首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A two-dimensional copper(II) polymer with formula of [Cu4(H2O)4(dmapox)2(btc)]n · 10nH2O, where dmapox is the dianion of N,N′-bis[3-(dimethylamino)propyl]oxamide and btc is the tetra-anion of 1,2,4,5-benzenetetracarboxylic acid, was synthesized and characterized by elemental analysis, conductivity measurement, IR and electronic spectral studies. The crystal structure of the complex has been determined by X-ray single-crystal diffraction. The structure consists of crystallized water molecules and neutral two-dimensional copper(II) coordination polymeric networks constructed both by the bis-tridentate μ-trans-dmapox and tetra-monodentate μ4-btc bridging ligands. Each btc ligand links four trans-dmapox-bridged binuclear copper(II) building blocks [Cu2(H2O)2(trans-dmapox)]2+ and each binuclear copper(II) building block attaches to two btc ligands forming an infinite 2D layer which consists of 4+4 grids with dimensions of 13.563(5) × 15.616(5) Å. The environment around the copper(II) atom can be described as a distorted square-pyramid and the Cu?Cu separations through μ-trans-dmapox and μ4-btc bridging ligands are 5.225 Å (Cu1-Cu1i), 5.270 Å (Cu2-Cu2ii), 6.115 Å (Cu1-Cu2), 9.047 Å (Cu1-Cu2iii) and 10.968 Å (Cu1-Cu1iii), respectively. Abundant hydrogen bonds among the crystallized, the coordinated water molecules, and the uncoordinated carboxyl oxygen atoms cross-link the two-dimensional layers into an overall three-dimensional channel-like framework. The interaction of the copper(II) polymer with calf thymus DNA (CT-DNA) has been investigated by using absorption, emission spectral and electrochemical techniques. The results indicate that the copper(II) polymer interacts with DNA strongly (Kb = 4.8 × 105 M−1 and Ksv = 1.1 × 104) and the interaction mode between the copper(II) polymer and DNA may be the groove binding. To the best of our knowledge, this is the first report about the crystal structure and DNA-binding studies of a two-dimensional copper(II) polymer bridged both by the trans-oxamidate and btc ligands.  相似文献   

2.
The superfamily of heme?copper oxidoreductases (HCOs) include both NO and O2 reductases. Nitric oxide reductases (NORs) are bacterial membrane enzymes that catalyze an intermediate step of denitrification by reducing nitric oxide (NO) to nitrous oxide (N2O). They are structurally similar to heme?copper oxygen reductases (HCOs), which reduce O2 to water. The experimentally observed apparent bimolecular rate constant of NO delivery to the deeply buried catalytic site of NORs was previously reported to approach the diffusion-controlled limit (108–109?M?1?s?1). Using the crystal structure of cytochrome-c dependent NOR (cNOR) from Pseudomonas aeruginosa, we employed several protocols of molecular dynamics (MD) simulation, which include flooding simulations of NO molecules, implicit ligand sampling and umbrella sampling simulations, to elucidate how NO in solution accesses the catalytic site of this cNOR. The results show that NO partitions into the membrane, enters the enzyme from the lipid bilayer and diffuses to the catalytic site via a hydrophobic tunnel that is resolved in the crystal structures. This is similar to what has been found for O2 diffusion through the closely related O2 reductases. The apparent second order rate constant approximated using the simulation data is ~5?×?108?M?1?s?1, which is optimized by the dynamics of the amino acid side chains lining in the tunnel. It is concluded that both NO and O2 reductases utilize well defined hydrophobic tunnels to assure that substrate diffusion to the buried catalytic sites is not rate limiting under physiological conditions.  相似文献   

