首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of a bipedal gait in fossil apes is now recognized as the earliest paleontological evidence of the beginnings of the human lineage. Thus, the search for the selective pressure that led to the adoption of bipedal posture and gait is the search for the origins of the human adaptation. One of the most popular candidates for the origin of erect posture is its purported energetic advantage.1–4 This argument is reevaluated in light of data on the energetic cost of locomotion in mammals and, particularly, data on the effect of bipedalism on cost. I go on to discuss what morphological traces we might expect to see of changes in the locomotor economy of our ancestors once bipedalism became established.  相似文献   

2.
Circadian rhythms of locomotor activity shown by freshwater decapods display different patterns among crayfish, Procambarus, and crabs, when exposed to artificial light-dark cycles. Crayfish are mainly nocturnal while a crepuscular activity is observed in crabs of the genus Pseudothelphusa. In constant darkness, free running rhythms are displayed in unimodal or bimodal patterns by crayfish Procambarus; however, Pseudothelphusa continues to show bimodal rhythms. The many studies using locomotor activity indicate that the rhythm in freshwater crabs is circadian in nature, but that a multioscillatory system may be controlling the overt rhythm. In the present study, the implications of different locomotor activity patterns are analyzed in selected freshwater decapods with regard to the interactions between light and the organisms. Crabs and crayfish are commonly found in similar habitats, often sharing the same environment; however, different patterns of locomotor activity as well as different sensitivities of the bouts of activity with regard to entrainment by light, indicate that distinct temporal niches may exist that result in temporal exclusion or low competition.  相似文献   

3.
Aldrin, a chlorinated hydrocarbon group of pesticide, is a well known central nervous system (CNS) stimulant. The CNS stimulating effect of aldrin is manifested in the form of an increase in locomotor activity (LA) of animals. Maximum increase in LA was observed at 2 h following aldrin (2-10 mg/kg, p.o.) treatment and this aldrin-induced increase in LA attained a peak at a dose of 10 mg/kg, p.o. Administration of aldrin (2 or 5 mg/kg/day, p.o.) enhanced LA of rats and reached a maxima after 12 consecutive days of treatment following which aldrin-induced LA was gradually reduced and restored to control value after 20 consecutive days of aldrin treatment. A single administration of aldrin (2-10 mg/kg, p.o.) reduced the GABA system in cerebellum, hypothalamus and pons-medulla. The treatment with aldrin (2 mg/kg/day, p.o.) for 12 consecutive days produced more inhibition in those brain regional GABA system than that observed with a single dose of aldrin. These results, thus, suggest that aldrin-induced inhibition of central GABA may be a cause of stimulation of LA with aldrin either at a single dose or for 12 consecutive days.  相似文献   

4.
The measurement of locomotor activity (LA) of theophylline (Th) nontolerant (10 mg/kg, p.o.) rats using agonist and antagonist of different neurotransmitters either in single or in their different combinations suggest that an inhibition of central GABAergic activity as well as adenosinergic and serotonergic activities through the stimulation of dopaminergic activity followed by an inhibition of cholinergic system may stimulate LA in Th nontolerant condition. Further, it is suggested that the development of tolerance to Th restored the LA to control value may be due to an activation of adenosinergic system which possibly withdrew the inhibition occurred in central cholinergic, GABAergic and serotonergic activities followed by the modulation of dopaminergic system.  相似文献   

5.
It is believed that drug-induced behavioral sensitization is an important process in the development of substance dependence. In order to explore mechanisms of sensitization, a mouse model of nicotine-induced locomotor sensitization was established, and effects of the sensitization process on mesencepahlic gene expression were examined. A schedule, which included 3 weeks of intermittent nicotine exposure (0.5 mg/kg, s.c.) and 3 weeks of withdrawal, resulted in locomotor sensitization. Effects of sensitization on mesencephalic expression of approximately 14,000 genes were assessed using oligonucleotide microarrays. Signal intensity differences in samples obtained from repeated nicotine- and saline-exposed animals were analyzed with z-test after False Discovery Rate (FDR) multiple test correction. Genes related to GABA-A receptors and protein phosphatases were among 68 genes showing significantly different expression levels between the saline and the nicotine groups. We hypothesize that some of the gene expression changes in the mesencephalon are involved in pathways leading to nicotine-induced sensitization. Down-regulation of GABA-A receptors induced by repeated nicotine exposure may facilitate dopaminergic neuronal transmission and may contribute to increased locomotor activity.  相似文献   

