首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 90 kDa ribosomal S6 kinases (RSKs), especially RSK2, have attracted attention for the development of new anticancer agents. Through structural optimization of the hit compound 1 from our previous study, a series of barbituric acid aryl hydrazone analogues were designed and synthesized as potential RSK2 inhibitors. The most potent one, compound 9, showed a higher activity against RSK2 with an IC50 value of 1.95 μM. To analyze and elucidate their structure-activity relationship, the homology model of RSK2 N-terminal kinase domain was built and molecular docking simulations were performed, which provide helpful clues to design new inhibitors with desired activities.  相似文献   

2.
A series of novel indolin-2-ones inhibitors against p90 ribosomal S6 protein kinase 2 (RSK2) were designed and synthesized and their structure–activity relationship (SAR) was studied. The most potent inhibitor, compound 3s, exhibited potent inhibition against RSK2 with an IC50 value of 0.5 μM and presented a satisfactory selectivity against 23 kinases. The interactions of these inhibitors with RSK2 were investigated based on the proposed binding poses with molecular docking simulation. Four compounds and six compounds exhibited moderate anti-proliferation activities against PC 3 cells and MCF-7 cells, respectively.  相似文献   

3.
4.
The most active anticancer component in green tea is epigallocatechin-3-gallate (EGCG). Protein interaction with EGCG is a critical step for mediating the effects of EGCG on the regulation of various key molecules involved in signal transduction. By using computational docking screening methods for protein identification, we identified a serine/threonine kinase, 90-kDa ribosomal S6 kinase (RSK2), as a novel molecular target of EGCG. RSK2 includes two kinase catalytic domains in the N-terminal (NTD) and the C-terminal (CTD) and RSK2 full activation requires phosphorylation of both terminals. The computer prediction was confirmed by an in vitro kinase assay in which EGCG inhibited RSK2 activity in a dose-dependent manner. Pull-down assay results showed that EGCG could bind with RSK2 at both kinase catalytic domains in vitro and ex vivo. Furthermore, results of an ATP competition assay and a computer-docking model showed that EGCG binds with RSK2 in an ATP-dependent manner. In RSK2+/+ and RSK2-/- murine embryonic fibroblasts, EGCG decreased viability only in the presence of RSK2. EGCG also suppressed epidermal growth factor-induced neoplastic cell transformation by inhibiting phosphorylation of histone H3 at Ser10. Overall, these results indicate that RSK2 is a novel molecular target of EGCG.  相似文献   

5.
6.
Our previous studies demonstrated that RSK2 plays a key role in cell proliferation and transformation induced by tumor promoters such as epidermal growth factor (EGF) in mouse and human skin cells. However, no direct evidence has been found regarding the relationship of RSK2 and cell survival. In this study, we found that RSK2 interacted and phosphorylated GSK3β at Ser9. Notably, GSK3β phosphorylation at Ser9 was suppressed in RSK2−/− MEFs compared with RSK2+/+ MEFs by stimulation of EGF and calcium ionophore A23187, a cellular calcium stressor. In proliferation, we found that RSK2 deficiency suppressed cell proliferation compared with RSK2+/+ MEFs. In contrast, GSK3β−/− MEFs induced the cell proliferation compared with GSK3β+/+ MEFs. Importantly, RSK2−/− MEFs were induced severe cellular morphology change by A23187 and enhanced G1/G0 and sub-G1 accumulation of the cell cycle phase compared with RSK2+/+ MEFs. The sub-G1 induction in RSK2−/− MEFs by A23187 was correlated with increase of cytochrome c release, caspase-3 cleavage and apoptotic DNA fragmentation compared with RSK2+/+ MEFs. Notably, return back of RSK2 into RSK2−/− MEFs restored A23187-induced morphological change, and decreased apoptosis, apoptotic DNA fragmentation and caspase-3 induction compared with RSK2−/−/mock MEFs. Taken together, our results demonstrated that RSK2 plays an important role in stress-tolerance and cell survival, resulting in cell proliferation and cancer development.  相似文献   

