首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
This work describes a new gene coding for a fatty acid binding protein (FABP) in the parasite Echinococcus granulosus, named EgFABP2. The complete gene structure, including the promoter sequence, is reported. The genomic coding domain organisation of the previously reported E. granulosus FABP gene (EgFABP1) has been also determined. The corresponding polypeptide chains share 76% of identical residues and an overall 96% of similarity. The two EgFABPs present the highest amino acid homologies with the mammalian FABP subfamily containing heart-FABPs (H-FABPs). The coding sequences of both genes are interrupted by a single intron located in the position of the third intron reported for vertebrate FABP genes. Both genes are expressed in the protoscolex stage of the parasite. The promoter region of EgFABP2 presents several consensus putative cis-acting elements found in other members of the family, suggesting interesting possible mechanisms involved in the host-parasite adaptation.  相似文献   

2.

Background

Growth and maintenance of hydatid cysts produced by Echinococcus granulosus have a high requirement for host lipids for biosynthetic processes, membrane building and possibly cellular and developmental signalling. This requires a high degree of lipid trafficking facilitated by lipid transporter proteins. Members of the fatty acid binding protein (FABP) family have been identified in Echinococcus granulosus, one of which, EgFABP1 is expressed at the tegumental level in the protoscoleces, but it has also been described in both hydatid cyst fluid and secretions of protoscoleces. In spite of a considerable amount of structural and biophysical information on the FABPs in general, their specific functions remain mysterious.

Methodology/Principal Findings

We have investigated the way in which EgFABP1 may interact with membranes using a variety of fluorescence-based techniques and artificial small unilamellar vesicles. We first found that bacterial recombinant EgFABP1 is loaded with fatty acids from the synthesising bacteria, and that fatty acid binding increases its resistance to proteinases, possibly due to subtle conformational changes induced on EgFABP1. By manipulating the composition of lipid vesicles and the ionic environment, we found that EgFABP1 interacts with membranes in a direct contact, collisional, manner to exchange ligand, involving both ionic and hydrophobic interactions. Moreover, we observed that the protein can compete with cytochrome c for association with the surface of small unilamellar vesicles (SUVs).

Conclusions/Significance

This work constitutes a first approach to the understanding of protein-membrane interactions of EgFABP1. The results suggest that this protein may be actively involved in the exchange and transport of fatty acids between different membranes and cellular compartments within the parasite.  相似文献   

3.
We describe the 1.6 Å crystal structure of the fatty-acid-binding protein EgFABP1 from the parasitic platyhelminth Echinococcus granulosus. E. granulosus causes hydatid disease, which is a major zoonosis. EgFABP1 has been implicated in the acquisition, storage, and transport of lipids, and may be important to the organism since it is incapable of synthesising most of its lipids de novo. Moreover, EgFABP1 is a promising candidate for a vaccine against hydatid disease.The crystal structure reveals that EgFABP1 has the expected 10-stranded β-barrel fold typical of the family of intracellular lipid-binding proteins, and that it is structurally most similar to P2 myelin protein. We describe the comparison of the crystal structure of EgFABP1 with these proteins and with an older homology model for EgFABP1.The electron density reveals the presence of a bound ligand inside the cavity, which we have interpreted as palmitic acid. The carboxylate group of the fatty acid interacts with the protein's P2 motif, consisting of a conserved triad R…R-x-Y. The hydrophobic tail of the ligand assumes a fairly flat, U-shaped conformation and has relatively few interactions with the protein.We discuss some of the structural implications of the crystal structure of EgFABP1 for related platyhelminthic FABPs.  相似文献   

