首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The circadian clock regulates many aspects of life, including sleep, locomotor activity, and body temperature (BTR) rhythms1,2. We recently identified a novel Drosophila circadian output, called the temperature preference rhythm (TPR), in which the preferred temperature in flies rises during the day and falls during the night 3. Surprisingly, the TPR and locomotor activity are controlled through distinct circadian neurons3. Drosophila locomotor activity is a well known circadian behavioral output and has provided strong contributions to the discovery of many conserved mammalian circadian clock genes and mechanisms4. Therefore, understanding TPR will lead to the identification of hitherto unknown molecular and cellular circadian mechanisms. Here, we describe how to perform and analyze the TPR assay. This technique not only allows for dissecting the molecular and neural mechanisms of TPR, but also provides new insights into the fundamental mechanisms of the brain functions that integrate different environmental signals and regulate animal behaviors. Furthermore, our recently published data suggest that the fly TPR shares features with the mammalian BTR3. Drosophila are ectotherms, in which the body temperature is typically behaviorally regulated. Therefore, TPR is a strategy used to generate a rhythmic body temperature in these flies5-8. We believe that further exploration of Drosophila TPR will facilitate the characterization of the mechanisms underlying body temperature control in animals.  相似文献   

2.
3.
4.
Objective: To develop mixed models for examining longitudinal associations between rates of change in visceral, subcutaneous abdominal, and total body fat with rates of change in fasting insulin (FI) and insulin sensitivity (SI) over 3 years in children. Research Methods and Procedures: Seventy-seven children (mean age, 8.3 years at baseline) from Birmingham, Alabama, with three or more annual measures of FI and SI were included. Abdominal fat was measured by computed tomography, and total body fat and lean tissue mass were measured by DXA. Mixed models examined the longitudinal associations between the baseline level/rate of change of different fat compartments and the rate of change in FI or SI. Results: An annual increase of ∼5% in FI was associated with 1 cm2/yr of visceral fat gain per year (p < 0.05), independent of subcutaneous abdominal fat. A 1-cm2 difference in initial subcutaneous abdominal fat was associated with an ∼0.2% increase per year in FI (p < 0.02), independent of visceral fat. None of the rates of change in any of the fat measures was associated with the rate of change of SI. Discussion: The rate of change in visceral fat was positively associated with the rate of change in FI, independent of increasing subcutaneous abdominal fat; however, subcutaneous abdominal fat may be more predictive of the rate of change of FI than visceral or total fat. Therefore, growth-related increases in abdominal fat, particularly subcutaneous abdominal fat, may contribute to accelerating increases in FI, but have no effect on SI.  相似文献   

5.
Caenorhabditis elegans has been used as a major model organism to identify genetic factors that regulate organismal aging and longevity. Insulin/insulin-like growth factor 1 (IGF-1) signaling (IIS) regulates aging in many species, ranging from nematodes to humans. C. elegans is a nonpathogenic genetic nematode model, which has been extensively utilized to identify molecular and cellular components that function in organismal aging and longevity. Here, we review the recent progress in the role of IIS in aging and longevity, which involves direct regulation of protein and RNA homeostasis, stress resistance, metabolism and the activities of the endocrine system. We also discuss recently identified genetic factors that interact with canonical IIS components to regulate aging and health span in C. elegans. We expect this review to provide valuable insights into understanding animal aging, which could eventually help develop anti-aging drugs for humans.  相似文献   

6.
《Current biology : CB》2023,33(13):2702-2716.e3
  1. Download : Download high-res image (153KB)
  2. Download : Download full-size image
  相似文献   

