首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D-3-Hydroxybutyrate dehydrogenase from Pseudomonas putida belongs to the family of short-chain dehydrogenases/reductases. We have determined X-ray structures of the D-3-hydroxybutyrate dehydrogenase from Pseudomonas putida, which was recombinantly expressed in Escherichia coli, in three different crystal forms to resolutions between 1.9 and 2.1 A. The so-called substrate-binding loop (residues 187-210) was partially disordered in several subunits, in both the presence and absence of NAD(+). However, in two subunits, this loop was completely defined in an open conformation in the apoenzyme and in a closed conformation in the complex structure with NAD(+). Structural comparisons indicated that the loop moves as a rigid body by about 46 degrees . However, the two small alpha-helices (alphaFG1 and alphaFG2) of the loop also re-orientated slightly during the conformational change. Probably, the interactions of Val185, Thr187 and Leu189 with the cosubstrate induced the conformational change. A model of the binding mode of the substrate D-3-hydroxybutyrate indicated that the loop in the closed conformation, as a result of NAD(+) binding, is positioned competent for catalysis. Gln193 is the only residue of the substrate-binding loop that interacts directly with the substrate. A translation, libration and screw (TLS) analysis of the rigid body movement of the loop in the crystal showed significant librational displacements, describing the coordinated movement of the substrate-binding loop in the crystal. NAD(+) binding increased the flexibility of the substrate-binding loop and shifted the equilibrium between the open and closed forms towards the closed form. The finding that all NAD(+) -bound subunits are present in the closed form and all NAD(+) -free subunits in the open form indicates that the loop closure is induced by cosubstrate binding alone. This mechanism may contribute to the sequential binding of cosubstrate followed by substrate.  相似文献   

2.
(S)-1-Phenylethanol dehydrogenase (PED) from the denitrifying bacterium strain EbN1 catalyzes the NAD+-dependent, stereospecific oxidation of (S)-1-phenylethanol to acetophenone and the biotechnologically interesting reverse reaction. This novel enzyme belongs to the short-chain alcohol dehydrogenase/aldehyde reductase family. The coding gene (ped) was heterologously expressed in Escherichia coli and the purified protein was crystallized. The X-ray structures of the apo-form and the NAD+-bound form were solved at a resolution of 2.1 and 2.4 A, respectively, revealing that the enzyme is a tetramer with two types of hydrophobic dimerization interfaces, similar to beta-oxoacyl-[acyl carrier protein] reductase (FabG) from E. coli. NAD+-binding is associated with a conformational shift of the substrate binding loop of PED from a crystallographically unordered "open" to a more ordered "closed" form. Modeling the substrate acetophenone into the active site revealed the structural prerequisites for the strong enantioselectivity of the enzyme and for the catalytic mechanism. Studies on the steady-state kinetics of PED indicated a highly positive cooperativity of both catalytic directions with respect to the substrates. This is contrasted by the behavior of FabG. Moreover, PED exhibits extensive regulation on the enzyme level, being inhibited by elevated concentrations of substrates and products, as well as the wrong enantiomer of 1-phenylethanol. These regulatory properties of PED are consistent with the presence of a putative "transmission module" between the subunits. This module consists of the C-terminal loops of all four subunits, which form a special interconnected structural domain and mediate close contact of the subunits, and of a phenylalanine residue in each subunit that reaches out between substrate-binding loop and C-terminal domain of an adjacent subunit. These elements may transmit the substrate-induced conformational change of the substrate binding loop from one subunit to the others in the tetrameric complex and thus mediate the cooperative behavior of PED.  相似文献   