6.
Locomotor activity rhythm of fresh adult of H. reaumurii was recorded in pairs with ovigerous and with non-ovigerous females. According to double-plotted actograms and waveform curves, results showed the presence of different locomotor patterns. In fact, locomotor profiles of pairs with ovigerous females were mainly bimodal whatever the recording conditions, whereas locomotor patterns were trimodal in pairs with non-ovigerous females. Results showed also that locomotor activity rhythm was more stable in the presence of the synchronizer (nLD cycle) than in constant darkness whatever the recording type. Moreover, the most important stability of the locomotor rhythm was observed under constant darkness and individuals were more active in pairs with ovigerous females than in pairs with non-ovigerous females.  相似文献   

7.
Pregnancy is associated with reduced locomotor performance in several reptile species, but the reasons for this reduction remain unclear. Previous authors generally have assumed that the decreased maternal mobility is due to the physical burden of the clutch, but our data on a viviparous Tasmanian scincid lizard (Niveoscincus microlepidotum) suggest a different interpretation. Running speeds of gravid female skinks decrease during gestation (as litter mass increases), but this locomotor impairment is due to physiological changes associated with pregnancy, rather than simple physical burdening. Maternal running speeds are unrelated to litter masses, and do not increase in the week after parturition. Females with very large abdominal fat‐bodies (due to ad libitum feeding in the laboratory), equivalent in mass to the litter, nonetheless run rapidly. If the locomotor ‘costs’ of reproduction reflect all‐or‐none physiological changes associated with pregnancy, then the magnitude of such costs may correlate only weakly with the actual level of reproductive investment. Because life‐history models predict that the relationship between fecundity and ‘cost’ has important evolutionary consequences, our results highlight the need to clarify the causal basis for locomotor impairment in gravid reptiles.  相似文献   

8.
The Callitrichidae are a family of New World primates that exhibit a complex of behavioral and morphological characters reputedly similar to those of tree squirrels of the genus Sciurus.In particular, the locomotor behavior of tamarins and marmosets has been described as “squirrel-like. ” In this paper I describe a field investigation of the locomotor behavior and ecology of the Panamanian tamarin (Saguinus oedipus geoffroyi)and the redtailed squirrel (Sciurus granatensis).From January through August 1978, a total of 1200 hr was spent observing freeranging populations of tamarins and tree squirrels in an area of secondary forest on the Pacific Coast of Panama. Observations were made using an instantaneous time sampling technique. Individual activity records were collected on focal animals and recorded at 2.5-min intervals throughout the day. The following information was collected: (a) nature and structure of the substrate exploited, (b) activities on these supports and/or types of resources procured, and (c) body posture involved in the use of these supports. Data presented indicate major differences in substrate preference and positional behavior in tamarins and tree squirrels. Unlike squirrels, tamarins avoid vertical and sharply inclined supports during travel. Movements through the canopy is accomplished by a series of long leaps which begin and end on thin terminal supports. However, the Panamanian tamarin spent numerous hours clinging to large vertical trunks while feeding on plant exudate. Gums comprise 23.O% of the noninsect portion of the tamarin diet. The relationships between small body size, claw-like nails, substrate preference, and positional behavior are discussed. Claw-like nails enable this primate to exploit a food resource that would otherwise be inaccessible. The interrelationship between environment, behaviour, and morphology provides a frameworks from which to understand callitrichid adaptations. These adaptations are not convergent with those of the sciurid rodents. An earlier draft of this paper was presented at the 48th Annual Meeting of the American Association of Physical Anthropologists, San Francisco, April 1979.  相似文献   