3.
A thorough spectral investigation of the copper(II) complex of the antitumor compound, bleomycin, has been carried out in solution employing optical, difference optical, electron spin resonance, and circular dichroism techniques. The optical spectrum of a pH = 7 solution of the 1:1 complex between copper(II) and bleomycin is characterized by a broad weak band in the visible region (λmax = 610 nm) that cannot be resolved and intense ultraviolet bands at 317 (? = 2800), 327 (shoulder), 250 (? = 4700), and 257 nm (shoulder). The circular dichroism spectrum in the visible region shows the broad and weak visible absorption band contains at least three components (558, 675, and 880 nm) that are likely to be “d-d” in origin. The electron spin resonance spectrum is characteristic of a tetragonal d9 copper(II) system showing no rhombic distoritions at X-band frequencies (gx = gy ± 0.002). The spin Hamiltonian parameters for the pH = 7.0 solution corrected for second order effects are A = 177 × 10?4 cm?1, A ? 15 × 10?4 cm?1, g = 2.214, g = 2.039. Most interesting was the observation of extra hyperfine splitting due to endogenous nitrogen coordination in a 30% glycerol glass (AN = 12.0 × 10?4 cm?1). That pattern is best interpreted as a seven-line sequence associated with three liganded nitrogens. A dramatic change in all spectral properties occurs when the pH of the copper(II)-bleomycin complex is lowered to 2.5. All these data taken together suggest a CuN3O coordination complex in solution. Details and justifications as well as a discussion of the limitations of the interpretations are presented.  相似文献   

4.
Two new μ-oxamido-bridged binuclear copper(II) complexes with formulae of [Cu2(heae)(pic)2] (1) and [Cu2(heae)(Me2phen)2](ClO4)2 · H2O (2), where heae and pic stand for the anion of N,N′-bis(N-hydroxyethylaminoethyl)oxamide and 2,4,6-trinitrophenol, respectively, and Me2phen represents 2,9-dimethyl-1,10-phenanthroline; have been synthesized and characterized by elemental analyses, molar conductivity measurements, IR and electronic spectra studies. The crystal structures of the two binuclear copper(II) complexes have been determined by X-ray single-crystal diffraction. In both the two binuclear complexes the central two copper(II) atoms are bridged by trans-heae. In complex 1 the coordination environment around each copper(II) atom can be described as a distorted octahedral geometry, while in complex 2 each copper(II) atom displays a square-pyramid stereochemistry. Hydrogen bonding and π-π stacking interactions link the binuclear copper(II) complex 1 or 2 into a 3D infinite network. The cytotoxicities of the two binuclear copper(II) complexes were tested by Sulforhodamine B (SRB) assays against human hepatocellular carcinoma cell SMMC-7721 and human lung adenocarcinoma cell A549. Both of the two binuclear copper(II) complexes exhibit potent cytotoxic effects against SMMC-7721 and A549 cell lines. The interactions of the two binuclear complexes with herring sperm DNA (HS-DNA) are investigated by using absorption and emission spectra and electrochemical techniques and viscometry. The results suggest that both the two binuclear copper(II) complexes interact with HS-DNA in the mode of intercalation with the intrinsic binding constants of 1.73 × 105 M−1 (1) and 1.92 × 106 M−1 (2). The influence of structural variation of the terminal ligands in the binuclear complexes on DNA-binding properties is preliminarily discussed.  相似文献   

5.
Low-ranked coals were dissolved by using cell extracts derived from liquid cultures of Trametes versicolor. The coal-solubilizing agent (CSA) was separated from the broth components by a multistep isolation procedure including reverse-phase high-pressure liquid chromatography, size exclusion chromatography, ethanol fractionation, and recrystallization. Staircase voltammetry was used to show that two CSA moieties can coordinate to aqueous copper(II) ion. A molecular weight determination (using amperometry) gave an apparent molecular weight of 1.34 × 102 g/mol ± 8%. Nuclear magnetic resonance indicated that all protons on CSA are exchangeable in D2O and that there is only one type of carbon in CSA. The infrared spectrum of recrystallized CSA is identical to that of ammonium oxalate, and X-ray studies confirmed the crystal structure and composition of CSA to be that of ammonium oxalate monohydrate. The equivalent weight of the coal in solution, when the coal was dissolved by ammonium oxalate, is 7,940 g of coal per mol of iron present in the coal.  相似文献   