3.
Structural studies of the streptavidin binding loop.   总被引:7,自引:5,他引:2       下载免费PDF全文
The streptavidin-biotin complex provides the basis for many important biotechnological applications and is an interesting model system for studying high-affinity protein-ligand interactions. We report here crystallographic studies elucidating the conformation of the flexible binding loop of streptavidin (residues 45 to 52) in the unbound and bound forms. The crystal structures of unbound streptavidin have been determined in two monoclinic crystal forms. The binding loop generally adopts an open conformation in the unbound species. In one subunit of one crystal form, the flexible loop adopts the closed conformation and an analysis of packing interactions suggests that protein-protein contacts stabilize the closed loop conformation. In the other crystal form all loops adopt an open conformation. Co-crystallization of streptavidin and biotin resulted in two additional, different crystal forms, with ligand bound in all four binding sites of the first crystal form and biotin bound in only two subunits in a second. The major change associated with binding of biotin is the closure of the surface loop incorporating residues 45 to 52. Residues 49 to 52 display a 3(10) helical conformation in unbound subunits of our structures as opposed to the disordered loops observed in other structure determinations of streptavidin. In addition, the open conformation is stabilized by a beta-sheet hydrogen bond between residues 45 and 52, which cannot occur in the closed conformation. The 3(10) helix is observed in nearly all unbound subunits of both the co-crystallized and ligand-free structures. An analysis of the temperature factors of the binding loop regions suggests that the mobility of the closed loops in the complexed structures is lower than in the open loops of the ligand-free structures. The two biotin bound subunits in the tetramer found in the MONO-b1 crystal form are those that contribute Trp 120 across their respective binding pockets, suggesting a structural link between these binding sites in the tetramer. However, there are no obvious signatures of binding site communication observed upon ligand binding, such as quaternary structure changes or shifts in the region of Trp 120. These studies demonstrate that while crystallographic packing interactions can stabilize both the open and closed forms of the flexible loop, in their absence the loop is open in the unbound state and closed in the presence of biotin. If present in solution, the helical structure in the open loop conformation could moderate the entropic penalty associated with biotin binding by contributing an order-to-disorder component to the loop closure.  相似文献   

4.
Phosphoglycerate kinase (PGK) is the enzyme responsible for the first ATP-generating step of glycolysis and has been implicated extensively in oncogenesis and its development. Solution small angle x-ray scattering (SAXS) data, in combination with crystal structures of the enzyme in complex with substrate and product analogues, reveal a new conformation for the resting state of the enzyme and demonstrate the role of substrate binding in the preparation of the enzyme for domain closure. Comparison of the x-ray scattering curves of the enzyme in different states with crystal structures has allowed the complete reaction cycle to be resolved both structurally and temporally. The enzyme appears to spend most of its time in a fully open conformation with short periods of closure and catalysis, thereby allowing the rapid diffusion of substrates and products in and out of the binding sites. Analysis of the open apoenzyme structure, defined through deformable elastic network refinement against the SAXS data, suggests that interactions in a mostly buried hydrophobic region may favor the open conformation. This patch is exposed on domain closure, making the open conformation more thermodynamically stable. Ionic interactions act to maintain the closed conformation to allow catalysis. The short time PGK spends in the closed conformation and its strong tendency to rest in an open conformation imply a spring-loaded release mechanism to regulate domain movement, catalysis, and efficient product release.  相似文献   

5.
The loop between alpha-helix 6 and beta-strand 6 in the alpha/beta-barrel active site of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) plays a key role in discriminating between gaseous substrates CO(2) and O(2). Based on numerous x-ray crystal structures, loop 6 is either closed or open depending on the presence or absence, respectively, of substrate ligands. The carboxyl terminus folds over loop 6 in the closed conformation, prompting speculation that it may trigger or latch loop 6 closure. Because an x-ray crystal structure of tobacco Rubisco revealed that phosphate is located at a site in the open form that is occupied by the carboxyl group of Asp-473 in the closed form, it was proposed that Asp-473 may serve as the latch that holds the carboxyl terminus over loop 6. To assess the essentiality of Asp-473 in catalysis, we used directed mutagenesis and chloroplast transformation of the green alga Chlamydomonas reinhardtii to create D473A and D473E mutant enzymes. The D473A and D473E mutant strains can grow photoautotrophically, indicating that Asp-473 is not essential for catalysis. However, both substitutions caused 87% decreases in carboxylation catalytic efficiency (V(max)/K(m)) and approximately 16% decreases in CO(2)/O(2) specificity. If the carboxyl terminus is required for stabilizing loop 6 in the closed conformation, there must be additional residues at the carboxyl terminus/loop 6 interface that contribute to this mechanism. Considering that substitutions at residue 473 can influence CO(2)/O(2) specificity, further study of interactions between loop 6 and the carboxyl terminus may provide clues for engineering an improved Rubisco.  相似文献   