7.
There are multiple isoforms of p90 ribosomal S6 kinase (RSK), which regulate diverse cellular functions such as cell growth, proliferation, maturation, and motility. However, the relationship between the structures and functions of RSK isoforms remains undetermined. Artemia is a useful model in which to study cell cycle arrest because these animals undergo prolonged diapauses, a state of obligate dormancy. A novel RSK isoform was identified in Artemia, which was termed Ar-Rsk2. This isoform was compared with an RSK isoform that we previously identified in Artemia, termed Ar-Rsk1. Ar-Rsk2 has an ERK-docking motif, whereas Ar-Rsk1 does not. Western blot analysis revealed that Ar-Rsk1 was activated by phosphorylation, which blocked meiosis in oocytes. Knockdown of Ar-Rsk1 reduced the level of phosphorylated cdc2 and thereby suppressed cytostatic factor activity. This indicates that Ar-Rsk1 regulates the cytostatic factor in meiosis. Expression of Ar-Rsk2 was down-regulated in Artemia cysts in which mitosis was arrested. Knockdown of Ar-Rsk2 resulted in decreased levels of cyclin D3 and phosphorylated histone H3, and the production of pseudo-diapause cysts. This indicates that Ar-Rsk2 regulates mitotic arrest. PLK and ERK RNAi showed that Ar-Rsk2, but not Ar-Rsk1, could be activated by PLK-ERK in Artemia. This is the first study to report that RSK isoforms with and without an ERK-docking motif regulate mitosis and meiosis, respectively. This study provides insight into the relationship between the structures and functions of RSK isoforms.  相似文献   

8.
9.
Previously, we reported that the catalytic subunit of cAMP-dependent protein kinase (PKAc) binds to the active p90 ribosomal S6 kinase 1 (RSK1) (Chaturvedi, D., Poppleton, H. M., Stringfield, T., Barbier, A., and Patel, T. B. (2006) Mol. Cell. Biol. 26, 4586–4600). Herein, by overexpressing hemagglutinin-tagged RSK1 fragments in HeLa cells we have identified the region of RSK1 that is responsible for the interaction with PKAc. PKAc bound to the last 13 amino acids of RSK1, which overlaps the Erk1/2 docking site. This interaction between PKAc and RSK1 required the phosphorylation of Ser-732 in the C terminus of RSK1. Depending upon its phosphorylation status, RSK1 switched interactions between Erk1/2 and PKAc. In addition, a peptide corresponding to the last 13 amino acids of RSK1 with substitution of Ser-732 with Glu (peptide E), but not Ala (peptide A), decreased interactions between endogenous active RSK1 and PKAc. RSK1 attenuated the ability of cAMP to activate PKA in vitro and this modulation was abrogated by peptide E, but not by peptide A. Similarly, in intact cells, cAMP-mediated phosphorylation of Bcl-xL/Bcl-2-associated death promoter on Ser-115, the PKA site, was reduced when RSK1 was activated by epidermal growth factor, and this effect was blocked by peptide E, but not by peptide A. These findings demonstrate that interactions between endogenous RSK1 and PKAc in intact cells regulate the ability of cAMP to activate PKA and identify a novel mechanism by which PKA activity is regulated by the Erk1/2 pathway.  相似文献   

10.
The activity of p90 ribosomal S6 kinase 2 (RSK2) has emerged as an attractive target for cancer therapy due to its role in the regulation of diverse cellular processes, such as cell transformation and proliferation. Several pan-RSK inhibitors have been identified with BI-D1870 and the pseudo-analogs LJH685 and LJI308 being the most selective, potent, and frequently used small molecule inhibitors. We designed and synthesized a series of pteridinones and pyrimidines to evaluate the structural features of BI-D1870 that are required for RSK2 inhibition. We have identified inhibitors of RSK2 activity, evaluated their target engagement in cells, and measured their effect on cell viability and cytotoxicity in the MOLM-13 acute myeloid leukemia (AML) cell line. The results of our studies support that RSK2 inhibition can be achieved in MOLM-13 cells without potent cytotoxicity. The structure-activity data from this study will be used as a platform to develop novel RSK2 inhibitors.  相似文献   

11.

