共查询到20条相似文献,搜索用时 15 毫秒
1.
The advent of high-throughput proteomic technologies for global detection and quantitation of proteins creates new opportunities and challenges for those seeking to gain greater understanding of the cellular machinery. Here, recent advances in high-resolution capillary liquid chromatography coupled to Fourier transform ion cyclotron resonance mass spectrometry are reviewed along with its potential application to high-throughput proteomics. These technological advances combined with quantitative stable isotope labeling methodologies provide powerful tools for expanding our understanding of biology at the system level. 相似文献
2.
《Expert review of proteomics》2013,10(1):87-95
The advent of high-throughput proteomic technologies for global detection and quantitation of proteins creates new opportunities and challenges for those seeking to gain greater understanding of the cellular machinery. Here, recent advances in high-resolution capillary liquid chromatography coupled to Fourier transform ion cyclotron resonance mass spectrometry are reviewed along with its potential application to high-throughput proteomics. These technological advances combined with quantitative stable isotope labeling methodologies provide powerful tools for expanding our understanding of biology at the system level. 相似文献
3.
Yutong Jin Ziqing Lin Qingge Xu Cexiong Fu Zhaorui Zhang Qunying Zhang 《MABS-AUSTIN》2019,11(1):106-115
The pharmaceutical industry’s interest in monoclonal antibodies (mAbs) and their derivatives has spurred rapid growth in the commercial and clinical pipeline of these effective therapeutics. The complex micro-heterogeneity of mAbs requires in-depth structural characterization for critical quality attribute assessment and quality assurance. Currently, mass spectrometry (MS)-based methods are the gold standard in mAb analysis, primarily with a bottom-up approach in which immunoglobulins G (IgGs) and their variants are digested into peptides to facilitate the analysis. Comprehensive characterization of IgGs and the micro-variants remains challenging at the proteoform level. Here, we used both top-down and middle-down MS for in-depth characterization of a human IgG1 using ultra-high resolution Fourier transform MS. Our top-down MS analysis provided characteristic fingerprinting of the IgG1 proteoforms at unit mass resolution. Subsequently, the tandem MS analysis of intact IgG1 enabled the detailed sequence characterization of a representative IgG1 proteoform at the intact protein level. Moreover, we used the middle-down MS analysis to characterize the primary glycoforms and micro-variants. Micro-variants such as low-abundance glycoforms, C-terminal glycine clipping, and C-terminal proline amidation were characterized with bond cleavages higher than 44% at the subunit level. By combining top-down and middle-down analysis, 76% of bond cleavage (509/666 amino acid bond cleaved) of IgG1 was achieved. Taken together, we demonstrated the combination of top-down and middle-down MS as powerful tools in the comprehensive characterization of mAbs. 相似文献
4.
Ouvry-Patat SA Torres MP Quek HH Gelfand CA O'Mullan P Nissum M Schroeder GK Han J Elliott M Dryhurst D Ausio J Wolfenden R Borchers CH 《Proteomics》2008,8(14):2798-2808
High-efficiency prefractionation of complex protein mixtures is critical for top-down proteomics, i.e., the analysis of intact proteins by MS. Free-flow electrophoresis (FFE) can be used for IEF to separate proteins within a pH gradient according to their pIs. In an FFE system, this separation is performed entirely in the liquid phase, without the need for particulate chromatographic media, gels, or membranes. Herein, we demonstrated the compatibility of IEF-FFE with ESI-Fourier transform ICR MS (ESI-FTICR-MS) for top-down experiments. We demonstrated that IEF-FFE of intact proteins were highly reproducible between FFE instruments, between laboratories, and between analyses. Applying native (0.2% hydroxypropylmethyl cellulose) IEF-FFE to an enzyme resulted in no decrease in enzyme activity; applying either native or denaturing (8 M urea) IEF-FFE to a four-protein mixture with different pIs resulted in isolation of each protein into separate fractions in a 96-well plate. After desalting, each protein was sequenced by top-down MS/MS. As an application of this technique, chicken erythrocyte histone H2A-IV and its major modified forms were enriched by IEF-FFE. Top-down analysis revealed Lys-5 to be a major acetylation site, in addition to N-terminal acetylation. 相似文献
5.
