首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we describe the synthesis of 4′-C-aminoalkyl-2′-O-methylnucleosides and the properties of RNAs containing these analogs. Phosphoramidites of 4′-C-aminoethyl and 4′-C-aminopropyl-2′-O-methyluridines were prepared using glucose as starting material, and RNAs containing the analogs were synthesized using the phosphoramidites. Thermal denaturation studies revealed that these nucleoside analogs decreased the thermal stabilities of double-stranded RNAs (dsRNAs). Results of NMR, molecular modeling, and CD spectra measurements suggested that 4′-C-aminoalkyl-2′-O-methyluridine adopts an C2′-endo sugar puckering in dsRNA. The 4′-C-aminoalkyl modifications in the passenger strand and the guide strand outside the seed region were well tolerated for RNAi activity of siRNAs. Single-stranded RNAs (ssRNAs) and siRNAs containing the 4′-C-aminoethyl and 4′-C-aminopropyl analogs showed high stability in buffer containing bovine serum. Thus, siRNAs containing the 4′-C-aminoethyl and 4′-C-aminopropyl analogs are good candidates for the development of therapeutic siRNA molecules.  相似文献   

2.
We synthesized several DNA oligonucleotides containing one or several 2′-O-methyl-8-methyl guanosine (m8Gm) and demonstrated that these oligonucleotides not only stabilize the Z-DNA with a wide range of sequences under low salt conditions but also possess high thermal stability. Using artificial nucleobase-containing oligonucleotides, we studied the interaction of the Zα domain with Z-DNA. Furthermore, we showed that the m8Gm-contained oligonucleotides allow to study the photochemical reaction of Z-DNA.  相似文献   

3.
The effect of 2′-O-(N-methylcarbamoyl)ethyl (MCE) modification on splice-switching oligonucleotides (SSO) was systematically evaluated. The incorporation of five MCE nucleotides at the 5′-termini of SSOs effectively improved the splice switching effect. In addition, the incorporation of 2′-O-(N-methylcarbamoylethyl)-5-methyl-2-thiouridine (s2TMCE), a duplex-stabilizing nucleotide with an MCE modification, into SSOs further improved splice switching. These SSOs may be useful for the treatment of genetic diseases associated with splicing errors.  相似文献   

4.
3′,4′-Ethyleneoxy-bridged 5-methyluridine derivatives with methyl groups in the bridge, (R)-Me-3′,4′-EoNA-T and (S)-Me-3′,4′-EoNA-T, were synthesized, and these two analogs and unsubstituted 3′,4′-EoNA-T were successfully incorporated into a 2′,5′-linked oligonucleotide (isoDNA). Their duplex-forming ability with complementary DNA and complementary RNA, and triplex-forming ability with double-stranded DNA, were evaluated by UV-melting experiments. The results indicated that isoDNAs, including these 3′,4′-EoNA analogs, could hybridize exclusively with complementary RNA. In particular, 3′,4′-EoNA-T and (R)-Me-3′,4′-EoNA-T modifications within isoDNA could stabilize the duplexes with complementary RNA compared with unmodified or 3′,4′-BNA-modified isoDNAs.  相似文献   

5.
We previously reported that reducing-environment-responsive prodrug-type small interfering RNA (siRNA) bearing 2′-O-methyldithiomethyl (2′-O-MDTM) uridine exhibits efficient knockdown activity and nuclease resistance. In this report, we describe the preparation of 2′-O-MDTM oligonucleotides modified not only at uridine but also at adenosine, guanosine and cytidine residues by post-synthetic modification. Precursor oligonucleotides bearing 2′-O-(2,4,6-trimethoxybenzylthiomethyl) (2′-O-TMBTM) adenosine, guanosine, and cytidine were reacted with dimethyl(methylthio)sulfonium tetrafluoroborate to form 2′-O-MDTM oligonucleotides in the same manner as the oligonucleotide bearing 2′-O-TMBTM uridine. Furthermore, the oligonucleotides bearing 2′-O-MDTM adenosine, guanosine, and cytidine were efficiently converted into corresponding natural 2′-hydroxy oligonucleotides under the cytosol-mimetic reducing condition.  相似文献   

