首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
2.
3.
Freshly isolated adult rat hepatocytes, when cultured on type I collagen (commercially available as Vitrogen), assume a polygonal shape, form a stable monolayer within 24 hours, but lose the capacity to express some liver-specific functions over time in culture. We incubated hepatocytes in a serum-free medium on a reconstituted basement membrane gel, "matrigel" (prepared from an extract of extracellular matrix of the murine Engelbreth-Holm-Swarm sarcoma), and observed that the cells adhered firmly, remained rounded as single cells or clusters, and maintained liver-specific gene expression for more than 1 week in vitro. Hepatocytes on matrigel secreted substantially higher amounts of albumin, transferrin, haptoglobin, and hemopexin, Northern blot analyses of extracted cellular RNA, expressed increased amounts of mRNA for the liver-specific protein albumin (as compared with cells on vitrogen). In cultures treated with phenobarbital, cytochrome P-450b, and cytochrome P-450e, mRNAs and proteins were barely detectable in cells on Vitrogen but were induced to levels similar to those in the liver in vivo in matrigel cultures. Likewise, the use of matrigel greatly enhanced the induction of mRNA and protein for P-450c by 3-methylcholanthrene and for P-450p by steroidal and nonsteroidal inducers. However, neither substratum permitted induction of P-450d by 3-methylcholanthrene, suggesting that the effects of matrigel are selective even for expression in liver of members of the superfamily of cytochrome P-450 genes. Within 5 days in cultures on Vitrogen, hepatocytes expressed detectable amounts of fetal liver aldolase activity and also mRNA for vimentin and type I collagen, each considered a phenotypic change reflecting hepatocyte "dedifferentiation." None of these was present in cells on matrigel. Responsiveness to mitogenic stimuli, as judged by incorporation of 3H-thymidine into DNA, was also decreased in hepatocytes cultured on matrigel. Finally, there was a remarkable increase in the levels of both matrices during the first 2 days in culture. However, the continuously cytoskeleton mRNA over time in culture than did the rounded cells on matrigel. We conclude that hepatocytes cultured on matrigel, as opposed to the standard collagen, exhibit remarkably enhanced expression of many liver-specific functions.  相似文献   

4.
Summary The secondary culture of non-transformed parenchymal hepatocytes has not been possible. STO feeder cell-dependent secondary cultures of fetal pig hepatocytes were established by colony isolation from primary cultures of 26-d fetal livers. The liver cells had the typical polygonal morphology of parenchymal hepatocytes. They also spontaneously differentiated to form small biliary canaliculi between individual cells or progressed further to large multicellular duct-like structures or cells undergoing gross lipid accumulation and secretion. The secondary hepatocyte cultures expressed alpha-fetoprotein (AFP), albumin, and β-fibrinogen mRNA, and conditioned medium from the cells contained elevated levels of transferrin and albumin. STO feeder cell co-culture may be useful for the sustainable culture of hepatocytes from other species.  相似文献   

5.
6.
A serum-free, feeder cell-dependent, selective culture system for the long-term culture of porcine hepatocytes or cholangiocytes was developed. Liver cells were isolated from 1-wk-old pigs or young adult pigs (25 and 63 kg live weight) and were placed in primary culture on feeder cell layers of mitotically blocked mouse fibroblasts. In serum-free medium containing 1% DMSO and 1 μM dexamethasone, confluent monolayers of hepatocytes formed and could be maintained for several wk. Light and electron microscopic analysis showed hepatocytes with in vivo-like morphology, and many hepatocytes were sandwiched between the feeder cells. When isolated liver cells were cultured in medium without dexamethasone but with 0.5% DMSO, monolayers of cholangioctyes formed that subsequently self-organized into networks of multicellular ductal structures, and whose cells had monocilia projecting into the lumen of the duct. Gamma-glutamyl transpeptidase (GGT) was expressed by the cholangiocytes at their apical membranes, i.e., at the inner surface of the ducts. Cellular GGT activity increased concomitantly with the development of ductal structures. Cytochrome P-450 was determined in microsomes following addition of metyrapone to the cultures. In vivo-like levels of P-450s were found in hepatocyte monolayers while levels of P-450 were markedly reduced in cholangiocyte monolayers. Serum protein secretion in conditioned media was analyzed by Western blot and indicated that albumin, transferrin, and haptoglobin levels were maintained in hepatocytes while albumin and haptoglobin declined over time in cholangiocytes. Quantitative RT-PCR analysis showed that serum protein mRNA levels were significantly elevated in the hepatocytes monolayers in comparison to the bile ductule-containing monolayers. Further, mRNAs specific to cholangiocyte differentiation and function were significantly elevated in bile ductule monolayers in comparison to hepatocyte monolayers. The results demonstrate an in vitro model for the study of either porcine hepatocytes or cholangiocytes with in vivo-like morphology and function.  相似文献   