Jun Han Ryan M. Danell Jayanti R. Patel Dmitry R. Gumerov Cameron O. Scarlett J. Paul Speir Carol E. Parker Ivan Rusyn Steven Zeisel Christoph H. Borchers 《Metabolomics : Official journal of the Metabolomic Society》2008,4(2):128-140
With unmatched mass resolution, mass accuracy, and exceptional detection sensitivity, Fourier Transform Ion Cyclotron Resonance
Mass Spectrometry (FTICR-MS) has the potential to be a powerful new technique for high-throughput metabolomic analysis. In
this study, we examine the properties of an ultrahigh-field 12-Tesla (12T) FTICR-MS for the identification and absolute quantitation
of human plasma metabolites, and for the untargeted metabolic fingerprinting of inbred-strain mouse serum by direct infusion
(DI). Using internal mass calibration (mass error ≤1 ppm), we determined the rational elemental compositions (incorporating
unlimited C, H, N and O, and a maximum of two S, three P, two Na, and one K per formula) of approximately 250 out of 570 metabolite
features detected in a 3-min infusion analysis of aqueous extract of human plasma, and were able to identify more than 100
metabolites. Using isotopically-labeled internal standards, we were able to obtain excellent calibration curves for the absolute
quantitation of choline with sub-pmol sensitivity, using 500 times less sample than previous LC/MS analyses. Under optimized
serum dilution conditions, chemical compounds spiked into mouse serum as metabolite mimics showed a linear response over a
600-fold concentration range. DI/FTICR-MS analysis of serum from 26 mice from 2 inbred strains, with and without acute trichloroethylene
(TCE) treatment, gave a relative standard deviation (RSD) of 4.5%. Finally, we extended this method to the metabolomic fingerprinting
of serum samples from 49 mice from 5 inbred strains involved in an acute alcohol toxicity study, using both positive and negative
electrospray ionization (ESI). Using these samples, we demonstrated the utility of this method for high-throughput metabolomics,
with more than 400 metabolites profiled in only 24 h. Our experiments demonstrate that DI/FTICR-MS is well-suited for high-throughput
metabolomic analysis.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
6.
Chalmers MJ Håkansson K Johnson R Smith R Shen J Emmett MR Marshall AG 《Proteomics》2004,4(4):970-981
A microelectrospray ionization tandem Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS(n)) approach for structural characterization of protein phosphorylation is described. Identification of proteolytic peptides is based solely upon mass measurement by high field (9.4 Tesla) FT-ICR MS. The location of the modification within any phosphopeptide is then established by FT-ICR MS(2) and MS(3) experiments. Structural information is maximized by use of electron capture dissociation (ECD) and/or infrared multiphoton dissociation (IRMPD). The analytical utility of the method is demonstrated by characterization of protein kinase A (PKA) phosphorylation. In a single FT-ICR MS experiment, 30 PKA tryptic peptides (including three phosphopeptides) were mass measured by internal calibration to within an absolute mean error of |0.7 ppm|. The location of each of the three sites of phosphorylation was then determined by MS(2) and MS(3) experiments, in which ECD and IRMPD provide complementary peptide sequence information. In two out of three cases, electron irradiation of a phosphopeptide [M + nH](n+) ion produced an abundant charge-reduced [M + nH]((n-1)+*) ion, but few sequence-specific c and z(*) fragment ions. Subsequent IRMPD (MS(3)) of the charge-reduced radical ion resulted in the detection of a large number of ECD-type ion products (c and z ions), but no b or y type ions. The utility of activated ion ECD for the characterization of tryptic phosphopeptides was then demonstrated. 相似文献
7.