Background

Pathogenic yersiniae inject several effector proteins (Yops) into host cells, which subverts immune functions and enables the bacteria to survive within the host organism. YopM, whose deletion in enteropathogenic yersiniae results in a dramatic loss of virulence, has previously been shown to form a complex with and activate the multifunctional kinases PKN2 and RSK1 in transfected cells.

Methodology/Principal Findings

In a near physiological approach with double-affinity-tagged YopM being translocated into the macrophage cell line J774A.1 via the natural type three secretion system of Yersinia we verified the interaction of YopM with PKN2 and RSK1 and detected association with additional PKN and RSK isoforms. In transfected and infected cells YopM induced sustained phosphorylation of RSK at its activation sites serine-380 and serine-221 even in the absence of signalling from its upstream kinase ERK1/2, suggesting inhibition of dephosphorylation. ATP-depletion and in vitro assays using purified components directly confirmed that YopM shields RSK isoforms from phosphatase activity towards serines 380 and 221.

Conclusions/Significance

Our study suggests that during Yersinia infection YopM induces sustained activation of RSK by blocking dephosphorylation of its activatory phosphorylation sites. This may represent a novel mode of action of a bacterial virulence factor.  相似文献   

12.
《Cellular signalling》2014,26(2):343-351
In mammals, KIBRA is defined as a memory performance-associated protein. The physiological function and regulation of KIBRA in non-neuronal cells are much less understood. Recent studies have identified KIBRA as a novel regulator of the Hippo signaling pathway, which plays a critical role in tumorigenesis by inhibiting cell proliferation and promoting apoptosis. We recently reported that KIBRA is phosphorylated by the mitotic kinases Aurora and cyclin-dependent kinase 1 during mitosis. In this current study, we show that KIBRA is also phosphorylated by the ERK (extracellular signal-regulated kinases)–RSK (p90 ribosomal S6 kinases) cascade. We demonstrated that ERK1/2 phosphorylate KIBRA at Ser548 in cells as well as in vitro. Moreover, we found that RSK1/2 specifically phosphorylates KIBRA at two highly conserved sites (Thr929 and Ser947) in vitro and in cells. RSK-mediated phosphorylation is required for KIBRA binding to RSK1, but not RSK2. Surprisingly, KIBRA knockdown impaired cell migration and proliferation in breast cancer cells. By using inducible-expression cell lines, we further show that phospho-regulation of KIBRA by ERK1/2 and RSK1/2 is required for proper cell proliferation and RSK-mediated phosphorylation also modulates KIBRA's migratory activity in MDA-MB-231 breast cancer cells. Our findings uncover unexpected results and a new mechanism through which KIBRA regulates cell migration and proliferation.  相似文献   

13.

Background

This study aimed to investigate the expression of P90 Ribosomal Protein S6 kinase 4 (RSK4) in colorectal cancer cells and its biological function.

Methods

We selected early SW480 and HCT116 colorectal cancer cell lines, using Lipofectamine? 2000 transfection reagent carrying RSK4 gene transfected into cells to establish the colorectal cancer cell lines with high expression of RSK4. RT-PCR and western blot (WB) analysis confirmed RSK4 expression in SW480 and HCT116 cancer cell lines. We used methylthiazoltetrazolium (MTT) assay and flow cytometry to detect the proliferation of colorectal cancer cells. After transfection of RSK4, the effect of RSK4 on the RNA levels associated with epithelial–mesenchymal transition (EMT) of colorectal cancer cells was analyzed by real-time fluorescence quantitative PCR and the expression of EMT-related protein was detected by WB analysis.