7.
8.
Short-term pure cultures and long-term cocultures of adult rat hepatocytes with rat liver epithelial cells, presumably derived from primitive biliary cells, were used to define in vitro models of iron overloaded hepatocytes in order to understand the molecular mechanism responsible for liver damage occurring in patients with hemochromatosis. In vitro iron overload was obtained by daily addition of ferric nitrilotriacetate to the culture medium. A concentration of 20 microM ferric salt induced hepatocyte iron overload with minimal cytotoxicity as evaluated by cell viability, morphological changes of treated cells and cytosolic enzyme leakage into the culture medium. The effects of iron overload on protein biosynthesis and secretion were studied in both short-term pure cultures and long-term cocultures of hepatocytes. The amounts of intracellular and newly synthesized proteins were never modified by the iron treatment. Furthermore, neither the relative amounts of transferrin and albumin mRNAs nor their translational products were altered by iron overload. Moreover, no change in the transferrin isomeric forms were observed in treated cells. In contrast, a prolonged exposure of cocultured hepatocytes to 20 microM ferric salt led to a significant decrease in the amount of proteins secreted in the medium. This decrease included the two major secreted proteins, namely albumin and transferrin, and probably all other secreted proteins. These results demonstrate that iron loading alters neither the total nor the liver specific protein synthesis activity of cultured hepatocytes. They suggest that chronic overload may impede the protein secretion process.  相似文献   

9.
Corticosteroids are known to stimulate the synthesis of a number of liver-specific proteins. The reports regarding the effect of glucocorticoid on albumin synthesis in vivo and in vitro are controversial. In an attempt to determine the mechanism by which glucocorticoid exerts its influence on hepatic albumin synthesis and to find an explanation for the conflicting data, we have studied the effect of dexamethasone disodium phosphate on albumin synthesis and albumin messenger RNA as determined by the molecular hybridization technique in hepatocytes in rat in vivo and in suspension culture. In hepatocyte suspension culture, addition of 0.48 μM dexamethasone in medium at zero time led to a significant increase (20%) in incorporation of labeled precursor into albumin as compared to control experiments; this was accompanied by a maintainance of the initial level of full-length albumin mRNA for a 9 h period. In hepatocytes cultured without dexamethasone in the medium there was a progressive loss of albumin mRNA content. Despite this finding, dexamethasone was not able to increase the albumin mRNA content in hepatocyte to a level higher than the initial value. Moreover, administration of this hormone either intraperitoneally or intravenously into rats did not lead to enhanced cell-free albumin synthesis or to an increased level of albumin mRNA. These findings suggest that glucocorticoid does not play an essential role in the regulation of albumin synthesis in vivo. In vitro, however, glucocorticoid leads to a preservation of the initial level of albumin mRNA and thus plays a role in the control of spontaneous dedifferentiation of liver cells in culture.  相似文献   

