首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
HIV integrase (IN) is an essential enzyme for the viral replication. Currently, three IN inhibitors have been approved for treating HIV-1 infection. All three drugs selectively inhibit the strand transfer reaction by chelating a divalent metal ion in the enzyme active site. Flavonoids are a well-known class of natural products endowed with versatile biological activities. Their β-ketoenol or catechol structures can serve as a metal chelation motif and be exploited for the design of novel IN inhibitors. Using the metal chelation as a common pharmacophore, we introduced appropriate hydrophobic moieties into the flavonol core to design natural product-based novel IN inhibitors. We developed selective and efficient syntheses to generate a series of mono 3/5/7/3′/4′-substituted flavonoid derivatives. Most of these new compounds showed excellent HIV-1 IN inhibitory activity in enzyme-based assays and protected against HIV-1 infection in cell-based assays. The 7-morpholino substituted 7c showed effective antiviral activity (EC50 = 0.826 μg/mL) and high therapeutic index (TI > 242). More significantly, these hydroxyflavones block the IN–LEDGF/p75 interaction with low- to sub-micromolar IC50 values and represent a novel scaffold to design new generation of drugs simultaneously targeting the catalytic site as well as protein–protein interaction domains.  相似文献   

2.
A series of seven novel, rationally designed N-substituted 3-{3,5-dimethylfuro[3,2-g]coumarin-6-yl}propanamides have been prepared as potential HIV-1 integrase (IN) inhibitors via a five-step pathway commencing with resorcinol and diethyl 2-acetylglutarate, and the HIV-1 IN inhibition potential of these compounds has been examined relative to raltegravir, a known HIV-1 IN inhibitor.  相似文献   

3.
The retroviral encoded protein integrase (IN) is required for the insertion of the human immunodeficiency virus type 1 (HIV-1) proviral DNA into the host genome. In spite of the crucial role played by IN in the retroviral life cycle, which makes this enzyme an attractive target for the development of new anti-AIDS agents, very few inhibitors have been described and none seems to have a potential use in anti-HIV therapy. To obtain potent and specific IN inhibitors, we used the two-hybrid system to isolate short peptides. Using HIV-1 IN as a bait and a yeast genomic library as the source of inhibitory peptides (prey), we isolated a 33-mer peptide (I33) that bound tightly to the enzyme. I33 inhibited both in vitro IN activities, i.e. 3' end processing and strand transfer. Further analysis led us to select a shorter peptide, EBR28, corresponding to the N-terminal region of I33. Truncated variants showed that EBR28 interacted with the catalytic domain of IN interfering with the binding of the DNA substrate. Alanine single substitution of each EBR28 residue (alanine scanning) allowed the identification of essential amino acids involved in the inhibition. The EBR28 NMR structure shows that this peptide adopts an alpha-helical conformation with amphipathic properties. Additionally, EBR28 showed a significant antiviral effect when assayed on HIV-1 infected human cells. Thus, this potentially important short lead peptide may not only be helpful to design new anti-HIV agents, but also could prove very useful in further studies of the structural and functional characteristics of HIV-1 IN.  相似文献   

4.
A series of readily accessible 4-arylimino-3-hydroxybutanoic acids have been prepared and evaluated as potential HIV-1 Integrase inhibitors. None of the ligands exhibited significant toxicity against human embryonic kidney (HEK 293) cells, while five of them showed activity against HIV-1 integrase – the most active (6c) with an IC50 value of 3.5?μM. In silico docking studies indicate the capacity of ligand 6c to interact with several amino acid residues and the two Mg2+ cations in the HIV-1 integrase receptor cavity.  相似文献   

5.
Raltegravir (RAL) is a first clinically approved integrase (IN) inhibitor for the treatment of HIV but rapid mutation of the virus has led to chemo-resistant strains. Therefore, there is a medical need to develop new IN inhibitors to overcome drug resistance. At present, several IN inhibitors are in different phases of clinical trials and few have been discontinued due to toxicity and lack of efficacy. The development of potent second-generation IN inhibitors with improved safety profiles is key for selecting new clinical candidates. In this article, we report the design and synthesis of potent 5-hydroxy-6-oxo-1,6-dihydropyrimidine-4-carboxamide analogues as second-generation IN inhibitors. These compounds satisfy two structural requirements known for potent inhibition of HIV-1 IN catalysis: a metal chelating moiety and a hydrophobic functionality necessary for selectivity against the strand transfer reaction. Most of the new compounds described herein are potent and selective for the strand transfer reaction and show antiviral activity in cell-based assays. Furthermore, this class of compounds are drug-like and suitable for further optimization and preclinical studies.  相似文献   

