(4) 243 During the past 5 years, green fluorescent protein (GFP) has become one of the most widely used in vivo protein markers for studying a number of different molecular processes during development, such as promoter activation, gene expression, protein trafficking and cell lineage determination. GFP fluorescence allows observation of dynamic developmental processes in real time, in both transiently and stably transformed cells, as well as in live embryos. In this review, we include the most up‐to‐date use of GFP during embryonic development and point out the unique contribution of GFP visualization, which resulted in novel discoveries. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
17.
Bioluminescence resonance energy transfer (BRET) is an important tool for monitoring macromolecular interactions and is useful as a transduction technique for biosensor development. Förster distance (R0), the intermolecular separation characterized by 50% of the maximum possible energy transfer, is a critical BRET parameter. R0 provides a means of linking measured changes in BRET ratio to a physical dimension scale and allows estimation of the range of distances that can be measured by any donor–acceptor pair. The sensitivity of BRET assays has recently been improved by introduction of new BRET components, RLuc2, RLuc8 and Venus with improved quantum yields, stability and brightness. We determined R0 for BRET1 systems incorporating novel RLuc variants RLuc2 or RLuc8, in combination with Venus, as 5.68 or 5.55 nm respectively. These values were approximately 25% higher than the R0 of the original BRET1 system. R0 for BRET2 systems combining green fluorescent proteins (GFP2) with RLuc2 or RLuc8 variants was 7.67 or 8.15 nm, i.e. only 2–9% greater than the original BRET2 system despite being ~30-fold brighter.  相似文献   

18.
Here, we sought to monitor bone marrow–derived dendritic cell (BMDC) migration and antitumor effects using a multimodal reporter imaging strategy in living mice. BMDCs were transduced with retroviral vector harboring human sodium iodide symporter (hNIS, nuclear imaging reporter), firefly luc2 (optical imaging reporter), and thy1.1 (surrogate marker of NIS and luc2) genes (BMDC/NF cells). No significant differences in biological functions, including cell proliferation, antigen uptake, phenotype expression, and migration ability, were observed between BMDC and BMDC/NF cells. Combined bioluminescence imaging and I-124 positron emission tomography/computed tomography clearly revealed the migration of BMDC/NF cells to draining popliteal lymph nodes at day 7 postinjection. Interestingly, marked tumor protection was observed in mice immunized with TC-1 lysate-pulsed BMDC/NF cells. Our findings suggested that multimodal reporter gene imaging of NIS and luciferase could provide insights into the biological behaviors of dendritic cells in living organisms and could be a useful tool for the optimization of DC-based immunotherapy protocols.  相似文献   