6.
7.
A general method for the preparation of 2′-azido-2′-deoxy- and 2′-amino-2′-deoxyarabinofuranosyl-adenine and -guanine nucleosides is described. Selective benzoylation of 3-azido-3-deoxy-1,2-O-isopropylidene-α-d-glucofuranose afforded 3-azido-6-O-benzoyl-3-deoxy-1,2-O-isopropylidene-α-d-glucofuranose (1). Acid hydrolysis of 1, followed by oxidation with sodium metaperiodate and hydrolysis by sodium hydrogencarbonate gave 2-azido-2-deoxy-5-O-benzoyl-d-arabinofuranose (3), which was acetylated to give 1,3-di-O-acetyl-2-azido-5-O-benzoyl-2-deoxy-d-arabinofuranose (4). Compound 4 was converted into the 1-chlorides 5 and 6, which were condensed with silylated derivatives of 6-chloropurine and 2-acetamido-hypoxanthine. The condensation reaction gave α and β anomers of both 7- and 9-substituted purine nucleosides. The structures of the nucleosides were determined by n.m.r. and u.v. spectroscopy, and by correlation of the c.d. spectra of the newly prepared nucleosides with those published for known purine nucleosides.  相似文献   

8.
A series of 4β-(thiazol-2-yl)amino-4′-O-demethyl-4-deoxypodophyllotoxins were synthesized, and their cytotoxicities were evaluated against four human cancer cell lines (A549, HepG2, HeLa, and LOVO cells) and normal human diploid fibroblast line WI-38. Some of the compounds exhibited promising antitumor activity and less toxicity than the anticancer drug etoposide. Among them, compounds 15 and 17 were found to be the most potent synthetic derivatives as topo-II inhibitors, and induced DNA double-strand breaks via the p73/ATM pathway as well as the H2AX phosphorylation in A549 cells. These compounds also arrested A549 cells cycle in G2/M phase by regulating cyclinB1/cdc2(p34). Taken together, these results show that a series of compounds are potential anticancer agents.  相似文献   

9.
Abstract

2′-Azido-2′-deoxyuridine and 2′-azido-2′-deoxycytidine were evaluated for their inhibitory activity against ribonucleotide reductase and for subsequent cell growth inhibition. Their mono-and di-phosphates were synthesized and their inhibitory activities against the reductase were also determined in a permeabilized cell system, along with the two nucleosides. The results of the present study identify the first phosphorylation step involved in the conversion of the two azidonucleosides to the corresponding diphosphates to be rate-limiting in the overall activation.  相似文献   

10.
Benzyl 2-O-acetyl-4,6-O-benzylidene-3-O-(2,3,4-tri-O-acetyl-α-l-rhamnopyranosyl)-β-d-galactopyranoside (11) has been synthesised by two routes. Partial deacetylation of 11 and then acid hydrolysis yielded benzyl 2-O-acetyl-3-O-α-l-rhamnopyranosyl-β-d-galactopyranoside, catalytic hydrogenolysis of which gave the first title compound in excellent yield. Benzyl 4,6-O-benzylidene-3-O-α-l-rhamnopyranosyl-β-d-galactopyranoside was benzylated, and hydrogenolysis (LiAlH4-AlCl3) of the product gave the disaccharide derivative 16 with only HO-6 unsubstituted. Acetylation of 16 followed by catalytic hydrogenolysis gave the crystalline, second title compound. As model compounds for comparative n.m.r. studies, 2-O-, 3-O-, and 6-O-acetyl-d-galactose were also synthesised.  相似文献   

11.
Abstract

Two nucleoside analogs were synthesized to test the ribose conformational and electronic effects on phosphate hydrolysis at the 3′ position. It was found that under alkaline conditions, a 2′-fluoro-nucleoside (C3′-endo) resulted in a phosphate degradation that was ten times faster than the 2′-deoxynucleoside analog (C2′-endo). In addition to kinetic differences, product distributions will be presented.  相似文献   

12.
Abstract

The synthesis of 2′-amino-2′-deoxypyrimidine 5′-triphosphates is described. The 2′-amino-2′-deoxyuridine 5′-triphosphate is obtained from uridine in four steps with 25% overall yield. The 2′-amino-2′-deoxycytidine 5′-triphosphate is obtained from uridine in seven steps with 13% overall yield.  相似文献   

13.
Luteolin 3′,4′-di-O-β-d-glucuronide is the major flavonoid in the liverwort Lunularia cruciata. It is accompanied by small amounts of luteolin 3′-O-β-d-glucuronide. Both are new natural products and the former appears to be a unique example of a 3′,4′-diglycosylated flavonoid. Luteolin 4′-O-β-d-glucuronide was isolated as a hydrolysis product of the diglucuronide.  相似文献   

14.
Six 2′-hydroxyflavonols were isolated from Gutierrezia microcephala, including four new compounds, 5,7,2′-trihydroxy-3,6,4′,5′-tetramethoxyflavone, 5,7,2′-trihydroxy-3,6,8,4′,5′-pentamethoxyflavone, 5,2′-dihydroxy-3,6,7,8,4′,5′-hexamethoxyflavone and 5,7,2′,4′-tetrahydroxy-3,8,5′-trimethxoyflavone and two known compounds, 5,7,2′,5′-tetrahydroxy-3,6,8,4′-tetramethoxyflavone and 5,7,2′,4′-tetrahydroxy-3,6,8,5′-tetramethoxyflavone.  相似文献   