6.
A new homobimetallic complex [Cu2(tpp)2(dppm)Br2] (1) of copper(I) bromide with triphenylphosphine (tpp) and bis-diphenylphosphinomethane (dppm) has been synthesized and charaterized by m.p., elemental analysis, FT-IR, 1H NMR, mass spectrometry, thermal studies and single crystal X-ray analysis. The solid-state molecular structure of 1, belonging to the monoclinic crystal system with space group P21/n, describes it as a neutral dinuclear species in which two copper atoms are bridged together through two bromides and a dppm ligand and each copper atom possesses a distorted tetrahedral geometry. Complex 1 was studied as a single-source precursor for the fabrication of phase pure thin films of Cu3P by aerosol-assisted chemical vapour deposition. The films have been characterized by PXRD, SEM and ED-XRF analyses and found to exhibit the particles size range 200−400 nm with high purity and surface uniformity.  相似文献   

7.
A new one-dimensional copper(II) polymer, [Cu4(dmapox)2(SCN)4(CH3CH2OH)2]n · 2nCH3CH2OH, where dmapox is the dianion of N,N′-bis[3-(dimethylamino)propyl]oxamide, was synthesized and characterized by elemental analysis, conductivity measurement, IR and electronic spectral studies. The crystal structure of the copper(II) complex has been determined by X-ray single-crystal diffraction. The complex crystallizes in triclinic, space group and exhibits infinite one-dimensional copper(II) polymeric chain bridged both by the bis-tridentate μ-trans-dmapox and μ-1,3-thiocyanate ligands. The environment around the copper(II) atom can be described as distorted square-pyramid. The Cu···Cu separations through μ-trans-oxamidate and thiocyanate bridges are 5.245(5) Å (Cu1-Cu1i)(i = −x+1, −y, −z+1), 5.262(4) Å (Cu2-Cu2ii)(ii = −x,−y, −z+1) and 6.022(3) Å (Cu1-Cu2), respectively. The interaction of the copper(II) complex with herring sperm DNA (HS-DNA) has been investigated by using absorption and emission spectral and electrochemical techniques and viscometry. The results reveal that the copper(II) complex interacts with the DNA in the mode of groove binding with the intrinsic binding constant of 2.38 × 105 M−1.  相似文献   

8.
Two dinuclear cobalt/copper compounds have been isolated from the reaction between N,N′-ethylenebis(salicylideniminato)cobalt(II), [Co(salen)], and copper(II) chloride in different conditions. The first one is a dinuclear cobalt(III)/copper(II) derivative, [Co(salen)Cl2Cu(EtOH)2Cl], 1, that have the cobalt atom six-coordinated to the four donor atoms of the salen ligand and to two chlorine atoms in a slightly distorted octahedral environment and the copper atom five-coordinated to the two bridging oxygen atoms of the salen ligand, two ethanol molecules and one extra chlorine atom. This compound is the only reported example of a cobalt/copper derivative with the cobalt maintaining the salen coordinative site, since the usual reaction takes place by a transmetalation process. This reaction is observed in the second derivative, [Cu(salen)CoCl2], 2, where the copper atom displaces the cobalt from the salen cavity. The copper atom adopts a square-planar coordinative environment, while the cobalt is tetrahedrically coordinated to the two bridging oxygen and two chlorine atoms. Both compounds present several intermolecular contacts that increase the dimensionality in the crystal and some of which can transmit magnetic interactions. The magnetic properties confirm the structural picture, with isolated copper(II) centres in 1, where the cobalt(III) is in the low spin form, and with antiferromagnetically coupled S = 1/2 and S = 3/2 centres in 2.  相似文献   