9.
In this paper we report the results of an experiment to assess how closely repeated brief light pulses (LPs) mimic the effects of 12:12 h light/dark (LD) cycles (PPc). The locomotor activity rhythm of individual fruit flies from a laboratory population of Drosophila melanogaster was monitored under four different photoperiodic regimens, created using 12 h of light and 12 h of darkness or brief light pulses (LPs). The phase relationship (Ψ) and the stability (precision) of the locomotor activity rhythm during entrainment were estimated in order to compare the state of the circadian clocks under the four different photoperiodic regimens. The flies (n = 72) were subjected to four different LD cycles: (i) 12 h of light and 12 h of darkness (complete photoperiod, PPc); (ii) a single brief LP of 15 min duration presented close to the onset of activity (SLP-1); (iii) a single brief LP of 15 min duration administered close to the offset of activity (SLP-2); and (iv) two brief LPs administered 12 h apart (skeleton photoperiod, PPs). The locomotor activity rhythm of the flies was first monitored under constant darkness (DD) for about 10 days and then under the four different photoperiodic regimens for about 10 days, and finally in DD for the remainder of the experiment. The Ψ of the locomotor activity rhythm and its precision under PPc and PPs did not differ significantly, but they were significantly different from the SLP-1 and SLP-2 conditions. The results provide interesting insights into photoentrainment mechanisms of circadian clocks in D. melanogaster, and suggest that skeleton photoperiods, but not single brief LPs, mimic the actions of complete photoperiods.  相似文献   

10.
Chlorogenic acid possessed a weak caffeine-like psychostimulant property when assessed for its effect on spontaneous locomotor activity in mice. In the evaluation of the effects for the major metabolites of chlorogenic acid which were detected upon incubation with rat feces and/or excreted in urine after oral administration to rats, caffeic and m-coumaric acids were found to be the principal active metabolites, while the others contributed little to this caffeine-like psychostimulant activity.  相似文献   

11.
12.
In mammals, dopamine 2-like receptors are expressed in distinct pathways within the central nervous system, as well as in peripheral tissues. Selected neuronal D2-like receptors play a critical role in modulating locomotor activity and, as such, represent an important therapeutic target (e.g. in Parkinson's disease). Previous studies have established that proteins required for dopamine (DA) neurotransmission are highly conserved between mammals and the fruit fly Drosophila melanogaster. These include a fly dopamine 2-like receptor (DD2R; Hearn et al. PNAS 2002 99(22):14554) that has structural and pharmacologic similarity to the human D2-like (D2R). In the current study, we define the spatial expression pattern of DD2R, and functionally characterize flies with reduced DD2 receptor levels. We show that DD2R is expressed in the larval and adult nervous systems, in cell groups that include the Ap-let cohort of peptidergic neurons, as well as in peripheral tissues including the gut and Malpighian tubules. To examine DD2R function in vivo, we generated RNA-interference (RNAi) flies with reduced DD2R expression. Behavioral analysis revealed that these flies show significantly decreased locomotor activity, similar to the phenotype observed in mammals with reduced D2R expression. The fly RNAi phenotype can be rescued by administration of the DD2R synthetic agonist bromocriptine, indicating specificity for the RNAi effect. These results suggest Drosophila as a useful system for future studies aimed at identifying modifiers of dopaminergic signaling/locomotor function.  相似文献   

13.
Most life forms exhibit daily rhythms in cellular, physiological and behavioral phenomena that are driven by endogenous circadian (≡24 hr) pacemakers or clocks. Malfunctions in the human circadian system are associated with numerous diseases or disorders. Much progress towards our understanding of the mechanisms underlying circadian rhythms has emerged from genetic screens whereby an easily measured behavioral rhythm is used as a read-out of clock function. Studies using Drosophila have made seminal contributions to our understanding of the cellular and biochemical bases underlying circadian rhythms. The standard circadian behavioral read-out measured in Drosophila is locomotor activity. In general, the monitoring system involves specially designed devices that can measure the locomotor movement of Drosophila. These devices are housed in environmentally controlled incubators located in a darkroom and are based on using the interruption of a beam of infrared light to record the locomotor activity of individual flies contained inside small tubes. When measured over many days, Drosophila exhibit daily cycles of activity and inactivity, a behavioral rhythm that is governed by the animal''s endogenous circadian system. The overall procedure has been simplified with the advent of commercially available locomotor activity monitoring devices and the development of software programs for data analysis. We use the system from Trikinetics Inc., which is the procedure described here and is currently the most popular system used worldwide. More recently, the same monitoring devices have been used to study sleep behavior in Drosophila. Because the daily wake-sleep cycles of many flies can be measured simultaneously and only 1 to 2 weeks worth of continuous locomotor activity data is usually sufficient, this system is ideal for large-scale screens to identify Drosophila manifesting altered circadian or sleep properties.  相似文献   

