首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
Epilepsy is a kind of disease with complicated pathogenesis. KCNQ (Kv7) is a voltage dependent potassium channel that is mostly associated with epilepsy and thus becomes an important target in the treatment of epilepsy. In this paper, a series of substituted piperidine derivatives targeting KCNQ were designed and synthesized by using scaffold hopping and active substructure hybridization. Compounds were evaluated by fluorescence-based thallium influx assay, Rb+ flow assay and electrophysiological patch-clamp assay. Results showed that some compounds possessed more potent potassium channel opening activity than Retigabine. More significantly, compound 11 was found to have good pharmacokinetic profiles in vivo.  相似文献   

2.
Structural studies of topoisomerase-fluoroquinolone-DNA ternary complexes revealed a cavity between the quinolone N-1 position and the active site tyrosine. Fluoroquinolone derivatives having positively charged or aromatic moieties extended from the N-1 position were designed to probe for binding contacts with the phosphotyrosine residue in ternary complex. While alkylamine, alkylphthalimide, and alkylphenyl groups introduced at the N-1 position afforded derivatives that maintained modest inhibition of the supercoiling activity of DNA gyrase, none retained ability to poison DNA gyrase. Thus, the addition of a large and/or long moiety at the N-1 position disrupts ternary complex formation, and retained ability to inhibit supercoiling is likely through interference with the strand breakage reaction. Two derivatives were found to possess inhibitory effects on the decatenation activity of human topoisomerase II.  相似文献   

3.
LSD1 is implicated in a number of malignancies and has emerged as an exciting target. As part of our sustained efforts to develop novel reversible LSD1 inhibitors for epigenetic therapy of cancers, in this study, we reported a series of stilbene derivatives and evaluated their LSD1 inhibitory activities, obtaining several compounds as potent LSD1 inhibitors with IC50 values in submicromolar range. Enzyme kinetics studies and SPR assay suggested that compound 8c, the most active LSD1 inhibitor (IC50?=?283?nM), potently inhibited LSD1 in a reversible and FAD competitive manner. Consistent with the kinetics data, molecular docking showed that compound 8c can be well docked into the FAD binding site of LSD1. Flow cytometry analysis showed that compound 8c was capable of up-regulating the expression of the surrogate cellular biomarker CD86 in THP-1 human leukemia cells, suggesting the ability to block LSD1 activity in cells. Compound 8c showed good inhibition against THP-1 and MOLM-13 cells with IC50 values of 5.76 and 8.34?μM, respectively. Moreover, compound 8c significantly inhibited colony formation of THP-1 cells dose dependently.  相似文献   

4.
Analogues of the compound 2,5-di-tert-butylhydroquinone (BHQ) are capable of inhibiting the enzyme sarco/endoplasmic reticulum ATPase (SERCA) in the low micromolar and submicromolar concentration ranges. Not only are SERCA inhibitors valuable research tools, but they also have potential medicinal value as agents against prostate cancer. This study describes the synthesis of 13 compounds representing several classes of BHQ analogues, such as hydroquinones with a single aromatic substituent, symmetrically and unsymmetrically disubstituted hydroquinones, and hydroquinones with ω-amino acid tethers attached to their hydroxyl groups. Structure–activity relationships were established by measuring the inhibitory potencies of all synthesized compounds in bioassays. The assays were complemented by computational ligand docking for an analysis of the relevant ligand/receptor interactions.  相似文献   

5.
The present study reports the effect of indanone derivatives on scopolamine induced deficit cholinergic neurotransmission serving as promising leads for the therapeutics of cognitive dysfunction. Eleven compounds 5464 have been designed, synthesised and evaluated against behavioural alterations using step down passive avoidance protocol at a dose of 0.5?mg/kg with Donepezil (1) as the reference standard. All the synthesised compounds were evaluated for their in vitro acetylcholinesterase (AChE) inhibition at five different concentrations using mice brain homogenate as the source of the enzyme. Compounds 54, 56, 59 and 64 displayed appreciable activity with an IC50 value of 14.06?µM, 12.30?µM, 14.06?µM and 12.01?µM, respectively towards acetylcholinesterase inhibition. The molecular docking study performed to predict the binding mode of the compounds suggested that these compounds could bind appreciably to the amino acids present at the active site of recombinant human acetylcholinesterase (rhAChE). The behavioural, biochemical and in silico pharmacokinetic studies were in concordance with each other.  相似文献   