4.
5.
Cystic hydatid disease in humans is caused by the zoonotic parasite Echinococcus granulosus. As an aid to control transmission of the parasite, a vaccine has been produced for prevention of infection in the parasite’s natural animal intermediate hosts. The vaccine utilizes the recombinant oncosphere protein, EG95. An investigation into the genetic variability of EG95 was undertaken in this study to assess potential antigenic variability in E. granulosus with respect to this host-protective protein. Gene-specific PCR conditions were first established to preferentially amplify the EG95 vaccine-encoding gene (designated eg95-1) from the E. granulosus genome that also contains several other EG95-related genes. The optimized PCR conditions were used to amplify eg95-1 from several parasite isolates in order to determine the protein-coding sequence of the gene. An identical eg95-1 gene was amplified from parasites showing a G1 or G2 genotype of E. granulosus. However, from isolates having a G6 or G7 genotype, a gene was amplified which had substantial nucleotide substitutions (encoding amino acid substitutions) compared with the eg95 gene family members. The amino acid substitutions of EG95 in the G6/G7 genotypes may affect the antigenicity/efficacy of the EG95 recombinant antigen against parasites of these genotypes. These findings indicate that characterization of eg95 gene family members in other strains/isolates of E. granulosus may provide valuable information about the potential for the EG95 hydatid vaccine to be effective against E. granulosus strains other than the G1 genotype.  相似文献   

6.
《Gene》1997,184(1):1-12
Two Toxoplasma gondii genes were characterized that are differentially expressed during the parasite's life cycle. The genes named LDH1 and LDH2, respectively, encode polypeptides similar to the enzyme lactate dehydrogenase (LDH; l-lactate:NAD+ oxidoreductase, EC 1.1.1.27) from a variety of organisms. They show 64.0% nucleotide identity in the coding region and both have an intron at the same relative position. The deduced amino acid sequences of LDH1 and LDH2 share 71.1% identity. LDH1 and LDH2 are most similar to an LDH of Plasmodium falciparum (46.5% and 48.5% amino acid identities, respectively). The mRNA of LDH2 was only detected in the bradyzoite stage, while the mRNA of LDH1 was detected in both the bradyzoite and tachyzoite stages. However, by isoelectric focusing and immunoblot analysis, only one LDH isoform was found to be expressed in each stage. Furthermore, the expression of a reporter gene carrying chloramphenicol acetyltransferase (CAT) coding sequence and the putative LDH2 promoter sequence was significantly up-regulated by growing parasites in tissue culture in media with alkaline pH (pH 8.2, a condition known to induce the expression of bradyzoite-specific antigens), while the expression of a CAT reporter construct carrying the putative LDH1 promoter sequence was down-regulated by similar treatment. These results indicate that LDH expression is developmentally regulated in T. gondii and suggest a possible correlation between stage conversion and alteration in carbohydrate or energy metabolism in this parasite.  相似文献   

7.
We have isolated and sequenced two maize genomic clones that are homologous to the Drosophila hsp70 gene. One of the maize hsp70 clones contains the entire hsp70 coding region and 81 nucleotides of the 5' nontranslated sequence. The predicted amino acid sequence for this maize protein is 68% homologous to the hsp70 of Drosophila. The second maize hsp70 clone contains only part of the coding sequence and 1.1 kb of the 5' flanking sequence. This 5' flanking sequence contains two sequences homologous to the consensus heat-shock-element sequence. Both maize genes are thermally inducible and each contains an intron in the same position as that of the heat-shock-cognate gene, hsc1, of Drosophila. The presence of an intron in the maize genes is a distinguishing feature in that no other thermally inducible hsp70 genes described to date contain an intron. We have constructed a hybrid hsp70 gene containing the entire hsp70 coding sequence with an intron, and 1.1 kb of the 5' flanking sequence. We demonstrate that this hybrid gene is thermally inducible in a transgenic petunia plant and that the gene is expressed from its own promoter.  相似文献   