9.
A copper-sensitive operon repressor protein (CsoR) has been identified in Streptomyces lividans (CsoRSl) and found to regulate copper homeostasis with attomolar affinity for Cu(I). Solution studies reveal apo- and CuI-CsoRSl to be a tetramer assembly, and a 1.7-Å resolution crystal structure of apo-CsoRSl reveals that a significant conformational change is necessary to enable Cu(I) binding. In silico prediction of the CsoR regulon was confirmed in vitro (EMSA) and in vivo (RNA-seq), which highlighted that next to the csoR gene itself, the regulon consists of two Cu(I) efflux systems involving a CopZ-like copper metallochaperone protein and a CopA P1-type ATPase. Although deletion of csoR has only minor effects on S. lividans development when grown under high copper concentrations, mutations of the Cu(I) ligands decrease tolerance to copper as a result of the Cu(I)-CsoR mutants failing to disengage from the DNA targets, thus inhibiting the derepression of the regulon. RNA-seq experiments carried out on samples incubated with exogenous copper and a ΔcsoR strain showed that the set of genes responding to copper stress is much wider than anticipated and largely extends beyond genes targeted by CsoR. This suggests more control levels are operating and directing other regulons in copper homeostasis beside the CsoR regulon.  相似文献   

10.
The copper complex of indomethacin (1-(p-chlorobenzoyl)-5-methoxy-2-methyl-indole acetate), a common anti-inflammatory drug, was prepared and characterized. Crystal structure determination revealed the dimeric form of the 1:2 complex, namely Cu2(indomethacin)4 · L2, in the unit cell. Suprisingly, the copper-copper distance (263 pm) was very close to metallic copper (256 pm). The two coordination sites in the copper-copper axis can be readily replaced by superoxide. An intriguing similarity to Cu2(acetate)4 was seen.Due to the lipophilic nature of the indomethacin ligand, this copper complex reacted with superoxide in aprotic solvents. The superoxide dismutating activity was successfully demonstrated in Me2SO/water and acetonitrile/water mixtures using the nitro-blue tetrazolium assay and pulse radiolysis. The second-order rate constant of 6 · 109 M?1 · s?1 in strictly aqueous systems dropped only slightly to 1.1 · 109 M?1 · s?1 when aprotic solvents were used. This is the fastest rate constant ever observed for a copper-dependent dismutation of superoxide. The KO2-induced lipid peroxidation in both erythrocytes and liver microsomes was suppressed by 70% in the presence of 1 · 10?10 mol · ml?1 of Cu2(indomethacin)4. The inhibitory action dropped to 25% when Cu2Zn2superoxide dismutase was employed. The formation of copper · indomethacin in rat serum after administration of indomethacin was shown in vitro and in vivo.  相似文献   

11.
A series of copper(II) complexes, i.e. Cu2LCl4, CuLCl2·H2O and [Cu2L2Cl4]·2MeCN (8), based on a new potentially polytopic ligand, 3,5-bis(4,6-dimethylpyrimidin-2-yl)-4H-1,2,4-triazol-4-amine (3b, L), have been synthesized. The crystal structures of L and [Cu2L2Cl4]·2MeCN were studied by X-ray single crystal analysis. The dinuclear compound [Cu2L2Cl4]·2MeCN represents the first example of structurally characterized metal complexes with 3,5-di(pyrimidin-2-yl)-4H-1,2,4-triazol-4-amines. Both copper atoms have distorted tetragonal-pyramidal 3N + 2Cl environment. Surprisingly, in contrast to the complexes based on 3,5-di(pyridin-2-yl)-4H-1,2,4-triazol-4-amine (pyridinyl analog of L), the compound [Cu2L2Cl4]·2MeCN adopts a dinuclear trans-(N′,N1,N2)2 double bridging binding mode which is due to tridentate coordination of two L molecules linking two copper atoms through N1,N2-triazole and N′-pyrimidine atoms. It seems to be reasonable that it is methyl groups in pyrimidinyl moiety that obstruct the expected dinuclear (N′,N1,N2,N″)2 double bridging coordination being one of the most common for 4-substituted 3,5-di(pyridin-2-yl)-4H-1,2,4-triazoles and 3,5-di(pyridin-2-yl)-1,2,4-triazolates. Due to π-π stacking interactions, molecules of Cu2L2Cl4 in the structure of [Cu2L2Cl4]·2MeCN form 1D chains.  相似文献   