6.
Predicting a bioactive conformation of a ligand is of paramount importance in rational drug design. The task becomes very difficult when the receptor site possesses a region with unusual conformational flexibility. Significant conformational differences are present in the active site regions in the available crystal structures of the core domains of HIV-1 integrase (IN). Among all reported IN inhibitors, the β-diketoacid class of compounds has proved to be of most promise and indeed S-1360 was the first IN inhibitor to enter clinical studies. With an aim to predict the bioactive (active site bound) conformation of S-1360, we performed extensive docking studies using three different reported crystal structures where the active site or partial active site region was resolved. For comparison we extended our studies to include 5CITEP (the first compound cocrystallized with IN core domain) and a bis-diketoacid (BDKA). We found that the conformation of S-1360 when bound in one of the active sites matches that of the experimentally observed results of IN escape mutants resistant to S-1360. Therefore, we propose that this active site conformation is the biologically relevant conformation and can be used for the future structure-based drug design studies selectively targeting IN.  相似文献   

7.
Four series of forty-five nitrogen-containing polyhydroxylated aromatics based on caffeic acid phenethyl ester were designed and synthesized as HIV-1 integrase (IN) inhibitors. Most of these compounds inhibited IN catalytic activities in low micromolar range. Among these new analogues, compounds 9e and 9f were the most potent IN inhibitors with IC50 value of 0.7 μM against strand transfer reaction. Their key structure-activity relationships were also discussed.  相似文献   

8.
New tricyclic HIV-1 integrase (IN) inhibitors were prepared that combined structural features of bicyclic pyrimidinones with recently disclosed 4,5-dihydroxy-1H-isoindole-1,3(2H)-diones. This combination resulted in the introduction of a nitrogen into the aryl ring and the addition of a fused third ring to our previously described inhibitors. The resulting analogues showed low micromolar inhibitory potency in in vitro HIV-1 integrase assays, with good selectivity for strand transfer relative to 3′-processing.  相似文献   

9.
Disintegration, wherein a half-site integration substrate is resolved into separate viral and host DNA components via DNA strand transfer, is one of three well-established in vitro activities of HIV-1 integrase. The role of disintegration in the HIV-1 replicative cycle, however, remains a mystery. In this report, we describe the expression inEscherichia coli and purification of HIV-1 integrase as a fusion protein containing a 6×His tag at its amino terminus. Integrase resolved dumbbell and Y-substrates optimally at pH 6.8–7.2 in the presence of 2 mM MnCl2. Substrate requirements for intramolecular disintegration included a 10 base pair viral U5 LTR arm and a CA dinucleotide located at the 3 end of the LTR. Disintegration was not sensitive to changes in the host DNA portion of the substrate. A dumbbell substrate with a 5 oligo-dA tail also underwent disintegration. The released LTR arm with an oligo-dA tail was utilized as a template primer by several DNA polymerases indicating that disintegration occurred via nucleophilic attack on the phosphodiester bond located immediately adjacent to the CA dinucleotide at the 3 end of the LTR. Coupled disintegration-DNA polymerase reactions provided a highly efficient and sensitive means of detecting disintegration activity. Integrase also catalyzed an apparently concerted disintegration-5-end joining reaction in which an LTR arm was transferred from one dumbbell substrate molecule to another.  相似文献   

10.
11.
Retroviral integrase participates in two catalytic reactions, which require interactions with the two ends of the viral DNA in the 3′processing reaction, and with a targeted host DNA in the strand transfer reaction. The 3′-hydroxyl group of 2′-deoxyadenosine resulting from the specific removing of GT dinucleotide from the viral DNA in the processing reaction provides the attachment site for the host DNA in a transesterification reaction. We synthesized oligonucleotides (ONs) of various lengths that mimic the processed HIV-1 U5 terminus of the proviral long terminal repeat (LTR) and are ended by 2′-deoxyadenosine containing a 3′-O-phosphonomethyl group. The duplex stability of phosphonomethyl ONs was increased by covalent linkage of the modified strand with its complementary strand by a triethylene glycol loop (TEG). Modified ONs containing up to 10 bases inhibited in vitro the strand transfer reaction catalyzed by HIV-1 integrase at nanomolar concentrations.  相似文献   

12.
A series of heterocyclic pyrimidinedione-based HIV-1 integrase inhibitors was prepared and screened for activity against purified integrase enzyme and/or viruses modified with the following mutations within integrase: Q148R, Q148H/G140S and N155H. These are mutations that result in resistance to the first generation integrase inhibitors raltegravir and elvitegravir. Based on consideration of drug-target interactions, an approach was undertaken to replace the amide moiety of the first generation pyrimidinedione inhibitor with azole heterocycles that could retain potency against these key resistance mutations. An imidazole moiety was found to be the optimal amide substitute and the observed activity was rationalized with the use of calculated properties and modeling. Rat pharmacokinetic (PK) studies of the lead imidazole compounds demonstrated moderate clearance and moderate exposure.  相似文献   

