首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Low-K+, high-Na+ cells of strain RL21a of Neurospora crassa , in steady state with 25 m M Na+, were used to study K+/Na+ exchanges in the presence or absence of Ca2+ and Mg2+. In the presence of Ca2+ and Mg2+, a low concentration of K+ (0.3 m M ) triggered a rapid exchange, but in the absence of the divalents, a high K+ concentration (30 m M ) was required to initiate the exchange at a rapid rate. In the absence of Ca2+ and Mg2+, K+ uptake did not occur at low K+ concentration, internal K+ did not regulate Na+ influx in the presence of external K+, and the efflux of Na+ proceeded at maximum activity at very low-K+ contents.  相似文献   

2.
Summary l-proline uptake via the intestinal brush-borderIMINO carrier was tested for inhibition by 41 compounds which included sugars, N-methylated, -,-, - and -amino and imino acids, and heterocyclic analogs of pyrrolidine, piperidine and pyridine. Based on competitive inhibitor constants (apparentK/'s) we find that theIMINO carrier binding site interacts with molecules which possess a well-defined set of structural prerequisites. The ideal inhibitor must 1) be a heterocyclic nitrogen ring, 2) have a hydrophobic region, 3) be thel-stereoisomer of 4) an electronegative carbonyl group which is 5) separated by a one-carbon atom spacer from 6) an electropositive tetrahedral imino nitrogen with two H atoms. Finally, 7) the inhibitor conformation determined by dynamic ring puckering must position all these features within a critical domain. The two best inhibitors arel-pipecolate (apparentK/0.2mm) andl-proline (apparentK/0.3mm).  相似文献   

3.
GalP is the membrane protein responsible for H+-driven uptake of D-galactose intoEscherichia coli. It is suggested to be the bacterial equivalent of the mammalian glucose transporter, GLUT1, since these proteins share sequence homology, recognise and transport similar substrates and are both inhibited by cytochalasin B and forskolin. The successful over-production of GalP to 35–55% of the total inner membrane protein ofE. coli has allowed direct physical measurements on isolated membrane preparations. The binding of the antibiotics cytochalasin B and forskolin could be monitored from changes in the inherent fluorescence of GalP, enabling derivation of a kinetic mechanism describing the interaction between the ligands and GalP. The binding of sugars to GalP produces little or no change in the inherent fluorescence of the transporter. However, the binding of transported sugars to GalP produces a large increase in the fluorescence of 8-anilino-1-naphthalene sulphonate (ANS) excited via tryptophan residues. This has allowed a binding step, in addition to two putative translocation steps, to be measured. From all these studies a basic kinetic mechanism for the transport cycle under non-energised conditions has been derived. The ease of genetical manipulation of thegalP gene inE. coli has been exploited to mutate individual amino acid residues that are predicted to play a critical role in transport activity and/or the recognition of substrates and antibiotics. Investigation of these mutant proteins using the fluorescence measurements should elucidate the role of individual residues in the transport cycle as well as refine the current model.Abbreviations GalP galactose-H+ transporter - AraE arabinose-H+ transporter - GLUT1 human erythrocyte glucose transporter requests for offprints: Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2UH, UK  相似文献   

4.
Summary Amino acids enter rabbit jejunal brush border membrane vesicles via three major transport systems: (1) simple passive diffusion; (2) Na-independent carriers; and (3) Na-dependent carriers. The passive permeability sequence of amino acids is very similar to that observed in other studies involving natural and artificial membranes. Based on uptake kinetics and cross-inhibition profiles, at least two Na-independent and three Na-dependent carrier-mediated pathways exist. One Na-independent pathway, similar to the classical L system, favors neutral amino acids, while the other pathway favors dibasic amino acids such as lysine. One Na-dependent pathway primarily serves neutrall-amino acids including 2-amino-2-norbornanecarboxylic acid hemihydrate (BCH), but not -alanine or -methylaminoisobutyric acid (MeAIB). Another Na-dependent route favors phenylalanine and methionine, while the third pathway is selective for imino acids and MeAIB. Li is unable to substitute for Na in these systems. Cross-inhibition profiles indicated that none of the Na-dependent systems conform to classical A or ACS paradigms. Other notable features of jejunal brush border vesicles include (1) no -alanine carrier, and (2) no major proline/glycine interactions.  相似文献   