14.
The effects of streptozotocin induced diabetes (50 mg/Kg) on the circadian rhythms in the excretion of sodium and potassium as well as their plasma concentration rhythms were investigated. Control (C) and diabetic (D) rats were studied during a light-dark (12h:12h) cycle and fed ad libitum. Statistically significant circadian rhythms were found for sodium and potassium excretion in C rats. The orthophases of both rhythms occurred in the dark phase, the potassium one occurring before that of sodium. In D rats there is increased excretion of both sodium and potassium with the rhythmicity maintained for sodium excretion only, which has an earlier orthophase than in the C rats. Plasma sodium and potassium concentrations showed a statistically significant circadian pattern in C rats, with orthophase in the light phase. This rhythmicity only appears in plasma potassium concentration for D rats, with orthophase at the end of the dark phase. The results in diabetic rats may suggest that the glomerular filtration rate (GFR) and/or tubular reabsorption rhythms are still contributing to the sodium excretory rhythm, and that the loss of the circadian rhythm in sodium plasma concentration has no influence on the sodium excretion rhythm. Nevertheless, the loss of the potassium excretion rhythm may suggest a disruption of the variations in the secretory process, as this excretion seems to be independent of the plasma potassium concentration rhythm, which is not lost in D rats.  相似文献   

15.
目的 运动训练已被证明能够改善许多慢性肌肉功能疾病,被用于治疗衰老型肌萎缩。本文采用电阻抗成像(electrical impedance tomography,EIT)研究人类小腿肌肉对运动训练生理响应的电学特性,旨在使用EIT方法可视化运动训练对人类小腿响应肌肉隔室内肌肉纤维体积增加的效果。方法 实验对象被要求在连续5个实验日进行左、右腿单侧提踵训练,应用EIT检测每日运动训练前和运动训练后小腿肌肉的电导率分布。为了定量分析运动训练对响应肌肉隔室的作用,使用配对样本t检验分析EIT重建图像的空间平均电导率<σ>。结果 运动训练后,由小腿腓肠肌组成的M1肌肉隔室空间平均电导率<σ>M1显著增加。此外,连续5个实验日的EIT测量结果显示,运动训练前的空间平均电导率<σpre>M1呈上升趋势。所有实验对象在实验日1早晨进行实验前的腿部瘦体重与<σ>M1呈线性关系,即<σ>M1随腿部瘦体重增加而增加;运...  相似文献   

16.
Freshly adult individuals of two sympatric species, Orchestia gammarellus and Orchestia montagui, collected in spring from the supralittoral zone of Bizerte lagoon (Northern of Tunisia) at Menzel Jemil, were housed in a controlled environment cabinet. Locomotor activity rhythm was recorded in isolated individuals and groups by infrared actograph every 20 min by a data-logger, at a constant temperature of 18 ± 0.5 °C under constant darkness. According to double-plotted actograms and waveform curves, results showed the presence of two different locomotor patterns; in fact, individuals of O. gammarellus concentrated their activity during the hours of subjective night, whereas O. montagui were active during the subjective night and beyond the subjective dawn. Furthermore, whatever the species studied, periodogram analysis indicated a distinct circadian pattern of activity. Moreover, whatever the experiment condition is, the most clearly defined rhythms were found in O. gammarellus. In contrary to O. gammarellus, the group effect on the locomotor rhythm parameters seems to be less marked in O. montagui. On the other hand, a highly inter-individual variability was observed in the activity time for these two species and especially for O. montagui groups.  相似文献   