Metabolic profiling of flavonoids in Lotus japonicus using liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry 总被引:1,自引:0,他引:1
Suzuki H Sasaki R Ogata Y Nakamura Y Sakurai N Kitajima M Takayama H Kanaya S Aoki K Shibata D Saito K 《Phytochemistry》2008,69(1):99-111
Flavonoids detected from a model legume plant, Lotus japonicus accessions Miyakojima MG-20 and Gifu B-129, were profiled using liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry (LC-FTICR/MS). Five flavonols and two anthocyanidins were detected as aglycones. LC-FTICR/MS facilitated simultaneous detection of 61 flavonoids including compounds that have not been reported previously. Chemical information of the peaks such as retention time, lambdamax, m/z value of the quasi-molecular ion, m/z value of MS/MS fragment ions, and relative intensity of MS/MS fragments was obtained, along with the molecular formulas and conjugate structures. Fourteen were completely identified by comparison with authentic compounds. The high accuracy of m/z values, being 0.081 ppm between observed and theoretical values, allowed prediction of molecular formulas of unknown compounds with the help of isotope peak information for determination of chemical composition. Based on a predicted elemental composition, the presence of a novel nitrogen-containing flavonoid was proposed. A comparison of flavonoid profiles in flowers, stems, and leaves demonstrated that the flowers yielded the most complex profile, containing 30 flower-specific flavonoids including gossypetin glycosides and isorhamnetin glycosides. A comparison of flavonoid profiles between MG-20 and B-129 grown under the same conditions revealed that the accumulation of anthocyanins was higher in B-129 than MG-20, particularly in the stem. Developmental changes in the flavonoid profiles demonstrated that kaempferol glycosides increased promptly after germination. In contrast, quercetin glycosides, predominant flavonoids in the seeds, were not detectable in growing leaves. 相似文献
8.
The basic problem of complexity poses a significant challenge for proteomic studies. To date two-dimensional gel electrophoresis (2-DE) followed by enzymatic in-gel digestion of the peptides, and subsequent identification by mass spectrometry (MS) is the most commonly used method to analyze complex protein mixtures. However, 2-DE is a slow and labor-intensive technique, which is not able to resolve all proteins of a proteome. To overcome these limitations gel-free approaches are developed based on high performance liquid chromatography (HPLC) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The high resolution and excellent mass accuracy of FT-ICR MS provides a basis for simultaneous analysis of numerous compounds. In the present study, a small protein subfraction of an Escherichia coli cell lysate was prepared by size-exclusion chromatography and proteins were analyzed using C4 reversed phase (RP)-HPLC for pre-separation followed by C18 RP nanoHPLC/nanoESI FT-ICR MS for analysis of the peptide mixtures after tryptic digestion of the protein fractions. We identified 231 proteins and thus demonstrated that a combination of two RP separation steps - one on the protein and one on the peptide level - in combination with high-resolution FT-ICR MS has the potential to become a powerful method for global proteomics studies. 相似文献
9.
Xidong Feng Anokha S. Ratnayake Romila D. Charan Jeffrey E. Janso Valerie S. Bernan Gerhard Schlingmann Haiyin He Mark Tischler Frank E. Koehn Guy T. Carter 《Bioorganic & medicinal chemistry》2009,17(6):2154-2161
Two natural products, diazepinomicin (1) and dioxapyrrolomycin (2), containing stable isotopic labels of 15N or deuterium, were used to demonstrate the utility of Fourier transform ion cyclotron resonance mass spectrometry for probing natural product biosynthetic pathways. The isotopic fine structures of significant ions were resolved and subsequently assigned elemental compositions on the basis of highly accurate mass measurements. In most instances the mass measurement accuracy is less than one part per million (ppm), which typically makes the identification of stable-isotope labeling unambiguous. In the case of the mono-15N-labeled diazepinomicin (1) derived from labeled tryptophan, tandem mass spectrometry located this 15N label at the non-amide nitrogen. Through the use of exceptionally high mass resolving power of over 125,000, the isotopic fine structure of the molecular ion cluster of 1 was revealed. Separation of the 15N2 peak from the isobaric 13C15N peak, both having similar abundances, demonstrated the presence of a minor amount of doubly 15N-labeled diazepinomicin (1). Tandem mass spectrometry amplified this isotopic fine structure (Δm = 6.32 mDa) from mDa to 1 Da scale thereby allowing more detailed scrutiny of labeling content and location. Tandem mass spectrometry was also used to assign the location of deuterium labeling in two deuterium-labeled diazepinomicin (1) samples. In one case three deuterium atoms were incorporated into the dibenzodiazepine core; while in the other a mono-D label was mainly incorporated into the farnesyl side chain. The specificity of 15N-labeling in dioxapyrrolomycin (2) and the proportion of the 15N-label contained in the nitro group were determined from the measurement of the relative abundance of the 14NO21? and 15NO21? fragment ions. 相似文献
10.