12.
Two new copper(II) complexes of the ligand 1,2,4,5-tetrakis(1,4,7-triazacyclononan-1-ylmethyl)benzene (Ldur) have been synthesized and characterized by single crystal X-ray studies. The first, [Cu4Ldur2-OH)4]Cl2(PF6)2 · 8H2O (1), was isolated from a solution of Ldur and Cu2+ at pH 9. Under acidic conditions (pH 3), a polymeric complex, {[Cu4Ldur2-Cl)6](PF6)2 · 10H2O}n (2), crystallized from solution. In both complexes, each of the four triazacyclononane (tacn) rings of the Ldur ligand facially coordinate to separate metal centres. Pairs of Cu(II) centres are then doubly-bridged by hydroxo groups in 1, leading to tetranuclear complex cation units featuring pairs of isolated copper(II) dimers with Cu22-OH)2 cores folded at the O?O lines. Two forms of the tetranuclear units, featuring slightly different Cu22-OH)2 core geometries, are present in equal amounts within the crystal lattice. In complex 2, chloro bridging ligands link pairs of Cu(II) centres from neighbouring tetranuclear units, forming a 1D helical polymeric structure. Variable-temperature magnetic susceptibility measurements suggest that the hydroxo-bridged copper(II) centres within one of the tetranuclear units in 1 are weakly antiferromagnetically coupled (J = −27 cm−1), whilst those in the other interact ferromagnetically (J = +19 cm−1). Similar measurements indicate weak ferromagnetic coupling (J = +16 cm−1) for the chloro-bridged copper(II) centres in 2.  相似文献   

13.
Two new one-dimensional copper(II) polymers with formulae of [Cu2(H2O)2(dmapox)(ipa)2]n (1) and [Cu2(H2O)2(dmapox)(tpa)2]n (2), where dmapox, ipa and tpa stand for the dianion of N,N′-bis[3-(dimethylamino)propyl]oxamide, isophthalic acid and terephthalic acid respectively, have been synthesized and characterized by elemental analysis, conductivity measurement, IR and electronic spectral studies. The crystal structures of the two complexes have been determined by X-ray single-crystal diffraction. The structures of 1 and 2 consist of one-dimensional copper(II) coordination polymeric chain constructed both by the bis-tridentate trans-dmapox and bis-monodentate phenyldicarboxylate bridging ligands. In the two complexes, the environment around the copper(II) atoms can be described as distorted square-pyramid and the Cu···Cu separations through μ-trans-dmapox and phenyldicarboxylato bridging ligands are 5.245(5) Å and 8.212(3) Å for 1, 5.237(8) Å and 11.171(1) Å for 2, respectively. The binding properties of the two copper(II) polymers with herring sperm DNA (HS-DNA) have been investigated by using absorption and emission spectral and electrochemical techniques and viscometry. The results show that the two copper(II) complexes interact with the HS-DNA in the mode of intercalation with the intrinsic binding constants of 1.22(±0.2) × 104 M−1 and 1.45(±0.3) × 104 M−1 for 1 and 2, respectively.  相似文献   

14.
Two critical cysteine residues in the copper-A site (CuA) on subunit II (CoxB) of bacterial cytochrome c oxidase lie on the periplasmic side of the cytoplasmic membrane. As the periplasm is an oxidizing environment as compared with the reducing cytoplasm, the prediction was that a disulfide bond formed between these cysteines must be eliminated by reduction prior to copper insertion. We show here that a periplasmic thioredoxin (TlpA) acts as a specific reductant not only for the Cu2+ transfer chaperone ScoI but also for CoxB. The dual role of TlpA was documented best with high-resolution crystal structures of the kinetically trapped TlpA-ScoI and TlpA-CoxB mixed disulfide intermediates. They uncovered surprisingly disparate contact sites on TlpA for each of the two protein substrates. The equilibrium of CoxB reduction by TlpA revealed a thermodynamically favorable reaction, with a less negative redox potential of CoxB (E0 = −231 mV) as compared with that of TlpA (E0 = −256 mV). The reduction of CoxB by TlpA via disulfide exchange proved to be very fast, with a rate constant of 8.4 × 104 m−1 s−1 that is similar to that found previously for ScoI reduction. Hence, TlpA is a physiologically relevant reductase for both ScoI and CoxB. Although the requirement of ScoI for assembly of the CuA-CoxB complex may be bypassed in vivo by high environmental Cu2+ concentrations, TlpA is essential in this process because only reduced CoxB can bind copper ions.  相似文献   