Results

After transfection of RSK4 overexpression, the MTT assay detected that RSK4 could significantly inhibit the growth of colorectal cancer cells in vitro; flow cytometry detected that S-phase cells decreased significantly, and G0/1 cells increased significantly (P?<?0.05). The invasion ability of SW480 and HCT116 cells transfected with RSK4 was markedly lower than that in the control group, and the difference was statistically significant (P?<?0.05). Fluorescent quantitative PCR and WB analysis showed that the expression of EMT-associated molecular E-cadherin was remarkably increased and the expression of Snail was significantly decreased (P?<?0.01).

Conclusion

RSK4 gene in colorectal cancer cell lines with low expression of RSK4 after transfection can inhibit the growth and invasion of tumor cells. RSK4 gene may inhibit EMT and inhibit metastasis of colorectal cancer cells, may be a potential tumor suppressor gene and inhibit tumor distant metastasis, and may provide the biological basis for new therapeutic targets.
  相似文献   

14.
Identifying isoform-specific inhibitors for closely related kinase family members remains a substantial challenge. The necessity for achieving this specificity is exemplified by the RSK family, downstream effectors of ERK1/2, which have divergent physiological effects. The natural product, SL0101, a flavonoid glycoside, binds specifically to RSK1/2 through a binding pocket generated by an extensive conformational rearrangement within the RSK N-terminal kinase domain (NTKD). In modelling experiments a single amino acid that is divergent in RSK3/4 most likely prevents the required conformational rearrangement necessary for SL0101 binding. Kinetic analysis of RSK2 association with SL0101 and its derivatives identified that regions outside of the NTKD contribute to stable inhibitor binding. An analogue with an n-propyl-carbamate at the 4” position on the rhamnose moiety was identified that forms a highly stable inhibitor complex with RSK2 but not with RSK1. These results identify a SL0101 modification that will aid the identification of RSK2 specific inhibitors.  相似文献   

15.
The p90 ribosomal protein kinase 2 (RSK2) is a highly expressed Ser/Thr kinase activated by growth factors and is involved in cancer cell proliferation and tumor promoter-induced cell transformation. RSK2 possesses two non-identical kinase domains, and the structure of its N-terminal domain (NTD), which is responsible for phosphorylation of a variety of substrates, is unknown. The crystal structure of the NTD RSK2 was determined at 1.8 Å resolution in complex with AMP-PNP. The N-terminal kinase domain adopted a unique active conformation showing a significant structural diversity of the kinase domain compared to other kinases. The NTD RSK2 possesses a three-stranded βB-sheet inserted in the N-terminal lobe, resulting in displacement of the αC-helix and disruption of the Lys-Glu interaction, classifying the kinase conformation as inactive. The purified protein was phosphorylated at Ser227 in the T-activation loop and exhibited in vitro kinase activity. A key characteristic is the appearance of a new contact between Lys216 (βB-sheet) and the β-phosphate of AMP-PNP. Mutation of this lysine to alanine impaired both NTDs in vitro and full length RSK2 ex vivo activity, emphasizing the importance of this interaction. Even though the N-terminal lobe undergoes structural re-arrangement, it possesses an intact hydrophobic groove formed between the αC-helix, the β4-strand, and the βB-sheet junction, which is occupied by the N-terminal tail. The presence of a unique βB-sheet insert in the N-lobe suggests a different type of activation mechanism for RSK2.  相似文献   