6.
The crystal structure of the Escherichia coli enoyl reductase-NAD+-triclosan complex has been determined at 2.5 A resolution. The Ile192-Ser198 loop is either disordered or in an open conformation in the previously reported structures of the enzyme. This loop adopts a closed conformation in our structure, forming van der Waals interactions with the inhibitor and hydrogen bonds with the bound NAD+ cofactor. The opening and closing of this flipping loop is likely an important factor in substrate or ligand recognition. The closed conformation of the loop appears to be a critical feature for the enhanced binding potency of triclosan, and a key component in future structure-based inhibitor design.  相似文献   

7.
Aspartate transcarbamoylase undergoes a domain closure in the catalytic chains upon binding of the substrates that initiates the allosteric transition. Interdomain bridging interactions between Glu(50) and both Arg(167) and Arg(234) have been shown to be critical for stabilization of the R state. A hybrid version of the enzyme has been generated in vitro containing one wild-type catalytic subunit, one catalytic subunit in which Glu(50) in each catalytic chain has been replaced by Ala (E50A), and wild-type regulatory subunits. Thus, the hybrid enzyme has one catalytic subunit capable of domain closure and one catalytic subunit incapable of domain closure. The hybrid does not behave as a simple mixture of the constituent subunits; it exhibits lower catalytic activity and higher aspartate affinity than would be expected. As opposed to the wild-type enzyme, the hybrid is inhibited allosterically by CTP at saturating substrate concentrations. As opposed to the E50A holoenzyme, the hybrid is not allosterically activated by ATP at saturating substrate concentrations. Small angle x-ray scattering showed that three of the six interdomain bridging interactions in the hybrid is sufficient to cause the global structural change to the R state, establishing the critical nature of these interactions for the allosteric transition of aspartate transcarbamoylase.  相似文献   

8.
The structure of the cooperative hexameric enzyme ATP sulfurylase from Penicillium chrysogenum bound to its allosteric inhibitor, 3'-phosphoadenosine-5'-phosphosulfate (PAPS), was determined to 2.6 A resolution. This structure represents the low substrate-affinity T-state conformation of the enzyme. Comparison with the high substrate-affinity R-state structure reveals that a large rotational rearrangement of domains occurs as a result of the R-to-T transition. The rearrangement is accompanied by the 17 A movement of a 10-residue loop out of the active site region, resulting in an open, product release-like structure of the catalytic domain. Binding of PAPS is proposed to induce the allosteric transition by destabilizing an R-state-specific salt linkage between Asp 111 in an N-terminal domain of one subunit and Arg 515 in the allosteric domain of a trans-triad subunit. Disrupting this salt linkage by site-directed mutagenesis induces cooperative inhibition behavior in the absence of an allosteric effector, confirming the role of these two residues.  相似文献   

9.
Comparison of crystal structures of S-adenosylhomocysteine (AdoHcy) hydrolase in the substrate-free, NAD(+) form [Hu, Y., Komoto, J., Huang, Y., Gomi, T., Ogawa, H., Takata, Y., Fujioka, M., and Takusagawa, F. (1999) Biochemistry 38, 8323-8333] and a substrate-bound, NADH form [Turner, M. A., Yuan, C.-S., Borchardt, R. T., Hershfield, M. S., Smith, G. D., and Howell, P. L. (1998) Nat. Struct. Biol. 5, 369-376] indicates large differences in the spatial arrangement of the catalytic and NAD(+) binding domains. The substrate-free, NAD(+) form exists in an "open" form with respect to catalytic and NAD(+) binding domains, whereas the substrate-bound, NADH form exists in a closed form with respect to those domains. To address whether domain closure is induced by substrate binding or its subsequent oxidation, we have measured the rotational dynamics of spectroscopic probes covalently bound to Cys(113) and Cys(421) within the catalytic and carboxyl-terminal domains. An independent domain motion is associated with the catalytic domain prior to substrate binding, suggesting the presence of a flexible hinge element between the catalytic and NAD(+) binding domains. Following binding of substrates (i.e., adenosine or neplanocin A) or a nonsubstrate (i.e., 3'-deoxyadenosine), the independent domain motion associated with the catalytic domain is essentially abolished. Likewise, there is a substantial decrease in the average hydrodynamic volume of the protein that is consistent with a reduction in the overall dimensions of the homotetrameric enzyme following substrate binding and oxidation observed in earlier crystallographic studies. Thus, the catalytic and NAD(+) binding domains are stabilized to form a closed active site through interactions with the substrate prior to substrate oxidation.  相似文献   