17.
A new method to quantify locomotor behavior in Drosophila is presented, and compared with previous methods. It is based upon a radar wave, reflected by moving flies. A problem associated with the new apparatus is that its output is dependent on fly size. However, for the case the weight of the experimental flies has been determined, a correction is proposed. The method has been used by studying the effect of starvation upon locomotion in Drosophila melanogaster. It was found that starved flies are much more active than well fed flies. The importance of this effect under several conditions is discussed.  相似文献   

18.
Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 5,7-dihydroxytryptamine (5,7-DHT) on striatal levels of dopamine (DA), 5-hydroxytryptamine (5-HT), and their metabolites, as well as on locomotor activity were investigated in C57BL/6 mice. The results showed that MPTP significantly increased locomotor activity and decreased striatal DA levels. However, injection of the serotonergic neurotoxin 5,7-DHT in the striatum, either alone or following high doses of MPTP, significantly decreased locomotor activity, and concomitantly decreased striatal levels of 5-HT and 5-HIAA. This study suggests that the increased locomotor activity may be due to increased striatal serotonergic activity which overcompensates for the DA deficiency. The locomotor hypoactivity, induced by 5,7-DHT, might be due to the decreased striatal levels of 5-HT and 5-HIAA.  相似文献   

19.
Trade-offs between reproduction and survival are important determinants of life-history characteristics of lizards. Organisms cannot increase the allocation of limited resources to reproduction without diverting a proportional amount of energy from another trait. Locomotor performance is an ecologically relevant trait that potentially influences survival by affecting the ability to escape from predators. Most studies have used female lizards as subjects because pregnancy is known to reduce their locomotor abilities, whereas little is known on costs of reproduction in males. In this study we suggest that in males of the lizard Lacerta monticola reproductive investment in morphological traits that confer dominance (i.e. head size) might lead to a low probability of survival by decreasing investment in other traits that affect locomotor performance (i.e. limb symmetry). We staged laboratory agonistic encounters between males and measured their morphology and burst speed on a race track to examine possible relationships between morphology, social dominance and locomotor capacity. Our results indicate that social dominance was positively related to relative head height, and that escape speed was negatively related to levels of fluctuating asymmetry in femur length, but also negatively related to relative head height. Males with greater relative head height also had more asymmetrical femurs, thus dominant males suffered a decrease in locomotor performance. Males with higher heads tend to dominate male–male interactions and hence may gain access to reproductive females, thus increasing their current reproduction success. However, this might occur at the expense of future survivorship mediated by a decrease in escape speed. Therefore, in male L. monticola there might be a trade-off between current reproductive success and survival.  © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002; 77 , 201–209.  相似文献   

20.
Changes in medial prefrontal cortex (mPFC) dopamine receptor expression and in mPFC projections to the nucleus accumbens in adolescence suggest that there may be age differences in the regulation of drug‐related behavior by the mPFC. The age‐specific role of prelimbic D1 dopamine receptors on amphetamine‐induced locomotor activity was investigated. In experiment 1, rats aged postnatal day 30 (P30), P45, and P75, corresponding to early and late adolescence and adulthood, were given an injection of D1 and D2 antagonists into the prelimbic mPFC before a systemic injection of 1.5 mg/kg of amphetamine and locomotor activity was recorded. In experiment 2, effects of intra‐prelimbic injections of a D1 agonist and antagonist on locomotor activity produced by a lower dose (0.5 mg/kg) of amphetamine were investigated. D2 receptor antagonist did not alter amphetamine‐induced activity, whereas the D1 receptor antagonist reduced activity produced by 1.5 mg/kg of amphetamine more in P30 than in P45 and P75 rats. In addition, D1 agonist enhanced the locomotor activating effects of 0.5 mg/kg of amphetamine in adolescent rats and decreased activity in adult rats. These results suggest that insufficient activation of mPFC D1 receptors may underlie the reduced activity at the low dose of amphetamine in early adolescent compared to adult rats. © 2011 Wiley Periodicals, Inc. Develop Neurobiol, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号