16.
Previously we showed that the inactive form of p90 ribosomal S6 kinase 1 (RSK1) interacts with the regulatory subunit, PKARIα, of protein kinase A (PKA), whereas the active RSK1 interacts with the catalytic subunit (PKAc) of PKA. Herein, we demonstrate that the N-terminal kinase domain (NTK) of RSK1 is necessary for interactions with PKARIα. Substitution of the activation loop phosphorylation site (Ser-221) in the NTK with the negatively charged Asp residue abrogated the association between RSK1 and PKARIα. This explains the lack of an interaction between active RSK1 and PKARIα. Full-length RSK1 bound to PKARIα with an affinity of 0.8 nm. The NTK domain of RSK1 competed with PKAc for binding to the pseudosubstrate region (amino acids 93–99) of PKARIα. Overexpressed RSK1 dissociated PKAc from PKARIα, increasing PKAc activity, whereas silencing of RSK1 increased PKAc/PKARIα interactions and decreased PKAc activity. Unlike PKAc, which requires Arg-95 and -96 in the pseudosubstrate region of PKARIα for their interactions, RSK1/PKARIα association requires all four Arg residues (Arg-93–96) in the pseudosubstrate site of PKARIα. A peptide (Wt-PS) corresponding to residues 91–99 of PKARIα competed for binding of RSK1 with PKARIα both in vitro and in intact cells. Furthermore, peptide Wt-PS (but not control peptide Mut-PS), by dissociating RSK1 from PKARIα, activated RSK1 in the absence of any growth factors and protected cells from apoptosis. Thus, by competing for binding to the pseudosubstrate region of PKARIα, RSK1 regulates PKAc activity in a cAMP-independent manner, and PKARIα by associating with RSK1 regulates its activation and its biological functions.  相似文献   

17.
We previously demonstrated that the mTORC1/S6K1 pathway is activated by insulin and nutrient overload (e.g. amino acids (AA)), which leads to the inhibition of the PI3K/Akt pathway via the inhibitory serine phosphorylation of IRS-1, notably on serine 1101 (Ser-1101). However, even in the absence of AA, insulin can still promote IRS-1 Ser-1101 phosphorylation by other kinases that remain to be fully characterized. Here, we describe a new negative regulator of IRS-1, the p90 ribosomal S6 kinase (RSK). Computational analyses revealed that Ser-1101 within IRS-1 falls into the consensus motif of RSK. Moreover, recombinant RSK phosphorylated IRS-1 C-terminal fragment on Ser-1101, which was prevented by mutations of this site or when a kinase-inactive mutant of RSK was used. Using antibodies directed toward the phosphorylation sites located in the activation segment of RSK (Ser-221 or Ser-380), we found that insulin activates RSK in L6 myocytes in the absence of AA overload. Inhibition of RSK using either the pharmacological inhibitor BI-D1870 or after adenoviral expression of a dominant negative RSK1 mutant (RSK1-DN) showed that RSK selectively phosphorylates IRS-1 on Ser-1101. Accordingly, expression of the RSK1-DN mutant in L6 myocytes and FAO hepatic cells improved insulin action on glucose uptake and glucose production, respectively. Furthermore, RSK1 inhibition prevented insulin resistance in L6 myocytes chronically exposed to high glucose and high insulin. These results show that RSK is a novel regulator of insulin signaling and glucose metabolism and a potential mediator of insulin resistance, notably through the negative phosphorylation of IRS-1 on Ser-1101.  相似文献   

18.
The role played by long chain fatty acids (LCFA) in promoting energy expenditure is confounded by their dual function as substrates for oxidation and as putative classic uncouplers of mitochondrial oxidative phosphorylation. LCFA analogs of the MEDICA (MEthyl-substituted DICarboxylic Acids) series are neither esterified into lipids nor β-oxidized and may thus simulate the uncoupling activity of natural LCFA in vivo, independently of their substrate role. Treatment of rats or cell lines with MEDICA analogs results in low conductance gating of the mitochondrial permeability transition pore (PTP), with 10–40% decrease in the inner mitochondrial membrane potential. PTP gating by MEDICA analogs is accounted for by inhibition of Raf1 expression and kinase activity, resulting in suppression of the MAPK/RSK1 and the adenylate cyclase/PKA transduction pathways. Suppression of RSK1 and PKA results in a decrease in phosphorylation of their respective downstream targets, Bad(Ser-112) and Bad(Ser-155). Decrease in Bad(Ser-112, Ser-155) phosphorylation results in increased binding of Bad to mitochondrial Bcl2 with concomitant displacement of Bax, followed by PTP gating induced by free mitochondrial Bax. Low conductance PTP gating by LCFA/MEDICA may account for their thyromimetic calorigenic activity in vivo.  相似文献   