10.
Human class I beta 3 beta 3 is one of the alcohol dehydrogenase dimers that catalyzes the reversible oxidation of ethanol. The beta 3 subunit has a Cys substitution for Arg-369 (beta 369C) in the coenzyme-binding site of the beta1 subunit. Kinetic studies have demonstrated that this natural mutation in the coenzyme-binding site decreases affinity for NAD+ and NADH. Structural studies suggest that the enzyme isomerizes from an open to closed form with coenzyme binding. However, the extent to which this isomerization limits catalysis is not known. In this study, stopped-flow kinetics were used from pH 6 to 9 with recombinant beta 369C to evaluate rate-limiting steps in coenzyme association and catalysis. Association rates of NADH approached an apparent zero-order rate with increasing NADH concentrations at pH 7.5 (42 +/- 1 s-1). This observation is consistent with an NADH-induced isomerization of the enzyme from an open to closed conformation. The pH dependence of apparent zero-order rate constants fit best a model in which a single ionization limits diminishing rates (pKa = 7.2 +/- 0.1), and coincided with Vmax values for acetaldehyde reduction. This indicates that NADH-induced isomerization to a closed conformation may be rate-limiting for acetaldehyde reduction. The pH dependence of equilibrium NADH-binding constants fits best a model in which a single ionization leads to a loss in NADH affinity (pKa = 8.1 +/- 0. 2). Rate constants for isomerization from a closed to open conformation were also calculated, and these values coincided with Vmax for ethanol oxidation above pH 7.5. This suggests that NADH-induced isomerization of beta 369C from a closed to open conformation is rate-limiting for ethanol oxidation above pH 7.5.  相似文献   

11.
Phenylalanine hydroxylase (PAH) is a multidomain tetrameric enzyme that displays positive cooperative substrate binding. This cooperative response is believed to be of physiological significance as a mechanism that controls L-Phe homeostasis in blood. The substrate induces an activating conformational change in the enzyme affecting the secondary, tertiary, and quaternary structures. Chemical modification and substitution with a negatively charged residue of Cys237 in human PAH (hPAH) also result in activation of the enzyme. As seen in the modeled structure of full-length hPAH, Cys237 is located in the catalytic domain close to residues in the oligomerization and regulatory domains of an adjacent subunit in the dimer, notably to Arg68. This residue is located in a prominent loop (68-75), which also has contacts with the dimerization motif from the same subunit. To investigate further the involvement of Cys237 and Arg68 in the activation of the enzyme, we have prepared mutants of hPAH at these positions, with substitutions of different charge and size. The mutations C237D, R68A, and C237A cause an increase of the basal activity and affinity for L-Phe, while the mutation C237R results in reduced affinity for the substrate and elimination of the positive cooperativity. The conformational changes induced by the mutations were studied by far-UV circular dichroism, fluorescence spectroscopy, and molecular dynamics simulations. All together, our results indicate that the activating mutations induce a series of conformational changes including both the displacement of the inhibitory N-terminal sequence (residues 19-33) that covers the active site and the domain movements around the hinge region Arg111-Thr117, in addition to the rearrangement of the loop 68-75. The same conformational changes appear to be involved in the activation of PAH induced by L-Phe.  相似文献   

12.
Banavali NK  Roux B 《Proteins》2009,74(2):378-389
Regulated activity of Src kinases is critical for cell growth. Src kinases can be activated by trans-phosphorylation of a tyrosine located in the central activation loop of the catalytic domain. However, because the required exposure of this tyrosine is not observed in the down-regulated X-ray structures of Src kinases, transient partial opening of the activation loop appears to be necessary for such processes. Umbrella sampling molecular dynamics simulations are used to characterize the free energy landscape of opening of the hydrophilic part of the activation loop in the Src kinase Hck. The loop prefers a partially open conformation where Tyr416 has increased accessibility, but remains partly shielded. An asymmetric distribution of the charged residues in the sequence near Tyr416, which contributes to shielding, is found to be conserved in Src family members. A conformational equilibrium involving exchange of electrostatic interactions between the conserved residues Glu310 and Arg385 or Arg409 affects activation loop opening. A mechanism for access of unphosphorylated Tyr416 into an external catalytic site is suggested based on these observations.  相似文献   