10.
11.
Study of liver differentiation in vitro   总被引:11,自引:3,他引:8       下载免费PDF全文
A clonal rat fetal liver cell line that expresses the functions of differentiated liver cells under controllable conditions has been established. Normal fetal liver cells were transformed by a temperature-sensitive A (tsA) mutant (tsA209) of simian virus 40. At the permissive temperature (33 degrees C), the tsA209-transformed liver cell line (RLA209-15) can be cultured indefinitely and cloned readily. The RLA209-15 cells were temperature sensitive for maintenance of the transformed phenotype. These transformed liver cells selectively lost four characteristics of the transformed phenotype at the restrictive temperature (40 degrees C): generation time of the cells increased, the saturation density decreased, the efficiency of growth on nontransformed cell layers decreased, and the ability to clone in soft agar was lost. The transformation can be reversed simply by a shift in temperature. RLA209-15 fetal liver cells synthesized alpha-fetoprotein albumin, and transferrin. At 33 degrees C, the levels of these liver proteins were relatively low. At 40 degrees C the transformed phenotype was lost and the levels of alpha-fetoprotein, albumin, and transferrin were greatly increased. At the restrictive temperature, maximal induction of the synthesis of alpha-fetoprotein, albumin, and transferrin was achieved 3-4 d after the upward shift in temperature. The synthesis of alpha-fetoprotein then decreased; the synthesis of albumin and transferrin, however, was maintained. A second phase of albumin and transferrin synthesis was observed in all cultures after 6 d or more at 40 degrees C. Alpha-Fetoprotein, albumin, and transferrin secreted by RLA209-15 cells were immunologically indistinguishable from authentic alpha-fetoprotein, albumin, and transferrin, respectively. RLA209-15 cells, like primary cultures of hepatocytes and a simian virus 40 tsA255-transformed fetal liver cell line (RLA255-4) reported earlier from this laboratory, responded to glucagon with markedly elevated levels of cyclic AMP. Thus, it appears that glucagon receptors characteristic of hepatocytes are retained in the simian virus 40 tsA-transformed fetal liver cells.  相似文献   

12.
Hepatocytes derived from foetal rat liver synthesize and secrete albumin and transferrin when maintained in primary culture. These proteins are produced for at least seven days under the conditions of culture. Studies on hepatocyte cultures derived from 12, 13, 14, 15 and 19-day foetal rats show that the maximal cellular rate of secretion of both proteins increases about 50-fold over this period. The maximal rate of albumin secretion in all cultures is achieved after one day in culture and decreases in hepatocytes from early foetuses after the fourth to sixth day in culture. Transferrin secretion by hepatocytes from 12 to 15 day foetuses increases markedly during the second day of culture and is relatively constant thereafter. In contrast, secretion of transferrin by hepatocytes from 19-day foetuses is constant from the first day of culture. The results show that both albumin and transferrin are synthesized and secreted by the foetal liver as early as the twelfth day of gestation. The increase in the rate of transferrin secretion that occurs during culture of hepatocytes from 12 to 15 day foetuses may reflect the development of a secretory mechanism that is different from that for albumin.  相似文献   

13.
To study the liver functions of chicken, we examined the primary culture of chicken hepatocytes, and found an easy method of long-term culture with free atmosphere exchange. Chicken hepatocytes were obtained by collagenase perfusion and cultured at 37°C as a monolayer without substratum in serum-free L-15 medium (pH 7.8) with free atmosphere exchange. The amounts of albumin and transferrin in medium were assayed by ELISA. The culture of chicken hepatocytes was maintained in the serum-free L-15 medium (pH 7.8) at 37°C with free atmosphere exchange for 20 days. The amount of albumin secreted in the medium decreased to low levels early in culture; however, this was followed by marked increase from day 9 to day 17 of culture. The amount of transferrin was constant until day 6, then it too increased considerably with further culture. We reported an easy method for the simple monolayer culture of chicken hepatocytes in serum-free L-15 medium (pH 7.8) with free atmosphere exchange over an extended period. Expression of liver-specific functions, viz. albumin and transferrin synthesis, was observed after 1 week of culture.  相似文献   