6.
A series of salicylamide derivatives were designed, synthesized and evaluated as multifunctional agents for the treatment of Alzheimer’s disease. In vitro assays demonstrated that most of the derivatives were selective AChE inhibitors. They showed good inhibitory activities of self- and Cu2+-induced Aβ1–42 aggregation, and significant antioxidant activities. Among them, compound 15b exhibited good inhibitory activity toward RatAChE and EeAChE with IC50 value of 10.4 μM and 15.2 μM, respectively. Moreover, 15b displayed high antioxidant activity (2.46 Trolox equivalents), good self- and Cu2+-induced Aβ1–42 aggregation inhibitory potency (42.5% and 31.4% at 25.0 μM, respectively) and moderate disaggregation ability to self- and Cu2+-induced Aβ1–42 aggregation fibrils (23.4% and 27.0% at 25 μM, respectively). Furthermore, 15b also showed biometal chelating abilities, anti-neuroinflammatory ability and BBB permeability. These multifunctional properties indicated compound 15b was worthy of being chosen for further pharmacokinetics, toxicity and behavioral researches to test its potential for AD treatment.  相似文献   

7.
A series of novel dipeptidyl boronic acid inhibitors of 20S proteasome were designed and synthesized. Aliphatic groups at R1 position were designed for the first time to fully understand the SAR (structure–activity relationship). Among the screened compounds, novel inhibitor 5c inhibited the CT-L (chymotrypsin-like) activity with IC50 of 8.21?nM and the MM (multiple myeloma) cells RPMI8226, U266B and ARH77 proliferations with the IC50 of 8.99, 6.75 and 9.10?nM, respectively, which showed similar in vitro activities compared with the compound MLN2238 (biologically active form of marketed MLN9708). To investigate the oral availability, compound 5c was esterified to its prodrug 6a with the enzymatic IC50 of 6.74?nM and RPMI8226, U266B and ARH77 cell proliferations IC50 of 2.59, 4.32 and 3.68?nM, respectively. Furthermore, prodrug 6a exhibited good pharmacokinetic properties with oral bioavailability of 24.9%, similar with MLN9708 (27.8%). Moreover, compound 6a showed good microsomal stabilities and displayed stronger in vivo anticancer efficacy than MLN9708 in the human ARH77 xenograft mouse model. Finally, cell cycle results showed that compound 6a had a significant inhibitory effect on CT-L and inhibited cell cycle progression at the G2M stage.  相似文献   

8.
Multiple myeloma (MM) is the second most common haematological malignancy. Almost all patients with MM eventually relapse, and most recommended treatment protocols for the patients with relapsed refractory MM comprise a combination of drugs with different mechanisms of action. Therefore novel drugs are in urgent need in clinic. Bcl-2 inhibitors and HDAC inhibitors were proved their anti-MM effect in clinic or under clinical trials, and they were further discovered to have synergistic interactions. In this study, a series of Bcl-2/HDAC dual-target inhibitors were designed and synthesized. Among them, compounds 7e7g showed good inhibitory activities against HDAC6 and high binding affinities to Bcl-2 protein simultaneously. They also displayed good growth inhibitory activities against human MM cell line RPMI-8226, which proved their potential value for the treatment of multiple myeloma.  相似文献   

9.
A series of alpha-alkyl-substituted phenylpropanoic acids was prepared as dual agonists of peroxisome proliferator-activated receptors alpha and delta (PPARalpha/delta). Structure-activity relationship studies indicated that the shape of the linking group and the shape of the substituent at the distal benzene ring play key roles in determining the potency and the selectivity of PPAR subtype transactivation. Structure-activity relationships among the amide series (10) and the reversed amide series (13) are similar, but not identical, especially in the case of the compounds bearing a bulky hydrophobic substituent at the distal benzene ring, indicating that the hydrophobic tail part of the molecules in these two series binds at somewhat different positions in the large binding pocket of PPAR. alpha-Alkyl-substituted phenylpropanoic acids of (S)-configuration were identified as potent human PPARalpha/delta dual agonists. Representative compounds exhibited marked nuclear receptor selectivity for PPARalpha and PPARdelta. Subtype-selective PPAR activation was also examined by analysis of the mRNA expression of PPAR-regulated genes.  相似文献   