The identification and characterization of proteins in complex biological samples such as body fluids, require powerful and reliable tools. Mass spectrometry is today one of the most important methods in such research. This paper reports on the results from the first experiment where a tryptic digest of cerebrospinal fluid was analyzed applying reversed phase liquid chromatography coupled on-line to a 9.4 T Fourier transform ion cyclotron resonance mass spectrometer. In total, 70 204 peaks were detected, which originated from 16 296 isotopic clusters corresponding to 6551 unique peptide masses. From these masses, 39 proteins were identified in the sample. The amount of sample required for one experiment corresponds to 32 microL of cerebrospinal fluid. 相似文献
11.
Wang X Stewart PA Cao Q Sang QX Chung LW Emmett MR Marshall AG 《Journal of proteome research》2011,10(9):3920-3928
Androgen-repressed human prostate cancer, ARCaP, grows and is highly metastatic to bone and soft tissues in castrated mice. The molecular mechanisms underlying the aberrant responses to androgen are not fully understood. Here, we apply state-of-the-art mass spectrometry methods to investigate the phosphoproteome profiles in ARCaP cells. Because protein biological phosphorylation is always substoichiometric and the ionization efficiency of phosphopeptides is low, selective enrichment of phosphorylated proteins/peptides is required for mass spectrometric analysis of phosphorylation from complex biological samples. Therefore, we compare the sensitivity, efficiency, and specificity for three established enrichment strategies: calcium phosphate precipitation (CPP), immobilized metal ion affinity chromatography (IMAC), and TiO(2)-modified metal oxide chromatography. Calcium phosphate precipitation coupled with the TiO(2) approach offers the best strategy to characterize phosphorylation in ARCaP cells. We analyzed phosphopeptides from ARCaP cells by LC-MS/MS with a hybrid LTQ/FT-ICR mass spectrometer. After database search and stringent filtering, we identified 385 phosphoproteins with an average peptide mass error of 0.32 ± 0.6 ppm. Key identified oncogenic pathways include the mammalian target of rapamycin (mTOR) pathway and the E2F signaling pathway. Androgen-induced proliferation inhibitor (APRIN) was detected in its phosphorylated form, implicating a molecular mechanism underlying the ARCaP phenotype. 相似文献
12.
13.
For the first time, quantitative analysis of tryptic protein mixtures, labeled with Quantification-Using-Enhanced-Signal-Tags (QUEST)-markers, were performed with electrospray ionization and a 9.4 T Fourier Transform Ion Cyclotron Resonance (FTICR) mass spectrometer. Coupling a High-Pressure Liquid Chromatography (HPLC) separation step prior to mass analysis resulted in an increased amount of identified labeled tryptic peptides. The range for the determined intensity ratios of two peptides in a labeled pair was large, but the obtained median intensity ratio correlated very well with the corresponding concentration ratio. This method can be used for observing protein dynamics in a specific cell type, tissue, or in body fluids. 相似文献
14.