5.
The Lens Circulation   总被引:1,自引:1,他引:0  
The lens is the largest organ in the body that lacks a vasculature. The reason is simple: blood vessels scatter and absorb light while the physiological role of the lens is to be transparent so it can assist the cornea in focusing light on the retina. We hypothesize this lack of blood supply has led the lens to evolve an internal circulation of ions that is coupled to fluid movement, thus creating an internal micro-circulatory system, which makes up for the lack of vasculature. This review covers the membrane transport systems that are believed to generate and direct this internal circulatory system.  相似文献   

6.
D Kleiner  K Alef  A Hartmann 《FEBS letters》1983,164(1):121-123
The N2 fixing bacteria Klebsiella pneumoniae, Azospirillum brasilense, Rhodopseudomonas sphaeroides and Rhodospirillum rubrum, but not Azotobacter vinelandii accumulate the glutamine analogue methionine sulfoximine in the cell. In the accumulating cells methionine sulfoximine inhibits ammonium transport. Accumulation and inhibition are prevented by glutamine.  相似文献   

7.
Inorganic nitrogen is an essential nutrient for photosynthetic organisms. Its efficient use in nature involves adaptation of the organisms to the availability of the nitrogen supply, to changing environmental conditions, and to the provision of carbon and other nutrients. The unicellular alga Chlamydomonas provides a useful model to identify not only each of the components participating in the assimilative process in a species, but also the regulatory networks modulating their activity. A remarkable fact is the ample array of transporters for inorganic nitrogen compounds operating in this single cell: 13 putative nitrate/nitrite transporters and eight putative ammonium transporters. However, for nitrate, only a few of them participate as the main suppliers of nitrogen for cell growth, and others probably function to adapt nitrogen utilization efficiency to conditions depending not only on the nitrogen source available but also on other nutrients and environmental conditions. This paper summarizes recent findings in Chlamydomonas to provide an integrated perspective.  相似文献   

8.
The effect of inhibitors and uncouplers on the osmotic shock-sensitive transport systems for glutamine and galactose (by the β-methyl galactoside permease) was compared to their effect on the osmotic shock-resistant proline and galactose permease systems in cytochrome-deficient cells of Salmonella typhimurium SASY28. Both osmotic shock-sensitive and -resistant systems were sensitive to uncouplers and to inhibitors of the membrane-bound Ca2+, Mg2+-activated adenosine triphosphatase. This suggests that uptake by both types of systems is energized in these cells by an electrochemical gradient of protons formed by ATP hydrolysis through the ATPase.  相似文献   

9.
Laboratory and field research indicate that the surface release of pesticides, which are essentially insoluble in water, typically result in their strong retention in shallow soils with limited mobility to depth. In contrast, at a pesticide mixing facility in Fresno, California, hydrophobic pesticides (DDT and Toxaphene) were detected at depths exceeding 30?ft. The estimate time required for DDT and Toxaphene to migrate to a depth of 10?ft in aqueous solution due to rainfall infiltration was calculated to be 20,000 and 2000 years, respectively. Mechanisms capable of transporting these compounds therefore were examined, including colloidal transport, transport via preferential pathways, mechanical transport, and transportation by a solvent or solvent mixture. The presence of DDT at depth in some locations was due to the presence of dry wells, cisterns, or landfills. In areas where these features were not present, DDT and Toxaphene is believed to have been transported to depth via dissolution into a solvent prior to its release and by solvation of these pesticides into free phase xylene that was released into soil containing DDT and Toxaphene.  相似文献   

10.
The recent solution of enteric bacterial porin structure, and new insights into the mechanism by which outer membrane receptor proteins recognize and internalize specific ligands, advocates the re-evaluation of TonB-dependent transport physiology. In this minireview we discuss the potential structural features of siderophore receptors and TonB, and use this analysis to evaluate both existing and new models of energy and signal transduction from the inner membrane to the outer membrane of gram-negative bacteria.  相似文献   