8.
9.
Expression Enhancement of a Rice Polyubiquitin Gene Promoter   总被引:11,自引:0,他引:11  
An 808 bp promoter from a rice polyubiquitin gene, rubi3, has been isolated. The rubi3 gene contained an open reading frame of 1140 bp encoding a pentameric polyubiquitin arranged as five tandem, head-to-tail repeats of 76 aa. The 1140 bp 5′ UTR intron of the gene enhanced its promoter activity in transient expression assays by 20-fold. Translational fusion of the GUS reporter gene to the coding sequence of the ubiquitin monomer enhanced GUS enzyme activity in transient expression assays by 4.3-fold over the construct containing the original rubi3 promoter (including the 5′ UTR intron) construct. The enhancing effect residing in the ubiquitin monomer coding sequence has been narrowed down to the first 9 nt coding for the first three amino acid residues of the ubiquitin protein. Mutagenesis at the third nucleotide of this 9 nt sequence still maintains the enhancing effect, but leads to translation of the native GUS protein rather than a fusion protein. The resultant 5′ regulatory sequence, consisting of the rubi3 promoter, 5′ UTR exon and intron, and the mutated first 9 nt coding sequence, has an activity nearly 90-fold greater than the rubi3 promoter only (without the 5′ UTR intron), and 2.2-fold greater than the maize Ubi1 gene promoter (including its 5′ UTR intron). The newly created expression vector is expected to enhance transgene expression in monocot plants. Considering the high conservation of the polyubiquitin gene structure in higher plants, the observed enhancement in gene expression may apply to 5′ regulatory sequences of other plant polyubiquitin genes.  相似文献   

10.
11.
This work describes two new fatty acid binding proteins (FABPs) identified in the parasite platyhelminth Mesocestoides vogae (syn. corti). The corresponding polypeptide chains share 62% identical residues and overall 90% similarity according to CLUSTALX default conditions. Compared with Cestoda FABPs, these proteins share the highest similarity score with the Taenia solium protein. M. vogae FABPs are also phylogenetically related to the FABP3/FABP4 mammalian FABP subfamilies. The native proteins were purified by chromatographical procedures, and apparent molecular mass and isoelectric point were determined. Immunolocalization studies determined the localization of the expression of these proteins in the larval form of the parasite. The genomic exon-intron organization of both genes is also reported, and supports new insights on intron evolution. Consensus motifs involved in splicing were identified.  相似文献   

12.
Silent mutations affect in vivo protein folding in Escherichia coli   总被引:1,自引:0,他引:1  
As an approach to investigate the molecular mechanism of in vivo protein folding and the role of translation kinetics on specific folding pathways, we made codon substitutions in the EgFABP1 (Echinococcus granulosus fatty acid binding protein1) gene that replaced five minor codons with their synonymous major ones. The altered region corresponds to a turn between two short alpha helices. One of the silent mutations of EgFABP1 markedly decreased the solubility of the protein when expressed in Escherichia coli. Expression of this protein also caused strong activation of a reporter gene designed to detect misfolded proteins, suggesting that the turn region seems to have special translation kinetic requirements that ensure proper folding of the protein. Our results highlight the importance of codon usage in the in vivo protein folding.  相似文献   

13.
14.
15.
This investigation aimed to evaluate the differential expression of HoxB7 and notch genes in different developmental stages of Echinococcus granulosus sensu stricto. The expression of HoxB7 gene was observed at all developmental stages. Nevertheless, significant fold differences in the expression level was documented in the juvenile worm with 3 or more proglottids, the germinal layer from infected sheep, and the adult worm from an experimentally infected dog. The notch gene was expressed at all developmental stages of E. granulosus; however, the fold difference was significantly increased at the microcysts in monophasic culture medium and the germinal layer of infected sheep in comparison with other stages. The findings demonstrated that the 2 aforementioned genes evaluated in the present study were differentially expressed at different developmental stages of the parasite and may contribute to some important biological processes of E. granulosus.  相似文献   