Clarification of pathway-specific inhibition by Fourier transform ion cyclotron resonance/mass spectrometry-based metabolic phenotyping studies 总被引:7,自引:0,他引:7 下载免费PDF全文
Oikawa A Nakamura Y Ogura T Kimura A Suzuki H Sakurai N Shinbo Y Shibata D Kanaya S Ohta D 《Plant physiology》2006,142(2):398-413
We have developed a metabolic profiling scheme based on direct-infusion Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS). The scheme consists of: (1) reproducible data collection under optimized FT-ICR/MS analytical conditions; (2) automatic mass-error correction and multivariate analyses for metabolome characterization using a newly developed metabolomics tool (DMASS software); (3) identification of marker metabolite candidates by searching a species-metabolite relationship database, KNApSAcK; and (4) structural analyses by an MS/MS method. The scheme was applied to metabolic phenotyping of Arabidopsis (Arabidopsis thaliana) seedlings treated with different herbicidal chemical classes for pathway-specific inhibitions. Arabidopsis extracts were directly infused into an electrospray ionization source on an FT-ICR/MS system. Acquired metabolomics data were comprised of mass-to-charge ratio values with ion intensity information subjected to principal component analysis, and metabolic phenotypes from the herbicide treatments were clearly differentiated from those of the herbicide-free treatment. From each herbicide treatment, candidate metabolites representing such metabolic phenotypes were found through the KNApSAcK database search. The database search and MS/MS analyses suggested dose-dependent accumulation patterns of specific metabolites including several flavonoid glycosides. The metabolic phenotyping scheme on the basis of FT-ICR/MS coupled with the DMASS program is discussed as a general tool for high throughput metabolic phenotyping studies. 相似文献
15.
Ramström M Palmblad M Amirkhani A Tsybin YO Markides KE Håkansson P Bergquist J 《Acta biochimica Polonica》2001,48(4):1101-1104
In order to be able to study complex biological samples, a micro-capillary liquid chromatography system was coupled to a 9.4 T Fourier transform ion cyclotron resonance mass spectrometer. The setup was tested on a tryptic digest of bovine serum albumin, which resulted in high sequence coverage (> 92%) of the protein. 相似文献
16.
Hagman C Ramström M Jansson M James P Håkansson P Bergquist J 《Journal of proteome research》2005,4(2):394-399
In this study, the reproducibility of tryptic digestion of complex solutions was investigated using liquid chromatography Fourier transform ion cyclotron resonance (LC FT-ICR) mass spectrometry. Tryptic peptides, from human cerebrospinal fluid, (CSF) were labeled with Quantification-Using-Enhanced-Signal-Tags (QUEST)-markers, or 1-([H4]nicotinoyloxy)- and 1-([D4]nicotinoyloxy)-succinimide ester markers. The analysis was performed on abundant proteins with respect-to-intensity ratios and sequence coverage and obtained by comparing differently labeled components from one or different pools. To interpret the dynamics in the proteome, one must be able to estimate the error introduced in each experimental steps. The intra sample variation due to derivatization was approximately 10%. The inter sample variation depending on derivatization and tryptic digestion was not more than approximately 30%. These experimental observations provide a range for the up- and down-regulations that are possible to study with electrospray ionization LC FT-ICR mass spectrometry. 相似文献
17.
Depletion of high-abundant proteins in body fluids prior to liquid chromatography fourier transform ion cyclotron resonance mass spectrometry 总被引:2,自引:0,他引:2
Ramström M Hagman C Mitchell JK Derrick PJ Håkansson P Bergquist J 《Journal of proteome research》2005,4(2):410-416
Today, proteomics is an exciting approach to discover potential biomarkers of different disorders. One challenge with proteomics experiments is the wide concentration range of proteins in various tissues and body fluids. The most abundant component in human body fluids, human serum albumin (HSA), is present at concentrations corresponding to approximately 50% of the total protein content in, e.g., plasma and cerebrospinal fluid (CSF). If this component could be selectively removed, then the chances of observing lower-abundance component of clinical interest would be greatly improved. There are today several approaches of varying specificity available for depletion. In this study, the properties of two commercially available kits, for the removal of HSA and HSA and immunoglobulin G (IgG), respectively, were compared, and the benefits of using depletion steps prior to on-line LC-FTICR MS were evaluated. Both methods were applied on plasma and CSF. To our knowledge, these are the first results reported for CSF. Also, the combination with electrospray LC-FTICR MS is novel. The proportion of depleted HSA and IgG was estimated using global labeling markers for peptide quantification. Both depletion-methods provided a significant reduction of HSA, and the identification of lower abundant components was clearly facilitated. A higher proportion of HSA was removed using the affinity-based removal kit, and consequently more proteins could be identified using this approach. 相似文献
18.