11.
This review, dedicated to the 100th anniversary of A.L. Kursanov's date of birth, considers the development of phloem transport studies since his book, Assimilate Transport in the Plant, was published in 1976. This book and several other fundamental publications on phloem structure and functions basically shaped this physiological issue; as a result, several international meetings by scientists working in the area were induced, and the proceedings of these meetings were published at regular intervals. Six conferences have been held to date, and six corresponding collections of papers have been published and are reviewed here along with other experimental communications and reviews. This review considers the following topics: (1) the phloem structure and the ultrastructure of specialized phloem cells, (2) the physiological functions of phloem and their regulation, (3) photosynthesis and phloem loading with assimilates, (4) phloem unloading and the related processes of plant growth and development, (5) the mechanisms of sugar and amino acid transport, (6) the levels of transport, (7) transport compartments; (8) xylem–phloem and symplast–apoplast communication; (9) phloem transport vs. the integral plant physiology, (10) transport of xenobiotics, and (11) the trophic transport networks in symbionts.  相似文献   

12.
A two-component high-affinity nitrate uptake system in barley   总被引:14,自引:0,他引:14  
The analysis of genome databases for many different plants has identified a group of genes that are related to one part of a two-component nitrate transport system found in algae. Earlier work using mutants and heterologous expression has shown that a high-affinity nitrate transport system from the unicellular green algae, Chlamydomonas reinhardtii required two gene products for function. One gene encoded a typical carrier-type structure with 12 putative trans-membrane (TM) domains and the other gene, nar2 encoded a much smaller protein that had only one TM domain. As both gene families occur in plants we investigated whether this transport model has more general relevance among plants. The screening for nitrate transporter activity was greatly helped by a novel assay using (15)N-enriched nitrate uptake into Xenopus oocytes expressing the proteins. This assay enables many oocytes to be rapidly screened for nitrate transport activity. The functional activity of a barley nitrate transporter, HvNRT2.1, in oocytes required co-injection of a second mRNA. Although three very closely related nar2-like genes were cloned from barley, only one of these was able to give functional nitrate transport when co-injected into oocytes. The nitrate transport performed by this two-gene system was inhibited at more acidic external pH and by acidification of the cytoplasm. This specific requirement for two-gene products to give nitrate transport function has important implications for attempts to genetically manipulate this fundamental process in plants.  相似文献   

13.
We have developed a model that accounts for the effect of a non-uniform distribution of tau protein along the axon length on fast axonal transport of intracellular organelles. The tau distribution is simulated by using a slow axonal transport model; the numerically predicted tau distributions along the axon length were validated by comparing them with experimentally measured tau distributions reported in the literature. We then developed a fast axonal transport model for organelles that accounts for the reduction of kinesin attachment rate to microtubules by tau. We investigated organelle transport for two situations: (1) a uniform tau distribution and (2) a non-uniform tau distribution predicted by the slow axonal transport model. We found that non-uniform tau distributions observed in healthy axons (an increase in tau concentration towards the axon tip) result in a significant enhancement of organelle transport towards the synapse compared with the uniform tau distribution with the same average amount of tau. This suggests that tau may play the role of being an enhancer of organelle transport.  相似文献   

14.
Energetics of membrane transport in protoplasts   总被引:1,自引:0,他引:1  
Examples are given to illustrate the recent use of isolated protoplasts in the study of membrane transport with the emphasis on the energetics of solute transport. A model is also presented for the mechanism of active solute transport at the plasmalemma.  相似文献   

15.
In this study, amiodarone, at very low concentrations, produced a clear efflux of K+. Increasing concentrations also produced an influx of protons, resulting in an increase of the external pH and a decrease of the internal pH. The K+ efflux resulted in an increased plasma membrane potential difference, responsible for the entrance of Ca2+ and H+, the efflux of anions and the subsequent changes resulting from the increased cytoplasmic Ca2+ concentration, as well as the decreased internal pH. The Δ tok1 and Δ nha1 mutations resulted in a smaller effect of amiodarone, and Δ trk1 and Δ trk2 showed a higher increase of the plasma membrane potential. Higher concentrations of amiodarone also produced full inhibition of respiration, insensitive to uncouplers and a partial inhibition of fermentation. This phenomenon appears to be common to a large series of cationic molecules that can produce the efflux of K+, through the reduction of the negative surface charge of the cell membrane, and the concentration of this cation directly available to the monovalent cation carriers, and/or producing a disorganization of the membrane and altering the functioning of the carriers, probably not only in yeast.  相似文献   