19.
Previously, we showed that interactions between p90RSK1 (RSK1) and the subunits of type I protein kinase A (PKA) regulate the activity of PKA and cellular distribution of active RSK1 (Chaturvedi, D., Poppleton, H. M., Stringfield, T., Barbier, A., and Patel, T. B. (2006) Mol. Cell Biol. 26, 4586–4600). Here we examined the role of the PKARIα subunit of PKA in regulating RSK1 activation and cell survival. In mouse lung fibroblasts, silencing of the PKARIα increased the phosphorylation and activation of RSK1, but not of RSK2 and RSK3, in the absence of any stimulation. Silencing of PKARIα also decreased the nuclear accumulation of active RSK1 and increased its cytoplasmic content. The increased activation of RSK1 in the absence of any agonist and changes in its subcellular redistribution resulted in increased phosphorylation of its cytoplasmic substrate BAD and increased cell survival. The activity of PKA and phosphorylation of BAD (Ser-155) were also enhanced when PKARIα was silenced, and this, in part, contributed to increased cell survival in unstimulated cells. Furthermore, we show that RSK1, PKA subunits, D-AKAP1, and protein phosphatase 2A catalytic subunit (PP2Ac) exist in a complex, and dissociation of RSK1 from D-AKAP1 by either silencing of PKARIα, depletion of D-AKAP1, or by using a peptide that competes with PKARIα for binding to AKAPs, decreased the amount of PP2Ac in the RSK1 complex. We also demonstrate that PP2Ac is one of the phosphatases that dephosphorylates RSK, but not ERK1/2. Thus, in unstimulated cells, the increased phosphorylation and activation of RSK1 after silencing of PKARIα or depletion of D-AKAP1 are due to decreased association of PP2Ac in the RSK1 complex.Cyclic AMP-dependent protein kinase (PKA)3 plays a pivotal role in manifesting an array of biological actions ranging from cell proliferation and tumorigenesis to increased inotropic and chronotropic effects in the heart as well as regulation of long term potentiation and memory. The PKA holoenzyme is a heterotetramer and consists of two catalytic (PKAc) subunits bound to a dimer of regulatory subunits. To date, four isoforms of the PKAc (PKAcα, PKAcβ, PKAcγ, and PKAcδ) and four isoforms of the regulatory subunits (RIα, RIβ, RIIα, and RIIβ) have been described (1). The various isoforms of PKA subunits are expressed differently in a tissue- and cell-specific manner (2). In addition to binding and inhibiting the activity of PKAc via their pseudo substrate region (36), the R subunits also interact with PKA-anchoring proteins (AKAPs) and facilitate the localization of PKA in specific subcellular compartments (7, 8). More than 50 AKAP family members have been described, and although most of these have a higher affinity for the RII subunits (9), certain AKAPs such as D-AKAP1 and D-AKAP2 preferentially bind the PKARIα subunit (1012). Because the AKAPs also bind other signaling molecules such as phosphatases (PP2B) and kinases (protein kinase C), they act as scaffolds to organize and integrate specific signaling events within specific compartments in the cells (7, 8, 13, 14).We have shown that the PKARIα and PKAcα subunits of PKA interact with the inactive and active forms of p90RSK1 (RSK1), respectively (15). Binding of inactive RSK1 to PKARIα decreases the interactions between PKARIα and PKAc, whereas the association of active RSK1 with PKAc increases interactions between PKARIα and PKAc such that larger amounts of cAMP are required to activate PKAc in the presence of active RSK1 (15). Moreover, the indirect (via subunits of PKA) interaction of RSK1 with AKAPs is required for the nuclear localization of active RSK1 (15), and disruption of the interactions of RSK1·PKA complex from AKAPs results in increased cytoplasmic distribution of active RSK1 with a concomitant increase in phosphorylation of its cytosolic substrates such as BAD and reduced cellular