14.
Fetal hepatocytes cultured in medium supplemented with fetal calf serum (FCS) or Ultroser SF do not maintain production of albumin or transferrin beyond one week of culture. When dexamethasone (10(-7) M) is present, secretion of albumin and transferrin can be extended to two weeks, however, levels are extremely low. By three weeks, neither plasma protein can be detected in the culture medium in either conditions of culture. In contrast, hepatocytes maintained in medium supplemented with Ultroser G continue to produce albumin and transferrin at high levels for the entire three week period of this study. The morphology of the cultures are different. In FCS and Ultroser SF supplemented medium there are many more fibroblast and epithelial-like cells and relatively fewer cells which are distinctly hepatocytes when compared with Ultroser G supplemented medium. The level of tyrosine aminotransferase, which is a dexamethasone inducible enzyme, is found to be much higher in Ultroser G cultures, with no further increase demonstrable by addition of dexamethasone. In contrast, dexamethasone induces the enzyme by about eight-fold in cultures maintained in FCS supplemented medium. Therefore it appears that Ultroser G already contains sufficient steroid activity to maximize the level of tyrosine aminotransferase. A comparison between Ultroser C and SF (steroid-free) suggests that the mixture of steroid and steroid derivatives in the G formulation must be important in the maintenance of differentiated functions of hepatocytes in culture. However, supplementation of FCS cultures with dexamethasone, which is known to be present in Ultroser G, does not allow hepatocytes to retain their differentiated functions over an extended period. Therefore it is concluded that other components besides dexamethasone must be important.  相似文献   

15.
A system using hepatocyte suspensions in vitro was developed for studying the synthesis of albumin, fibrinogen and transferrin. Conditions for optimum survival of the hepatocyte and for synthesis of these plasma proteins were defined for this system. These conditions included the use of horse serum (17.5 percent, v/v, heat-inactivated), an enriched medium (Waymouth's MB 752/1), an O2 tension of between 18.7 times 10(3) and 26.7 times 10(3) Pa and constant stirring. Albumin, fibrinogen and transferrin synthesis rates were obtained of 0.32 p 0.094(10), 0.12 p 0.030(11) and 0.097 p 0.017(10) [mean p S.D. (n)]mg/h per g of hepatocytes respectively. These rates were maintained for the first 12h of study and synthesis continued at a diminished rate up to 48h. The synthesis of albumin was decreased in a medium containing less amino acids and glucose, but that of fibrinogen was substantially unaffected. ATP concentrations up to 12h and RNA/DNA ratios up to 24h were comparable with values in vivo. The ability to study cells up to 48h permitted us to find that the addition of a mixture of hormones consisting of glucagon, cortisol, tri-iodothyronine and growth hormone enhanced fibrinogen synthesis. Addition of insulin to the above mixture resulted in increased synthesis for albumin and transferrin but not for fibrinogen.  相似文献   

16.
The addition of pyruvate to the culture medium has been reported to improve the maintenance of P450-dependent enzyme expression in primary rat hepatocyte cultures. In this study, the effects of 30mM pyruvate on cell morphology, albumin secretion and glutathione S-transferase (GST) expression were investigated as a function of the time in culture. The effect of triiodothyronine (T3) exposure on GST expression was also measured in pyruvate-treated cultures. Transmission electron microscopy showed that untreated hepatocytes deteriorated after culture for 7 days, whereas the morphology of the pyruvate-treated cells was similar to that observed in intact liver tissue. The albumin secretion rate was significantly higher in rat hepatocytes exposed to pyruvate than in control cells. In the presence of pyruvate, mu and alpha class GST activities were well maintained, whereas GST pi activity was increased over the entire culture period. HPLC analysis revealed that the complement of GST subunits present in hepatocytes is altered during culture with pyruvate: mu,class proteins remained relatively constant, whereas a decrease in the alpha class content was accompanied by a strong increase in GST subunit P1 (GSTP1). The induction of GSTP1 was confirmed at the mRNA level. In control cultures, pi class GST activity was increased, but total, mu, and alpha class GST activities continuously declined as a function of culture time and became undetectable beyond 7 days in culture. At the protein and mRNA levels, a much smaller increase in GSTP1 was observed than in the pyruvate cultures. When the pyruvate-treated cell cultures were exposed to T3, an inhibitory effect on GST activities and proteins was found. These results indicate that this simple culture model could be useful for studying the expression and regulation of GST.  相似文献   