13.
Crystal structure of S-adenosylhomocysteine hydrolase from rat liver.   总被引:5,自引:0,他引:5  
The crystal structure of rat liver S-adenosyl-L-homocysteine hydrolase (AdoHcyase, EC 3.3.1.1) which catalyzes the reversible hydrolysis of S-adenosylhomocysteine (AdoHcy) has been determined at 2.8 A resolution. AdoHcyase from rat liver is a tetrameric enzyme with 431 amino acid residues in each identical subunit. The subunit is composed of the catalytic domain, the NAD+-binding domain, and the small C-terminal domain. Both catalytic and NAD+-binding domains are folded into an ellipsoid with a typical alpha/beta twisted open sheet structure. The C-terminal section is far from the main body of the subunit and extends into the opposite subunit. An NAD+ molecule binds to the consensus NAD+-binding cleft of the NAD+-binding domain. The peptide folding pattern of the catalytic domain is quite similar to the patterns observed in many methyltransferases. Although the crystal structure does not contain AdoHcy or its analogue, there is a well-formed AdoHcy-binding crevice in the catalytic domain. Without introducing any major structural changes, an AdoHcy molecule can be placed in the catalytic domain. In the structure described here, the catalytic and NAD+-binding domains are quite far apart from each other. Thus, the enzyme appears to have an "open" conformation in the absence of substrate. It is likely that binding of AdoHcy induces a large conformational change so as to place the ribose moiety of AdoHcy in close proximity to the nicotinamide moiety of NAD+. A catalytic mechanism of AdoHcyase has been proposed on the basis of this crystal structure. Glu155 acts as a proton acceptor from the O3'-H when the proton of C3'-H is abstracted by NAD+. His54 or Asp130 acts as a general acid-base catalyst, while Cys194 modulates the oxidation state of the bound NAD+. The polypeptide folding pattern of the catalytic domain suggests that AdoHcy molecules can travel freely to and from AdoHcyase and methyltransferases to properly regulate methyltransferase activities. We believe that the crystal structure described here can provide insight into the molecular architecture of this important regulatory enzyme.  相似文献   

14.
Nucleoside hydrolases cleave the N-glycosidic bond of ribonucleosides. Crystal structures of the purine-specific nucleoside hydrolase from Trypanosoma vivax have previously been solved in complex with inhibitors or a substrate. All these structures show the dimeric T. vivax nucleoside hydrolase with an "open" active site with a highly flexible loop (loop 2) in its vicinity. Here, we present the crystal structures of the T. vivax nucleoside hydrolase with both soaked (TvNH-ImmH(soak)) and co-crystallised (TvNH-ImmH(co)) transition-state inhibitor immucillin H (ImmH or (1S)-1-(9-deazahypoxanthin-9-yl)-1,4-dideoxy-1,4-imino-D-ribitol) to 2.1 A and 2.2 A resolution, respectively. In the co-crystallised structure, loop 2 is ordered and folds over the active site, establishing previously unobserved enzyme-inhibitor interactions. As such this structure presents the first complete picture of a purine-specific NH active site, including leaving group interactions. In the closed active site, a water channel of highly ordered water molecules leads out from the N7 of the nucleoside toward bulk solvent, while Trp260 approaches the nucleobase in a tight parallel stacking interaction. Together with mutagenesis results, this structure rules out a mechanism of leaving group activation by general acid catalysis, as proposed for base-aspecific nucleoside hydrolases. Instead, the structure is consistent with the previously proposed mechanism of leaving group protonation in the T. vivax nucleoside hydrolase where aromatic stacking with Trp260 and an intramolecular O5'-H8C hydrogen bond increase the pKa of the N7 sufficiently to allow protonation by solvent. A mechanism that couples loop closure to the positioning of active site residues is proposed based on a comparison of the soaked structure with the co-crystallized structure. Interestingly, the dimer interface area increases by 40% upon closure of loop 2, with loop 1 of one subunit interacting with loop 2 of the other subunit, suggesting a relationship between the dimeric form of the enzyme and its catalytic activity.  相似文献   