19.
Promyelocytic leukemia protein (PML) is a tumor suppressor acting as the organizer of subnuclear structures called PML nuclear bodies (NBs). Both covalent modification of PML by the small ubiquitin-like modifier (SUMO) and non-covalent binding of SUMO to the PML SUMO binding domain (SBD) are necessary for PML NB formation and maturation. PML sumoylation and proteasome-dependent degradation induced by the E3 ubiquitin ligase, RNF4, are enhanced by the acute promyelocytic leukemia therapeutic agent, arsenic trioxide (As2O3). Here, we established a novel bioluminescence resonance energy transfer (BRET) assay to dissect and monitor PML/SUMO interactions dynamically in living cells upon addition of therapeutic agents. Using this sensitive and quantitative SUMO BRET assay that distinguishes PML sumoylation from SBD-mediated PML/SUMO non-covalent interactions, we probed the respective roles of covalent and non-covalent PML/SUMO interactions in PML degradation and interaction with RNF4. We found that, although dispensable for As2O3-enhanced PML sumoylation and RNF4 interaction, PML SBD core sequence was required for As2O3- and RNF4-induced PML degradation. As confirmed with a phosphomimetic mutant, phosphorylation of a stretch of serine residues, contained within PML SBD was needed for PML interaction with SUMO-modified protein partners and thus for NB maturation. However, mutation of these serine residues did not impair As2O3- and RNF4-induced PML degradation, contrasting with the known role of these phosphoserine residues for casein kinase 2-promoted PML degradation. Altogether, these data suggest a model whereby sumoylation- and SBD-dependent PML oligomerization within NBs is sufficient for RNF4-mediated PML degradation and does not require the phosphorylation-dependent association of PML with other sumoylated partners.Promyelocytic leukemia protein (PML)5 is a tumor suppressor (1) whose gene is translocated in cases of acute promyelocytic leukemia (2). PML functions as the organizer of PML NBs, which are dynamic structures harboring numerous transiently and permanently localized proteins (3). The importance of PML NB structural integrity was first revealed in acute promyelocytic leukemia because, in this malignancy, the abnormal fusion protein PML/RARα leads to NB disruption. Patient treatment with As2O3 induces the reversion of the acute promyelocytic leukemia phenotype as well as PML/RARα degradation and PML NB reformation (4).PML is a target for the post-translational modification by SUMO, an ubiquitin-like protein that is covalently coupled to PML lysine residues 65, 160, and 490 via a process called sumoylation (5, 6). Among the four human SUMO paralogs identified, SUMO1, -2, and -3 were found to be conjugated to target proteins. It involves an enzymatic cascade for the transfer of the mature SUMO and the formation of an isopeptide bond between the COOH-terminal glycine of SUMO and a lysine from the target protein. Sumoylation is a reversible process due to the existence of several deconjugating enzymes.PML NB formation requires both the covalent linkage (sumoylation) (reviewed in Ref. 7) and the non-covalent interactions of SUMO with PML through a SUMO binding domain (SBD also named SIM for SUMO interacting motif) (8). Interestingly, PML SBD contains specific serines, acting as substrates for the caseine kinase-2 (CK2), which are implicated in PML ubiquitination and degradation (9) and which phosphorylation status could regulate the function of the SBD.Because sumoylation of proteins is dynamic and reversible, this post-translational modification is difficult to follow in vivo and its detection mainly relies on the identification of sumoylated protein species by Western blot following cell lysis. Recently, we used bioluminescence resonance energy transfer (BRET) to detect covalent linkage of ubiquitin (ubiquitination) in living mammalian cells and in real time (10). In brief, BRET monitors the interaction between a protein fused to a luciferase and a protein fused to yellow or green fluorescent protein (YFP or GFP), upon addition of a luciferase substrate; it is a proximity-based assay that requires that the donor of energy (luciferase fusion) and the acceptor (YFP or GFP fusions) are within 50 to 100 Å for an efficient energy transfer (1113). However, a demonstration that BRET may provide a method of choice to follow the dynamics of protein sumoylation in living cells is lacking. Here, we developed a sensitive and quantitative SUMO BRET assay for the detection of PML interactions with SUMO in living cells. We proved that BRET can be used to detect both SUMO covalent and non-covalent interactions with PML (model, Fig. 1H). For this purpose, we used the PMLIII isoform in which sumoylation is induced by As2O3 and triggers a proteasome-dependent PML degradation (14); the degradation process involves the ubiquitination of poly-SUMO covalently coupled to PML by the poly-SUMO-specific E3 ubiquitin ligase RNF4 (1517). Altogether, our BRET results indicate that, As2O3 and/or RNF4-induced PML degradation are dependent on the integrity of both PML sumoylation target sites and the PML SBD core sequence but not on the CK2 serine phosphorylation sites within the SBD. However, phosphorylation of these serines is required for most PML SBD-dependent non-covalent interactions. This phospho-regulation of PML SBD (“SBD phospho-switch”) establishes another link between the phosphorylation and SUMO, different from the phospho-sumoyl switch (18).Open in a separate windowFIGURE 1.BRET reveals both covalent and non-covalent PML/SUMO1 interactions as well as As2O3-induced PML sumoylation in living cells. A and B, detection of PML/SUMO1 interactions by BRET1 (A) or BRET2 (B) titration assays using HEK293T cells transfected for expression of increasing amounts of YFP-SUMO1 (BRET1) or GFP-SUMO1 (BRET2) and a fixed amount of Luc fusion. Negative controls: BRET pairs including PMLC57,60A-Luc (a non-sumoylatable mutant with Cys57 and Cys60 mutated to Ala) or YFP-SUMO1G (a SUMO1 that cannot be processed) (dotted line) (A) and Luc fused to a NLS (B). C and D, detection of covalent and non-covalent PML/SUMO1 interactions by BRET1 (C) or BRET2 (D) titration assays in the presence (dotted lines, empty symbols) or absence (solid lines and symbols) of As2O3 in HEK293T cells transfected for expression of PMLWT-Luc or its sumoylation deficient mutant PML3K-Luc in pairs with either YFP-SUMO1 (BRET1) or GFP-SUMO1 (BRET2). Negative control: PMLWT-Luc in pairs with YFP-SUMO1G. E, kinetics of As2O3-induced PMLWT-Luc sumoylation revealed by BRET1 (assay on attached cells) and BRET2 (cells in suspension). F, dose-response curve to As2O3 treatment for PMLWT-Luc or PML3KR-Luc/YFP-SUMO1 BRET1 pairs. Negative control: PMLC57,60A-Luc/YFP-SUMO1. G, comparison of As2O3-induced sumoylation of PMLWT, PML3KR, and its single lysine mutants at an identical YFP acceptor/Luc donor expression ratio as derived from titration curves. As2O3 treatment (C–G): 5 μm, 4 h exposure for BRET1 and Western blot or 10 μm, 70-min exposure for BRET2. H, model for the covalent (sumoylation) and non-covalent interactions between a tested protein fused to Luc and SUMO fused to a fluorescent protein (YFP) that generates a BRET signal. The black arrows indicate the bioluminescent transfer of energy (or BRET) that occurs between Luc and GFP fusion upon exposure to the cell-permeable luciferase substrate.  相似文献   

20.
By constructing the expression system for fusion protein of GFPmut1 (a green fluorescent protein mutant) with the hyperthermophilic xylanase obtained from Dictyoglomus thermophilum Rt46B.1, the effects of temperature on the fluorescence of GFP and its relationship with the activities of GFP-fused xylanase have been studied. The fluorescence intensities of both GFP and GFP-xylanase have proved to be thermally sensitive, with the thermal sensitivity of the fluorescence intensity of GFP-xylanase being 15% higher than that of GFP. The lost fluorescence intensity of GFP inactivated at high temperature of below 60°C in either single or fusion form can be completely recovered by treatment at 0°C. By the fluorescence recovery of GFP domain at low temperature, the ratios of fluorescence intensity to xylanase activity (R gfp/A xyl) at 15°C and 37°C have been compared. Even though the numbers of molecules of GFP and xylanase are equivalent, the R gfp/A xyl ratio at 15°C is ten times of that at 37°C. This is mainly due to the fact that lower temperature is more conducive to the correct folding of GFP than the hyperthermophilic xylanase during the expression. This study has indicated that the ratio of GFP fluorescence to the thermophilic enzyme activity for the fusion proteins expressed at different temperatures could be helpful in understanding the folding properties of the two fusion partners and in design of the fusion proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号