15.
The crystal and molecular structure of the copper(II) complex of the N2S2 tetradentate ligand, ethylenebis(methyl-2-amino-1-cyclopentenedithiocarboxylate), was solved at room temperature by a single crystal x-ray diffraction study. The complex crystallizes in the orthorhombic space group P212121 with a = 7.739(1) Å, b = 13.893(2) Å, c = 17.096(3) Å, V = 1838(1) Å3, ?observed = 1.56 g cm?3 and ?calculated = 1.57 g cm?3 for a molecular weight of 434.2, and Z = 4. Diffraction data were collected with a Syntex P1 diffractometer using graphite-monochromatized Cu (λ = 1.5418 Å) radiation. The heavy atoms were located from a Patterson synthesis; all other nonhydrogen atoms were located using difference Fourier techniques, and hydrogen atoms were placed in calculated positions. Final refinement resulted in discrepancy indices of R = 0.067 and goodness of fit of 2.92 for all 995 reflections (5° < 2θ < 100°) greater than three times their standard deviation. The molecules are monomeric and well separated. Bond distances in the two ”halvesldquo; of the ligand are sufficiently different to suggest that different resonance structures exist in each portion. This agrees with the rhombic symmetry displayed by the frozen glass esr spectrum of the compound (xxgyy). The dihedral angle between the planes defined by the CuN2 and CuS2 planes is 20.0°, indicating a rather distorted inner coordination sphere. The copper(II)-copper(I) reduction potentials found for this compound and the trimethylene and tetramethylene analogs were determined to be ?1.01, ?0.79, and ?0.64 V respectively. A quantitative relationship between tetrahedral distortion and redox potentials is obtained, and these results are discussed in terms of ”blueldquo; copper(II) sites in proteins. Trends in CuS and CuN bonding patterns in the same three compounds are discussed with regard to the short CuS (cys) bond distance in plastocyani Finally, a brief discussion of the optical spectra of these three compounds, their variation, and their significance with respect to tetrahedral symmetry in copper(II) protein sites is presented.  相似文献   

16.
The binding of Cu2+ to apostellacyanin occurs in two steps. The first step consists of a fast equilibrium reaction involving binding of copper to the protein in a non-native, though specific way, as shown by electron paramagnetic resonance measurements. All the spectroscopic properties of native stellacyanin are recovered in a slower monomolecular process (k = 7.5 × 10?3 sec?1 at 25 °C) characterized by high activation energy (ΔHa = 22 kcal mole?1) and low activation entropy (ΔSa = 3.0 cal deg?1 mole?1). The second step parallels a conformational change of the copper-bound protein molecule. A large difference of the tyrosyl residues pKs is found between holo- and apostellacyanin. In the latter the tyrosyl residues appear to be more exposed to solvent perturbations. Ammonia or monovalent anions such as N3?, SCN?, and Cl? have a catalytic effect on the second step of the reaction, roughly proportional to their first binding constant to aqueous copper. It is suggested that they may compete for a non-native bond of the copper to the protein, thus rendering the conformational change easier.The effect of Ag3 and Hg2+ on the recombination reaction with copper is discussed in terms of conformation of the metal-bound protein.  相似文献   

