首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis and biological evaluation of a new series of structurally unrestricted and intramolecular hydrogen bond restricted derivatives of 3-(phenylsulfonyl)pyrazolo[1,5-a]pyrido[3,4-e]pyrimidines (angular tricyclics) and 3-(phenylsulfonyl)pyrazolo[1,5-a]pyrido[4,3-d]pyrimidines (linear tricyclics) are described. Structurally restricted derivatives are highly potent and selective blockers of 5-HT(6) receptors with little difference between angular or linear shape of the tricyclic core, the angular species being only slightly more potent. The angular representative of 3-(phenylsulfonyl)pyrazolo[1,5-a]pyrido[3,4-e]pyrimidines, 5, can be considered as more favorable candidate for further development as it shows only weak 5-HT(2B) blocking activity (IC(50)=6.16 μM as compared with IC(50)=1.8 nM for 5-HT(6) receptors) and very low hERG potassium channel blocking potency (IC(50)=54.2 μM). The linear analog, 11, is less favorable as while showing no binding to the 5-HT(2B) receptor at concentrations of up to 10 μM, it exhibits quite a high potency to block the hERG channel (IC(50)=0.5 μM).  相似文献   

2.
3.
4.
Redox properties of the ion [Fe(CN)4NO]2− were studied electrochemically both in non-aqueous and aqueous media in the absence of free cyanide ions. It was found that while the reduction proceeds smoothly the oxidation is not observed at the electrode in the attainable potential range, and can be achieved only by Br2 oxidation taking place as oxidative addition. Aspects of the redox reactivity are discussed and the overall scheme of reactions of the tetracyanonitrosylferrate(2−) and derived species is given.  相似文献   

5.
6.
7.
8.
《Inorganica chimica acta》1986,116(2):171-177
The crystal and molecular structure of [Y(OH2)8]Cl3·(15-crown-5) has been determined by single- crystal X-ray diffraction. The complex crystallizes in the monoclinic space group P21/n with Z = 4. Lattice parameters are a = 9.202(2), b = 17.247(3), c = 15.208(3) Å, and β = 92.39(2)°. The structure was solved by Patterson and Fourier techniques and refined by least-squares to a final conventional R value of 0.081. The Y(III) ion is eight coordinate, bonded to the oxygen atoms of the eight water molecules. Three of the water molecules are hydrogen bonded to crown ether molecules. The three chloride ions participate in hydrogen bonds with the remaining five water molecules. The YO(water) distances range from 2.322(6) to 2.432(7) Å and average 2.37(4) Å. The average O(water)···Cl and O(water)···O(crown) hydrogen bonded separations are 3.08(4) and 2.76(7) Å, respectively.  相似文献   

9.
10.
1. The incorporation of [(3)H]uridine into RNA of rat uterine tissue has been measured during pseudopregnancy and in rats receiving different doses of an anti-implantation compound [trans-1-(p-beta-dimethylaminoethoxyphenyl)-1,2-diphenylbut- 1-ene, I.C.I. 46474]. 2. In the uterus of the pseudopregnant rat uridine incorporation into RNA increased markedly on day 3 of pseudopregnancy, remained high until day 5 and decreased sharply by day 6, rising again by day 9. 3. This pattern of change was similar to, but not identical with, that previously found in the pregnant rat. 4. Rats receiving I.C.I. 46474 at a dose concentration below that preventing implantation showed a pattern of RNA synthesis similar to that found in untreated control rats. 5. Rats treated with doses of I.C.I. 46474 sufficient to inhibit implantation revealed a totally different pattern of incorporation of [(3)H]uridine into uterine RNA. 6. The results are discussed in terms of previous findings with the normally pregnant rat. It is concluded that the increasing uterine RNA synthesis found on day 3 in the pregnant rat is an important requirement for the occurrence of the subsequent implantation.  相似文献   

11.
12.
13.
14.
15.
Abstract

A theoretical conformational study of dextran, a (l?6)-linked α-D-glucan polysaccharide, has been made to allow an explicit comparison with earlier results on pustulan, the corresponding (1 ?6)-linked β-D-glucan. The nonbonded, torsional and hydrogen bond contributions to potential energy were calculated as a function of rotational angles φ, ψ, and ω The (φ, ψ, ω)-space of the disaccharide and of helices contain many local energy minima with very small energy differences. A comparison of (1?6)-α-D-glucans with (1?6)-β-D-glucans indicates significant differences in conformational behavior. Specifically, our results shed light on the fact that dextran does not gel, whereas pustulan does. The difference in tendency to gel may be related to the fact that dextran has no particularly favored conformations with structural regularity whereas pustulan does.  相似文献   

16.
17.
18.
19.
The crystal structures of two modifications of gadoliniumdicyclopentadienidebromide, [Gd(C5H5)2Br]2 (I) and 1[Gd(C5H5)2Br] (II) have been determined from X-ray diffraction data. I crystallizes in the [Sc(C5H5)2Cl]2-type structure, space group P21/c, with a=14.110(3), b=16.488(3), c= 13.765(3) Å, β=93.25(2)°, V=3197(2) Å3, and Dc= 2.289 g cm−3 for Z=6 molecules. II crystallizes in space group P21/c with a=5.946(7), b=8.447(5), c=20.239(9) Å, β=90.11(4)°, V=1020(2) Å3, Dc=2.392 g cm−3 for Z=4 formula units. The structures have been refined by full matrix least-squares techniques to conventional R factors of 0.034 for 3014 (I) and 1964 (II) reflections (with I>2σ(I)). I consists of dimers with two bromine bridges (mean GdBr 2.872 Å). II has a double chain structure with alternating juxtaposition of gadolinium and bromine atoms (GdBr 2.912 Å (once) and 3.133 Å (twice)). The arrangement of the C5H5 groups with regard to the metal η5 fashion) is nearly identical in I and II (mean GdC 2.63(1) Å (I) and 2.62(1) Å (II)). Single crystals of I and II are obtained by sublimation at different temperatures. The formation of both modifications is discussed as to its dependence on the state of the gaseous phase equilibrium [Gd(C5H5)2Br]2 ⇄ 2Gd(C5H5)2Br. Obviously, I crystallizes from gaseous phase dimers while II forms from the monomers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号