15.
The rate of β-phase formation in the ether lipids 1-O-alkylglycerols have been investigated at various temperatures. The concentrations of the phases vs. time in 1-O-hexadecylglycerol (C16G) were measured using automatic X-ray powder diffraction peak area measurements. In 1-O-decylglycerol (C16G) the rate was estimated using the heat evolved during the transition. At least two factors are important for the low transition rate. At higher temperatures the rate appears to be limited by a low probability of β crystallite formation (nucleation). As the temperature is decreased, crystallite formation probably increases. A second factor involves an activation of the metastable lattice. The activation process results in a lower rate at decreased temperatures. The two factors together give the highest transition rate at the α ? sub-α-phase transition temperature.  相似文献   

16.
The microbial synthesis of some purine 2′-amino-2′-deoxyribonucleosides from purine bases and 2′-amino-2′-deoxyuridine is described. Various bacteria, especially Erwinia herbicola, Salmonella schottmuelleri, Enterobacter aerogenes and Escherichia coli, were able to transfer the aminoribosyl moiety of 2′-amino-2′-deoxyuridine to purine bases (transaminoribosylation) in the presence of inorganic phosphate. The optimum conditions for the reaction were pH 7.0 and 63°C. No reaction was observed in the absence of inorganic phosphate and the optimum concentration of it was around 30 mm. Adenine, guanine, 2-chlorohypoxanthine and hypoxanthine were transformed to the corresponding 2′-amino-2′-deoxyribonucleosides by the catalytic activity of the wet cell paste of Enterobacter aerogenes AJ 11125. The enzymatically synthesized purine 2′-amino-2′-deoxyribonucleosides were isolated and identified by physicochemical means. 2′-Amino-2′-deoxyadenosine strongly inhibited the growth of Hela cells in tissue culture, and the ED50 was 2.5μ/ml.  相似文献   

17.
DNA-based aptamers that contain 2′-O,4′-C-methylene-bridged/linked bicyclic ribonucleotides (B/L nucleotides) over the entire length were successfully obtained using a capillary electrophoresis systematic evolution of ligands by exponential enrichment (CE-SELEX) method. A modified DNA library was prepared with an enzyme mix of KOD Dash and KOD mutant DNA polymerases. Forty 2′-O,4′-C-methylene bridged/locked nucleic acid (2′,4′-BNA/LNA) aptamers were isolated from an enriched pool and classified into six groups according to their sequence. 2′,4′-BNA/LNA aptamers of groups V and VI bound human thrombin with Kd values in the range of several 10 nanomolar levels.  相似文献   

18.
We report herein the synthesis and evaluation of a series of β-d-2′-deoxy-2′-α-chloro-2′-β-fluoro and β-d-2′-deoxy-2′-α-bromo-2′-β-fluoro nucleosides along with their corresponding phosphoramidate prodrugs. Key intermediates, lactols 11 and 12, were obtained by a diastereoselective fluorination of protected 2-deoxy-2-chloro/bromo-ribonolactones 7 and 8. All synthesized nucleosides and prodrugs were evaluated with a hepatitis C virus (HCV) subgenomic replicon system.  相似文献   

19.
The Halide ion-catalysed reaction of benzyl exo-2,3-O-benzylidene-α-l-rhamnopyranoside with tetra-O-benzyl-α-d-galactopyranosyl bromide and hydrogenolysis of the exo-benzylidene group of the product 2 gave benzyl 3-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-α-d-galactopyranosyl)-α-l-rhamnopyranoside (6). Compound 2 was converted into 4-O-α-d-galactopyranosyl-l-rhamnose. The reaction of 6 with tetra-O-acetyl-α-d-glucopyranosyl bromide and removal of the protecting groups from the product gave 4-O-α-d-galactopyranosyl-2-O-β-d-glucopyranosyl-l-rhamnose.  相似文献   

20.
pppA2′p5′A2′p5′A(简称2′-5′P_3A_3)是干扰素作用于细胞后诱导产生的物质。干扰素的作用机理很复杂,其中之一是2′-5′寡聚腺苷酸合成酶的活力增加,此酶以ATP为底物合成2′-5′P_3A_3及其同系物2′-5′P_3An。但2′-5′P_3A_3或2′-5′P_3A_n本身是否具有抗病毒作用,干扰素的抗病毒作用是否通过2′-5′P_3A_3或2′-5′P_3A_n而进行,这是一个很  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号