15.
Dimeric Salmonella typhimurium orotate phosphoribosyltransferase (OMP synthase, EC 2.4.2.10), a key enzyme in de novo pyrimidine nucleotide synthesis, has been cocrystallized in a complete substrate E·MgPRPP·orotate complex and the structure determined to 2.2 ? resolution. This structure resembles that of Saccharomyces cerevisiae OMP synthase in showing a dramatic and asymmetric reorganization around the active site-bound ligands but shares the same basic topology previously observed in complexes of OMP synthase from S. typhimurium and Escherichia coli. The catalytic loop (residues 99-109) contributed by subunit A is reorganized to close the active site situated in subunit B and to sequester it from solvent. Furthermore, the overall structure of subunit B is more compact, because of movements of the amino-terminal hood and elements of the core domain. The catalytic loop of subunit B remains open and disordered, and subunit A retains the more relaxed conformation observed in loop-open S. typhimurium OMP synthase structures. A non-proline cis-peptide formed between Ala71 and Tyr72 is seen in both subunits. The loop-closed catalytic site of subunit B reveals that both the loop and the hood interact directly with the bound pyrophosphate group of PRPP. In contrast to dimagnesium hypoxanthine-guanine phosphoribosyltransferases, OMP synthase contains a single catalytic Mg(2+) in the closed active site. The remaining pyrophosphate charges of PRPP are neutralized by interactions with Arg99A, Lys100B, Lys103A, and His105A. The new structure confirms the importance of loop movement in catalysis by OMP synthase and identifies several additional movements that must be accomplished in each catalytic cycle. A catalytic mechanism based on enzymic and substrate-assisted stabilization of the previously documented oxocarbenium transition state structure is proposed.  相似文献   

16.
In order to better understand ligand-induced closure in domain enzymes, open unliganded X-ray structures and closed liganded X-ray structures have been studied in five enzymes: adenylate kinase, aspartate aminotransferase, citrate synthase, liver alcohol dehydrogenase, and the catalytic subunit of cAMP-dependent protein kinase. A sequential model of ligand binding and domain closure was used to test the hypothesis that the ligand actively drives closure from an open conformation. The analysis supports the assumption that each enzyme has a dedicated binding domain to which the ligand binds first and a closing domain. In every case, a small number of residues are identified to interact with the ligand to initiate and drive domain closure. In all cases except adenylate kinase, the backbone of residues located in an interdomain-bending region (hinge site) is identified to interact with the ligand to aid in driving closure. In adenylate kinase, the side-chain of a residue located directly adjacent to a bending region drives closure. It is thought that by binding near a hinge site the ligand is able to get within interaction range of residues when the enzyme is in the open conformation. Interdomain bending regions not involved in inducing closure are involved in control, helping to determine the location of the hinge axis. Similarities have been discovered between aspartate aminotransferase and citrate synthase that only come to light in the context of their dynamical behaviour in response to binding their substrate. Similarity also exists between liver alcohol dehydrogenase and cAMP-dependent protein kinase whereby groups on NAD and ATP, respectively, mimic the backbone of a single amino acid residue in a process where a three residue segment located at the terminus of a beta-sheet, moves to form hydrogen bonds with the mimic that resemble those found in a parallel beta-sheet. This interaction helps to drive domain closure in a process that has analogy to protein folding.  相似文献   

17.
Electrical activity in nerve, skeletal muscle, and heart requires finely tuned activity of voltage-gated Na+ channels that open and then enter a nonconducting inactivated state upon depolarization. Inactivation occurs when the gate, the cytoplasmic loop linking domains III and IV of the alpha subunit, occludes the open pore. Subtle destabilization of inactivation by mutation is causally associated with diverse human disease. Here we show for the first time that the inactivation gate is a molecular complex consisting of the III-IV loop and the COOH terminus (C-T), which is necessary to stabilize the closed gate and minimize channel reopening. When this interaction is disrupted by mutation, inactivation is destabilized allowing a small, but important, fraction of channels to reopen, conduct inward current, and delay cellular repolarization. Thus, our results demonstrate for the first time that physiologically crucial stabilization of inactivation of the Na+ channel requires complex interactions of intracellular structures and indicate a novel structural role of the C-T domain in this process.  相似文献   