apoptosis (15). These findings show the functional and biological significance of RSK1·PKA·AKAP interactions.Besides inhibiting PKAc activity, the physiological role of PKARIα is underscored by the findings that mutations in the PKAR1A gene that result in haploinsufficiency of PKARIα are the underlying cause of Carney complex (CNC) (16, 17). CNC is an autosomal dominant multiple neoplasia syndrome in which myxomas of the skin, heart, and/or vicera are recurrent and also associated with high incidence of endocrine and ovarian tumors as well as Schwannomas (1820). The majority of patients with the multiple neoplasia CNC syndrome harbor mutations in the PKAR1A gene (21) that result in PKARIα haploinsufficiency. Importantly, however, loss of heterozygosity or alterations in PKA activity may not contribute toward the tumorigenicity in either CNC patients or mouse model of CNC (21). This suggests that loss of function(s) of PKARIα other than inhibition of PKA activity is(are) involved in the enhanced tumorigenicity in CNC patients and in the murine CNC model.Because RSK1 regulates cell growth, survival, and tumorigenesis (2227), and because its subcellular localization and ability to inhibit apoptosis is regulated by its interactions via PKARIα with AKAPs (15), we reasoned that in conditions such as CNC where PKARIα levels are decreased, the increase in tumorigenicity may emanate from aberrant regulation of the activity and/or subcellular localization of RSK1. Therefore, herein we have investigated whether PKARIα regulates the activation of RSK1 and its biological functions. Decreasing expression of PKARIα by small interfering RNA (siRNA) enhanced the activation of RSK1, but not RSK2 or RSK3, in the absence of an agonist such as EGF. This was accompanied by an increase in the cytoplasmic localization of the active RSK1 and enhanced cell survival in the absence of any growth factor. Silencing of PKARIα also increased PKAc activity and while part of the anti-apoptotic response could be attributed to an increase in PKAc activity, activation of RSK1 under basal conditions contributed significantly to cell survival. The elevation in RSK1 activity upon PKARIα silencing was not due to increased PKAc activity. Rather the activation of RSK1 in the absence of PKARIα was due to a decrease in PP2A in the RSK1 complex. These findings demonstrate a novel role for PKARIα in the regulation of RSK1 activation, a key enzyme that mediates the downstream actions of the ERK1/2 cascade.  相似文献   

20.
Abstract

The p90 ribosomal s6 kinase 2 (RSK2) is a promising target because of its over expression and activation in human cancer cells and tissues. Over the last few years, significant efforts have been made in order to develop RSK2 inhibitors to treat myeloma, prostatic cancer, skin cancer and etc., but with limited success so far. In this paper, pharmacophore modelling, molecular docking study and molecular dynamics (MD) simulation have been performed to explore the novel inhibitors of RSK2. Pharmacophore models were developed by 95 molecules having pIC50 ranging from 4.577 to 9.000. The pharmacophore model includes one hydrogen bond acceptor (A), one hydrogen bond donor (D), one hydrophobic feature (H) and one aromatic ring (R). It is the best pharmacophore hypothesis that has the highest correlation coefficient (R2 = 0.91) and cross validation coefficient (Q2 = 0.71) at 5 component PLS factor. It was evaluated using enrichment analysis and the best model was used for virtual screening. The constraints used in this study were docking score, ADME properties, binding free energy estimates and IFD Score to screen the database. Ultimately, 12 hits were identified as potent and novel RSK2 inhibitors. A 15 ns molecular dynamics (MD) simulation was further employed to validate the reliability of the docking results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号