17.
A blue luminescent dichlorido-bridged dinuclear copper(II) (S = 1/2) complex, [CuII2(HL)2(μ-Cl)2]·2H2O, 1a was synthesized with the 1:1 reaction of the acyclic tridentate salicylaldehyde 2-pyridyl hydrazone ligand, HL, 1. The complex 1a displays multiple bands in the visible region (400-470 nm). The association constant (Kass, UV-Vis) was found to be 1.186 × 104 for 1a at 298 K. The copper(II)-copper(III) oxidation potential lies near 0.32 V versus Ag/AgCl electrode. On excitation at 390 nm, the ligand 1 strongly emits at 444 nm due to an intraligand 1(π-π) transition. Upon complexation with copper(II) the emission peak is slightly red shifted (λex 390 nm, λem 450 nm, F/F0 0.81) with little quenching. Molecular structure of 1a (Cu···Cu 3.523 Å) has been determined by single crystal X-ray diffraction studies. DFT and TDDFT calculations strongly support the spectral behavior of the ligand and the complex. The complex 1a exhibits a strong interaction towards DNA as revealed from the Kb (intrinsic binding constant) 2.05 × 104 M−1 and Ksv (Stern-Volmer quenching constant) 2.47 values. The complex exhibits cytotoxic effect and the LD50 value for HeLa cells was calculated as 5.44 μM at which the cell cycle was arrested at G2/M phase.  相似文献   

18.
A series of cis and trans tetradentate copper macrocyclic complexes, of ring size 14-16, that employ amine and thioether donor groups are reported. Apart from 5,6,15,16-bisbenzo-8,13-diaza-1,4-dithia-cyclohexadecane copper(I) (cis-[Cu(H4NbuSen)]+) all of the complexes are obtained in the copper(II) form. Crystallographic analysis shows that the copper(II) complexes all adopt a distorted planar geometry around the copper. In contrast, cis-[Cu(H4NbuSen)]+ is found to adopt a distorted tetrahedral geometry. The complexes were subjected to electrochemical analysis in water and acetonitrile. The effect of the solvent, positions of the donor atoms (cis/trans) on E1/2 is discussed as is the comparison of the electrochemical behaviour of these complexes with their parent Schiff base macrocycles.  相似文献   

19.
Two new copper(II) complexes of the type [Cu(L)X2), where L = (E)-N-phenyl-2-[phenyl (pyridine-2-yl)methylene]hydrazinecarboxamide X = Cl/Br have been synthesized and characterized by elemental analyses, FAB (fast atomic bombardment) magnetic measurements, electronic absorption, conductivity measurements cyclic voltammetry (CV) and Electron paramagnetic resonance (epr) spectroscopy. The structures of these complexes determined by single crystal X-ray crystallography show a distorted square based pyramidal (DSBP) geometry around copper(II) metal center. The distorted CuN2OX (X = Cl/Br) basal plane in them is comprised of two nitrogen and one oxygen atoms of the meridionally coordinated ligand and a chloride or bromide ion and axial position is occupied by other halide ion. The epr spectra of these complexes in frozen solutions of DMSO showed a signal at g ca. 2. The trend in g-value (g|| > g > 2.00) suggest that the unpaired electron on copper(II) has dx2-y2 character. Biological activities in terms of superoxide dismutase (SOD) and antimicrobial properties of copper(II) complexes have also been measured. The superoxide dismutase activity reveals that these two complexes catalyze the fast disproportionation of superoxide in DMSO solution.  相似文献   

20.
Copper phosphates, [Cu(dtbp)2(pzet)2]·H2O (1) and [Cu(dtbp)2(pyme)2] (2), as well as copper phosphinate, [Cu(dppi)2(pyet)2] (3) have been synthesized by the reaction of copper acetate with di-tert-butyl phosphate (dtbp) or diphenyl phosphinate (dppi) in the presence of pyridine base having hydroxyl group, namely, 3,5-dimethylpyrazole-2-ethanol (pzet) or 2-(hydroxymethyl)pyridine (pyme) or 2-(2-hydroxyethyl)pyridine (pyet). Single crystal X-ray diffraction studies reveal that copper ion in all the three complexes is bonded to two phosphoryl ions (P(O)O) and two pyridine co-ligands. The crystal structure of 1 reveals that the hydroxyl group of the CH2CH2OH moiety of pzet ligand exhibits a positional disorder between the non-bonding position and the bonding position with respect to the central copper ion along the Jahn-Teller axis. Hence, the structure of 1 can be considered to exhibit both ‘square-planar’ and ‘octahedral’ coordination geometries simultaneously for the copper ion in the same complex. A similar situation for the -OH groups has not been observed in the complexes 2 and 3 and hence the coordination geometry around the copper ion is axially elongated octahedron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号