16.
A model originally developed for transport of neutral substrates in bacterial systems was tested for its suitability for depicting sucrose transport across the plasmalemma of the maize scutellum cell. The model contains a sucrose—proton symporter, a negatively-charged free carrier and a neutral sucrose—proton—carrier complex. Sucrose transport is driven by the sucrose gradient and by a proton electrochemical gradient set up by a proton-translocating ATPase. The results of experiments on sucrose uptake in scutellum slices are in accord with predictions based on the model. Evidence was obtained for an electrogenic proton pump in the plasmalemma, for sucrose—proton symport and for a sucrose transport mechanism driven by both electrical potential and pH gradients. It was found that treatments (dinitrophenol, N-ethylmaleimide or HCl) causing a net proton influx into the slices also caused an efflux of sucrose. Interpretations of these results compatible with the model are given.  相似文献   

17.
Summary o-Phthalate is actively transported into L1210 cells and the primary route for cell entry is the same transport system which mediates the influx of methotrexate and other folate compounds. The identity of the influx route has been established by the following observations: (A) Phthalate influx is competitively inhibited by methotrexate and the inhibition constant (K i ) is comparable to theK i for half-maximal influx of methotrexate; (B) Various anions inhibit the influx of phthalate and methotrexate with comparableK i values; (C) The influx of phthalate and methotrexate both fluctuate in parallel with changes in the anionic composition of the external medium; and (D) A specific covalent inhibitor of the methotrexate transport system (NHS-methotrexate) also blocks the transport of phthalate. In contrast, the efflux of phthalate does not occur via the methotrexate influx carrier, but rather by two separate processes which can be distinguished by their sensitivities to bromosulfophthalein. Efflux via the bromosulfophthalein-sensitive route constitutes 75% of total efflux and is enhanced by glucose and inhibited by oligomycin. The inability of phthalate to exit via the methotrexate influx carrier is due to competing intracellular anions which prevent phthalate from interacting with the methotrexate binding site at the inner membrane surface.  相似文献   

18.
Saccharomyces cerevisiae accomplishes high rates of hexose transport. The kinetics of hexose transport are complex. The capacity and kinetic complexity of hexose transport in yeast are reflected in the large number of sugar transporter genes in the genome. Twenty hexose transporter genes exist in S. cerevisiae. Some of these have been found by genetic means; many have been discovered by the comprehensive sequencing of the yeast genome. This review codifies the nomenclature of the hexose transporter genes and describes the sequence homology and structural similarity of the proteins they encode. Information about the expression and function of the transporters is presented. Access to the sequences of the genes and proteins at three sequence databases is provided via the World Wide Web. Received: 24 June 1996 / Accepted: 29 July 1996  相似文献   

19.
Long-range transport of gases and aerosols depends on vertical and horizontal air shifts: studies on atmospheric transport have to be based on the meteorological conditions of the environment. The aim of this paper is to review the physical principles on which meteorological models are based, and to make an exhaustive inventory of the main models used for the prognosis and diagnosis of air masses and a list of the long-range transport models associated to them. URL addresses are provided for all of these models to allow the reader to check their usefulness. A practical application is included with reference to trajectories followed by air masses that reach the Iberian Peninsula at various altitudes, depending on the synoptic meteorological situation. Further examples describe air masses entering Europe with desert dust from Africa. This dust may eventually develop into freezing nuclei and form hailstones in summer storms.  相似文献   

20.
Transport stoichiometry determination can provide great insight into the mechanism and function of ion-coupled transporters. Traditional reversal potential assays are a reliable, general method for determining the transport stoichiometry of ion-coupled transporters, but the time and material costs of this technique hinder investigations of transporter behavior under multiple experimental conditions. Solid-supported membrane electrophysiology (SSME) allows multiple recordings of liposomal or membrane samples adsorbed onto a sensor and is sensitive enough to detect transport currents from moderate-flux transporters that are inaccessible to traditional electrophysiology techniques. Here, we use SSME to develop a new method for measuring transport stoichiometry with greatly improved throughput. Using this technique, we were able to verify the recent report of a fixed 2:1 stoichiometry for the proton:guanidinium antiporter Gdx, reproduce the 1H+:2Cl antiport stoichiometry of CLC-ec1, and confirm loose proton:nitrate coupling for CLC-ec1. Furthermore, we were able to demonstrate quantitative exchange of internal contents of liposomes adsorbed onto SSME sensors to allow multiple experimental conditions to be tested on a single sample. Our SSME method provides a fast, easy, general method for measuring transport stoichiometry, which will facilitate future mechanistic and functional studies of ion-coupled transporters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号