18.
The x-ray crystal structure of the cAMP-ligated T127L/S128A double mutant of cAMP receptor protein (CRP) was determined to a resolution of 2.2 A. Although this structure is close to that of the x-ray crystal structure of cAMP-ligated CRP with one subunit in the open form and one subunit in the closed form, a bound syn-cAMP is clearly observed in the closed subunit in a third binding site in the C-terminal domain. In addition, water-mediated interactions replace the hydrogen bonding interactions between the N(6) of anti-cAMP bound in the N-terminal domains of each subunit and the OH groups of the Thr(127) and Ser(128) residues in the C alpha-helix of wild type CRP. This replacement induces flexibility in the C alpha-helix at Ala(128), which swings the C-terminal domain of the open subunit more toward the N-terminal domain in the T127L/S128A double mutant of CRP (CRP*) than is observed in the open subunit of cAMP-ligated CRP. Isothermal titration calorimetry measurements on the binding of cAMP to CRP* show that the binding mechanism changes from an exothermic independent two-site binding mechanism at pH 7.0 to an endothermic interacting two-site mechanism at pH 5.2, similar to that observed for CRP at both pH levels. Differential scanning calorimetry measurements exhibit a broadening of the thermal denaturation transition of CRP* relative to that of CRP at pH 7.0 but similar to the multipeak transitions observed for cAMP-ligated CRP. These properties and the bound syn-cAMP ligand, which has only been previously observed in the DNA bound x-ray crystal structure of cAMP-ligated CRP by Passner and Steitz (Passner, J. M., and Steitz, T. A. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 2843-2847), imply that the cAMP-ligated CRP* structure is closer to the conformation of the allosterically activated structure than cAMP-ligated CRP. This may be induced by the unique flexibility at Ala(128) and/or by the bound syn-cAMP in the hinge region of CRP*.  相似文献   

19.
Snow C  Qi G  Hayward S 《Proteins》2007,67(2):325-337
Essential dynamics sampling simulations of the domain conformations of unliganded Escherichia coli adenylate kinase have been performed to determine whether the ligand-induced closed-domain conformation is accessible to the open unliganded enzyme. Adenylate kinase is a three- domain protein with a central CORE domain and twoflanking domains, the LID and the NMPbind domains. The sampling simulations were applied to the CORE and NMPbind domain pair and the CORE and LID domain pair separately. One aim is to compare the results to those of a similar study on the enzyme citrate synthase to determine whether a similar domain-locking mechanism operates in adenylate kinase. Although for adenylate kinase the simulations suggest that the closed-domain conformation of the unliganded enzyme is at a slightly higher free energy than the open for both domain pairs, the results are radically different to those found for citrate synthase. In adenylate kinase the targeted domain conformations could always be achieved, whereas this was not the case in citrate synthase due to an apparent free-energy barrier between the open and closed conformations. Adenylate kinase has been classified as a protein that undergoes closure through a hinge mechanism, whereas citrate synthase has been assigned to the shear mechanism. This was quantified here in terms of the change in the number of interdomain contacting atoms upon closure which showed a considerable increase in adenylate kinase. For citrate synthase this number remained largely the same, suggesting that the domain faces slide over each other during closure. This suggests that shear and hinge mechanisms of domain closure may relate to the existence or absence of an appreciable barrier to closure for the unliganded protein, as the latter can hinge comparatively freely, whereas the former must follow a more constrained path. In general though it appears a bias toward keeping the unliganded enzyme in the open-domain conformation may be a common feature of domain enzymes.  相似文献   

20.
According to the different nucleotide occupancies of the F(1)-ATPase beta-subunits and due to the asymmetry imposed through the central gamma-subunit, the beta-subunit adopts different conformations in the crystal structures. Recently, a spontaneous and nucleotide-independent closure of the open beta-subunit upon rotation of the gamma-subunit has been proposed. To address the question whether this closure is dictated by interactions to neighbored subunits or whether the open beta-subunit behaves like a prestressed "spring," we report multinanosecond molecular dynamics simulations of the isolated beta-subunit with different start conformations and different nucleotide occupancies. We have observed a fast, spontaneous closure motion of the open beta(E)-subunit, consistent with the available x-ray structures. The motions and kinetics are similar to those observed in simulations of the full (alpha beta)(3)gamma-complex, which support the view of a prestressed "spring," i.e., that forces internal to the beta(E)-subunit dominate possible interactions from adjacent alpha-subunits. Additionally, nucleotide removal is found to trigger conformational transitions of the closed beta(TP)-subunit; this provides evidence that the recently resolved half-closed beta-subunit conformation is an intermediate state before product release. The observed motions provide a plausible explanation why ADP and P(i) are required for the release of bound ATP and why gamma-depleted (alpha beta)(3) has a drastically reduced hydrolysis rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号