17.
Fatty acids of varying lengths and saturation differentially affect plasma apolipoprotein B (apoB) levels. To identify the mechanisms underlying the effect of octanoate on very low-density lipoprotein (VLDL) secretion, chicken primary hepatocytes were incubated with either fatty acid-bovine serum albumin (BSA) complexes or BSA alone. Addition of octanoate to culture medium significantly reduced VLDL-triacylglycerol (TG), VLDL-cholesterol and apoB secretion from hepatocytes compared to both control cultures with BSA only and palmitate treatments, but did not modulate intracellular TG accumulation. However, no differences in cellular microsomal triglyceride transfer protein levels were observed in the cultures with saturated fatty acid. In pulse-chase studies, octanoate treatment resulted in reduced apoB-100 synthesis, in agreement with its promotion of secretion. This characteristic effect of octanoate was confirmed by addition of a protease inhibitor, N-acetyl-leucyl-leucyl-norleucinal (ALLN), to hepatocyte cultures. Analysis showed that the level of apoB mRNA was lower in cultures supplemented with octanoate than in the control cultures, but no significant changes were observed in the levels of apolipoprotein A-I, fatty acid synthase and 3-hydroxy-3-methylglutaryl-CoA reductase mRNA as a result of octanoate treatment. Time-course studies indicate that a 50% reduction in apoB mRNA levels requires 12 h of incubation with octanoate. We conclude that octanoate reduced VLDL secretion by the specific down-regulation of apoB gene expression and impairment of subsequent synthesis of apoB, not by the modulation of intracellular apoB degradation, which is known to be a major regulatory target of VLDL secretion of other fatty acids.  相似文献   

18.
19.
Regulation of rat liver maturation in vitro by glucocorticoids.   总被引:3,自引:1,他引:2       下载免费PDF全文
The biochemistry of liver maturation was studied by using the RLA209-15 fetal rat hepatocyte line that is temperature sensitive for maintenance of the differentiated fetal liver phenotype. At 33 degrees C these cells were dedifferentiated; but at 40 degrees C they were phenotypically differentiated and, like normal fetal hepatocytes, synthesized moderate levels of albumin and transferrin, high levels of authentic (69,000 and 73,000 molecular weight) rat fetal alpha-fetoprotein (AFP), and low levels of a 65,000-molecular-weight variant AFP. Our results indicated that administration of glucocorticoid hormones to RLA209-15 cells at 40 degrees C induced a series of events associated with normal hepatocyte maturation; synthesis of fetal AFP was inhibited, whereas the synthesis of variant AFP, albumin, transferrin, tyrosine aminotransferase, and alpha 1-acid glycoprotein was induced. The variant AFP was produced by RLA209-15 cells at both temperatures and was encoded by an mRNA of 1.7 kilobases (kb). The fetal AFP was encoded by an mRNA of 2.2 kb. Normal adult rat liver contained three AFP mRNAs of 2.2 (minor), 1.7, and 1.5 kb. The 1.7-kb adult liver AFP mRNA comigrated with the RNA found in RLA209-15 cells, and both directed the synthesis of a 50,000-molecular-weight precursor polypeptide of the variant AFP. Administration of glucocorticoids to RLA209-15 cells grown at 33 degrees C stimulated synthesis of both the fetal and variant AFPs, but the levels of the 2.2-kb AFP mRNA were preferentially increased. RLA209-15 cells contained two glucocorticoid receptor mRNAs of 6.8 and 4.5 kb. The glucocorticoid-mediated maturation described above was blocked by the antiglucocorticoid RU486.  相似文献   

20.
The response of rat hepatocytes co-cultured with rat liver epithelial cells to conditioned medium (CM) from lipopolysaccharide (LPS)-activated monocytes was investigated by measuring the concentration of alpha 2-macroglobulin (alpha 2M), alpha 1-acid glycoprotein (AGP), albumin and transferrin, as well as the changes in glycosylation of alpha 1-acid glycoprotein. During an initial 8-day treatment with CM, concentrations of alpha 2M and AGP increased markedly over those of control culture, whereas concentrations of albumin and transferrin decreased. The glycosylation pattern of AGP indicated an important relative increase of the concanavalin A-strongly-reactive (SR) variant upon treatment. When CM addition to hepatocyte culture medium was stopped, the concentrations of the four proteins and the glycosylation pattern of AGP reverted to those of control cultures. Further addition (on day 15) to cultures of CM increased the concentration of alpha 2M and decreased albumin and transferrin concentrations. Although AGP concentrations did not increase above those of controls, the appearance of the SR variant was again stimulated by CM. These results show that, in co-culture, rat hepatocytes remain able to respond to repeated inflammatory stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号