13.
A series of new quinolone-3-carboxylic acids as HIV-1 integrase inhibitors featuring a fluorine atom at C-5 position were synthesized and evaluated for their antiviral activity in C8166 cell culture. These newly synthesized compounds showed anti-HIV activity against wild-type virus with an EC50 value ranging from 29.85 to 0.032 μΜ. The most active compound 4e exhibited activity against wild-type virus and the mutant virus A17 with an EC50 value of 0.032 and 0.082 μΜ, respectively. Preliminary structure–activity relationship of these 5-fluoroquinolone-3-carboxylic acids was also investigated.  相似文献   

14.
Both HIV-1 integrase (IN) and the central catalytic domain of IN (IN-CCD) catalyze the disintegration reaction in vitro. In this study, IN and IN-CCD proteins were expressed and purified, and a high-throughput format enzyme-linked immunosorbent assay (ELISA) was developed for the disintegration reaction. IN exhibited a marked preference for Mn2+ over Mg2+ as the divalent cation cofactor in disintegration. Baicalein, a known IN inhibitor, was found to be an IN-CCD inhibitor. The assay is sensitive and specific for the study of disintegration reaction as well as for the in vitro identification of antiviral drugs targeting IN, especially targeting IN-CCD.  相似文献   

15.
HIV integrase (IN) catalyzes the insertion of proviral DNA into the host cell chromosome. While IN has strict sequence requirements for the viral cDNA ends, the integration site preference has been shown to be very diverse. Here, we mapped the HIV IN strand transfer reaction requirements using various short oligonucleotides (ON) that mimic the target DNA. Most double stranded DNA dodecamers served as excellent IN targets with variable integration efficiency depending mostly on the ON sequences. The preferred integration was lost with any changes in the geometry of the DNA double helical structures. Various hairpin-loop-forming ONs also served as efficient integration targets. Similar integration preferences were also observed for ONs, in which the nucleotide hairpin loop was replaced with a flexible aliphatic linker. The integration biases with all target DNA structures tested were significantly influenced by changes in the resulting secondary ON structures.  相似文献   

16.
We report molecular modeling and functional confirmation of Ole and HT binding to HIV-1 integrase. Docking simulations identified two binding regions for Ole within the integrase active site. Region I encompasses the conserved D64-D116-E152 motif, while region II involves the flexible loop region formed by amino acid residues 140-149. HT, on the other hand, binds to region II. Both Ole and HT exhibit favorable interactions with important amino acid residues through strong H-bonding and van der Waals contacts, predicting integrase inhibition. To test and confirm modeling predictions, we examined the effect of Ole and HT on HIV-1 integrase activities including 3'-processing, strand transfer, and disintegration. Ole and HT exhibit dose-dependent inhibition on all three activities, with EC(50)s in the nanomolar range. These studies demonstrate that molecular modeling of target-ligand interaction coupled with structural-activity analysis should facilitate the design and identification of innovative integrase inhibitors and other therapeutics.  相似文献   

17.
18.
The interaction between HIV-1 integrase and LEDGF/P75 has been validated as a target for anti-HIV drug development. Based on the crystal structure of integrase in complex with LEDGF/P75, a library containing 80 thousand natural compounds was filtered with virtual screening. 11 hits were selected for cell based assays. One compound, 3-(1,3-benzothiazol-2-yl)-8-{[bis(2-hydroxyethyl)amino]methyl}-7-hydroxy-2H-chromen-2-one (D719) inhibited integrase nuclear translocation in cell imaging. The binding mode of D719 was analyzed with molecular simulation. The anti-HIV activity of D719 was assayed by measuring the p24 antigen production in acute infection. The structure characteristics of D719 may provide valuable information for integrase inhibitor design.  相似文献   

19.
HIV-1 integrase (IN) is essential for the replication of HIV-1 in human cells. At present, the complete structure of complex IN-DNA has not been resolved. In this paper, a HIV-1 IN tetramer model was built with homology modeling and molecular dynamics simulation approach, in which two Mg2+ ions were reasonably located in each catalytic core domain. Moreover, it was found that the AB and CD chains of HIV-1 IN tetramer were different in the structures and metal ions of HIV-1 IN tetramer might have great influences on DNA locating on IN. These findings may provide a more complete structural basis for guiding drug discovery and revealing integration mechanism.  相似文献   

20.
A series of novel pyrimidone analogues have been designed and synthesized as HIV-1 integrase (IN) inhibitors. This study demonstrated that introducing a substituent in the N1-position of the pyrimidone scaffold does not significantly influence IN inhibitory activity. Molecular docking studies showed these compounds could occupy the IN active site and form pi–pi interactions with viral DNA nucleotides DC16 and DA17 to displace reactive viral DNA 3′OH and block intasome activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号