10.
A series of 4-bromo-N-(3,5-dimethoxyphenyl)benzamide derivatives were designed and synthesised as novel fibroblast growth factor receptor-1 (FGFR1) inhibitors. We found that one of the most promising compounds, C9, inhibited five non-small cell lung cancer (NSCLC) cell lines with FGFR1 amplification, including NCI-H520, NCI-H1581, NCI-H226, NCI-H460 and NCI-H1703. Moreover, the IC50 values for the compound C9 were 1.36?±?0.27?µM, 1.25?±?0. 23?µM, 2.31?±?0.41?µM, 2.14?±?0.36?µM and 1.85?±?0.32?µM, respectively. The compound C9 arrested the cell cycle at the G2 phase in NSCLC cell lines. The compound C9 also induced cellular apoptosis and inhibited the phosphorylation of FGFR1, PLCγ1 and ERK in a dose-dependent manner. In addition, molecular docking experiments showed that compound C9 binds to FGFR1 to form six hydrogen bonds. Taken together, our data suggested that the compound C9 represented a promising lead compound-targeting FGFR1.  相似文献   

11.
Abstract

A series of novel quinolinone derivatives bearing dithiocarbamate moiety were designed and synthesised as multifunctional AChE inhibitors for the treatment of AD. Most of these compounds exhibited strong and clearly selective inhibition to eeAChE. Among them, compound 4c was identified as the most potent inhibitor to both eeAChE and hAChE (IC50 = 0.22?μM for eeAChE; IC50 = 0.16?μM for hAChE), and it was also the best inhibitor to AChE-induced Aβ aggregation (29.02% at 100?μM) and an efficient inhibitor to self-induced Aβ aggregation (30.67% at 25?μM). Kinetic and molecular modelling studies indicated that compound 4c was a mixed-type inhibitor, which could interact simultaneously with the catalytic anionic site (CAS) and the peripheral anionic site (PAS) of AChE. In addition, 4c had good ability to cross the BBB, showed no toxicity on SH-SY5Y neuroblastoma cells and was well tolerated in mice at doses up to 2500?mg/kg (po).  相似文献   

12.
Staphylococcus aureus is a frequent cause of biofilm-related infections. Bacterial cells within a biofilm are protected from attack by the immune system and conventional antibiotics often fail to penetrate the biofilm matrix. The discovery of hamamelitannin as a potentiator for antibiotics, recently led to the design of a more drug-like lead. In the present study, we want to gain further insight into the structure–activity relationship (S.A.R.) of the 5-position of the molecule, by preparing a library of 21 hamamelitannin analogues.  相似文献   

13.
FMS-like tyrosine kinase 3 (FLT3) was an important therapeutic target in acute myeloid leukemia (AML). We synthesized two series of 4-((6,7-dimethoxyquinoline-4-yl)oxy)aniline derivatives possessing the semicarbazide moiety and 2,2,2-trifluoro-N,N′-dimethylacetamide moiety as the linker. The cell proliferation assay in vitro against HL-60 and MV4-11 cell lines demonstrated that most series I compounds containing semicarbazide moiety had more potent than Cabozantinib. Furthermore, the enzyme assay showed that compound 12c and 12g were potent FLT3 inhibitors with IC50 values of 312 nM and 384 nM, respectively. Following that, molecular docking analysis was also performed to determine possible binding mode between FLT3 and the target compound.  相似文献   

14.
We herein report the design, synthesis and molecular docking studies of 2,4-thiazolidinedione derivatives containing benzene sulphonyl group which are docked against the Peroxisome Proliferator Activated Receptor (PPARγ) target. Compound 7p was most effective in lowering the blood glucose level as compared to standard drugs pioglitazone and rosiglitazone. Compound 7p exhibited potent PPAR-γ transactivation of 61.2% with 1.9 folds increase in gene expression. In molecular docking studies 7p showed excellent interactions with amino acids TYR 473, SER 289, HIE 449, TYR 327, ARG 288, MET 329 and LEU 228. Compound 7p did not cause any damage to the liver without any noteworthy weight gain and may be considered as promising candidates for the development of new antidiabetic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号