16.
17.
Uncoupling Proteins (UCPs) are integral ion channels residing in the inner mitochondrial membrane. UCP2 is ubiquitously expressed, while UCP3 is found primarily in muscles and adipose tissue. Although the exact molecular mechanism of action is controversial, it is generally agreed that both homologues function to facilitate mitochondrial fatty acid oxidation. UCP2 and -3 expression is activated by the peroxisome proliferator-activated receptors (PPARs), but so far no PPAR response element has been reported in the vicinity of the Ucp2 and Ucp3 genes. Using genome-wide profiling of PPARγ occupancy in 3T3-L1 adipocytes we demonstrate that PPARγ associates with three chromosomal regions in the vicinity of the Ucp3 locus and weakly with a site in intron 1 of the Ucp2 gene. These sites are isolated from the nearest neighboring sites by >900 kb. The most prominent PPARγ binding site in the Ucp2 and Ucp3 loci is located in intron 1 of the Ucp3 gene and is the only site that facilitates PPARγ transactivation of a heterologous promoter. This site furthermore transactivates the endogenous Ucp3 promoter, and using chromatin conformation capture we show that it loops out to specifically interact with the Ucp2 promoter and intron 1. Our data indicate that PPARγ transactivation of both UCP2 and -3 is mediated through this novel enhancer in Ucp3 intron 1.  相似文献   

18.
The fatty acid-binding protein 4 (FABP4) plays a role in lipid metabolism and has been implicated in intra-cellular lipid transport. While FABP4 variation has been reported in some species, variation in the coding sequence has not been reported in sheep. In this study two regions of ovine FABP4 were analysed using PCR-SSCP and sequencing. Five different PCR-SSCP patterns, representing five specific sequences (A 1 E 1 ) were detected in region 1 (exon 2–intron 2) with sequence analysis revealing three nucleotide substitutions and one deletion in the intron. In region 2 (exon 3–intron 3), four different PCR-SSCP patterns (A 2 D 2 ) were observed and four nucleotide substitutions were revealed. In total, fourteen haplotypes through both regions were defined. There was a difference (P?<?0.001) in allele frequencies between two selection lines of Coopworth sheep that have been bred over many generations to be lean or fat. In region 1, A 1 and B 1 were most common (at a frequency of 50 and 30?% respectively) in the fat line, whereas these two variants were absent or rare in the lean line in which C 1 predominated (89?%). In region 2, C 2 was the most common variant (59?%) in the lean line but was absent in the fat line, whereas B 2 was predominant (83?%) in the fat line but was rare (3?%) in the lean line. These results indicate that ovine FABP4 is polymorphic and suggest further analysis is required to see if the variation detected affects fat deposition in sheep.  相似文献   

19.
20.
《Gene》1998,207(1):25-32
The sequence of the chicken interferon-γ (ifn-γ) gene was determined, one of the first non-mammalian cytokine gene structures to be elucidated. Initial genomic clones were amplified from chicken genomic DNA and were used to isolate a cosmid clone covering the entire gene for sequencing. The exon:intron structure of chicken ifn-γ is very similar to those of its mammalian homologues, with the exception of the third intron, which is markedly shorter in the chicken. The first exon contains both 5′ UTR and signal sequence and the first 22 aa of the mature protein. The remainder of the coding region lies in exons 2–4. Exon 4 also encodes the stop codon and the 3′ UTR, including two possible polyadenylation signals. A number of potential regulatory sequences similar to those found in mammals have been identified, in the promoter, in each intron and in the 3′ UTR. In the promoter, these include the TATAATA- and CCAT-boxes, a consensus GATA motif in the reverse orientation and a potential NF-κB binding site. Other regulatory elements identified in the promoters of mammalian ifn-γ genes are absent. Internal to the gene structure, regulatory sequences identified include elements found in the DNase I hypersensitivity region of the first intron of the human ifn-γ gene and several potential NF-κB binding sites. The 3′ UTR contains an AT-rich sequence, including nine repeats of the `instability' motif ATTTA. As in mammals, chicken ifn-γ is a single copy gene. The gene is highly conserved, with no polymorphisms yet identified using either RFLP or SSCP in the coding region. However, promoter sequence polymorphisms between different inbred lines of chickens have been identified, with possible links to disease resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号