Chen S Hannis JC Flora JW Muddiman DC Charles K Yu Y Povirk LF 《Analytical biochemistry》2001,289(2):274-280
Single- and double-strand breaks bearing 3'-phosphoglycolate termini are among the most frequent lesions formed in DNA by ionizing radiation and other oxidative mutagens. In order to obtain homogeneous preparations of defined 3'-phosphoglycolate substrates for repair studies, 5'-(32)P-end-labeled partial duplex DNAs were treated with bleomycin, and individual cleavage products were isolated from polyacrylamide gels. The fragments were then treated with alkaline phosphatase and further purified by reverse-phase HPLC. Electrospray ionization Fourier transform ion cyclotron resonance (ESI-FTICR) mass spectrometry of the purified oligomers produced molecular ions of the expected masses, with no detectable contaminants. Gas-phase sequencing by tandem mass spectrometry of these single species yielded the expected sequence ions and confirmed the presence of phosphoglycolate on the 3'-terminal fragments only. The fragments could be relabeled with polynucleotide kinase to yield highly purified, high-specific-activity substrates for repair studies. 相似文献
19.
Characterization of the interface structure of enzyme-inhibitor complex by using hydrogen-deuterium exchange and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry 下载免费PDF全文
We investigated the interaction between a thiol protease inhibitor, cystatin, and its target enzyme, papain, by hydrogen-deuterium (H/D) exchange in conjunction with successive analysis by collision-induced dissociation (CID) in an rf-only hexapole ion guide with electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR MS). The deuterium incorporation into backbone amide hydrogens of cystatin was analyzed at different time points in the presence or absence of papain, examining the mass of each fragment produced by hexapole-CID. In the absence of papain, amide hydrogens in short amino-terminal fragments, such as b10(2+) and b12(2+), were highly deuterated within 1 min. Although fewer fragments were observed for the cystatin-papain complex in the hexapole-CID spectra, significant reductions in initial deuterium content were recognized throughout the sequence of cystatin. This suggests that complex formation restricted the flexibility of the whole cystatin molecule. Detailed analyses revealed that a marked reduction in deuterium content in the region of residues 1-10 persisted for hours, suggesting that the flexible N-terminal region was tightly fixed in the binding pocket with hydrogen bonds. Our results are consistent with those of previous studies on the structure and inhibition mechanism of cystatin. We demonstrated here that enzyme-inhibitor interactions can be characterized by H/D exchange in combination with CID in a hexapole ion guide using ESI-FTICR MS rapidly and using only a small amount of sample. 相似文献
20.
An improved method for site-specific characterization of protein glycosylation has been devised using nonspecific digestion with immobilized pronase combined with Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). This procedure was demonstrated using ribonuclease B (RNase B) and kappa-casein (kappa-csn) as representative N-linked and O-linked glycoproteins, respectively. Immobilization of the pronase enzymes facilitated their removal from the glycopeptide preparations, and was found to prevent enzyme autolysis while leaving the proteolytic activities of pronase intact. Increased digestion efficiency, simplified sample preparation, and reduced sample complexity were consequently realized. To supplement this technique, a refined glycopeptide search algorithm was developed to aid in the accurate mass based assignment of N-linked and O-linked glycopeptides derived from nonspecific proteolysis. Monitoring the progress of glycoprotein digestion over time allowed detailed tracking of successive amino acid cleavages about the sites of glycan attachment, and provided a more complete protein glycosylation profile than any single representative time point. This information was further complemented by tandem MS experiments with infrared multiphoton dissociation (IRMPD), allowing confirmation of glycopeptide composition. Overall, the combination of immobilized pronase digestion, time course sampling, FTICR-MS, and IRMPD was shown to furnish an efficient and robust approach for the rapid and sensitive profiling of protein glycosylation. 相似文献