7.
8.
9.
10.
In obesity, cardiac insulin resistance is a putative cause of cardiac hypertrophy and dysfunction. In our previous study, we observed that Magnolia extract BL153 attenuated high-fat-diet (HFD)-induced cardiac pathogenic changes. In this study, we further investigated the protective effects of the BL153 bioactive constituent, 4-O-methylhonokiol (MH), against HFD-induced cardiac pathogenesis and its possible mechanisms. C57BL/6J mice were fed a normal diet or a HFD with gavage administration of vehicle, BL153, or MH (low or high dose) daily for 24 weeks. Treatment with MH attenuated HFD-induced obesity, as evidenced by body weight gain, and cardiac pathogenesis, as assessed by the heart weight and echocardiography. Mechanistically, MH treatment significantly reduced HFD-induced impairment of cardiac insulin signaling by preferentially augmenting Akt2 signaling. MH also inhibited cardiac expression of the inflammatory factors tumor necrosis factor-α and plasminogen activator inhibitor-1 and increased the phosphorylation of nuclear factor erythroid-derived 2-like 2 (Nrf2) as well as the expression of a Nrf2 downstream target gene heme oxygenase-1. The increased Nrf2 signaling was associated with decreased oxidative stress and damage, as reflected by lowered malondialdehyde and 3-nitrotyrosine levels. Furthermore, MH reduced HFD-induced cardiac lipid accumulation along with lowering expression of cardiac fatty acid translocase/CD36 protein. These results suggest that MH, a bioactive constituent of Magnolia, prevents HFD-induced cardiac pathogenesis by attenuating the impairment of cardiac insulin signaling, perhaps via activation of Nrf2 and Akt2 signaling to attenuate CD36-mediated lipid accumulation and lipotoxicity.  相似文献   

11.
Mechanisms of brain metastatic melanoma (BMM) remain largely unknown. Understanding the modulation of signaling pathways that alter BMM cell invasion and metastasis is critical to develop new therapies for BMM. Heparanase has been widely implicated in cancer and is the dominant mammalian endoglycosidase which degrades heparan sulfate chains of proteoglycans (HSPG) including syndecans (SDCs). Recent findings also indicate that heparanase possesses non‐enzymatic functions in its latent form. We hypothesized that extracellular heparanase modulates BMM cell signaling by involving SDC1/4 carboxy terminal—associated proteins and downstream targets. We digested BMM cell surface HS with human recombinant active or latent heparanase to delineate their effects on cytoskeletal dynamics and cell invasiveness. We identified the small GTPase guanine nucleotide exchange factor‐H1 (GEF‐H1) as a new component of a SDC signaling complex that is differentially expressed in BMM cells compared to corresponding non‐metastatic counterparts. Second, knockdown of GEF‐H1, SDC1, or SDC4 decreased BMM cell invasiveness and GEF‐H1 modulated small GTPase activity of Rac1 and RhoA in conjunction with heparanase treatment. Third, both active and latent forms of heparanase affected Rac1 and RhoA activity; notably increasing RhoA activity. Both forms of heparanase were found to mediate the expression and subcellular localization of GEF‐H1, and treatment of BMM with latent heparanase modulated SDC1/4 gene expression. Finally, treatment with exogenous heparanase downregulated BMM cell invasion. These studies indicate the relevance of heparanase signaling pathways in BMM progression, and provide insights into the molecular mechanisms regulating HSPG signaling in response to exogenous heparanase. J. Cell. Biochem. 111: 1299–1309, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Mammalian sirtuin 6 (SIRT6) is involved in the regulation of many essential processes, especially metabolic homeostasis. SIRT6 knockout mice undergo premature aging and die at age ~4 weeks. Severe glycometabolic disorders have been found in SIRT6 knockout mice, and whether a dietary intervention can rescue SIRT6 knockout mice remains unknown. In our study, we found that at the same calorie intake, a high‐fat diet dramatically increased the lifespan of SIRT6 knockout mice to 26 weeks (males) and 37 weeks (females), reversed multi‐organ atrophy, and reduced body weight, hypoglycemia, and premature aging. Furthermore, the high‐fat diet partially but significantly normalized the global gene expression profile in SIRT6 knockout mice. Regarding the mechanism, excessive glucose uptake and glycolysis induced by the SIRT6 deficiency were attenuated in skeletal muscle through inhibition of insulin and IGF1 signaling by the high‐fat diet. Similarly, fatty acids but not ketone bodies inhibited glucose uptake, glycolysis, and senescence in SIRT6 knockout fibroblasts, whereas PI3K inhibition antagonized the effects of a high‐fatty‐acid medium in vitro. Overall, the high‐fat diet dramatically reverses numerous consequences of SIRT6 deficiency through modulation of insulin and IGF1 signaling, providing a new basis for elucidation of SIRT6 and fatty‐acid functions and supporting novel therapeutic approaches against metabolic disorders and aging‐related diseases.  相似文献   

13.
14.
Transient receptor potential cation channel, subfamily A, member 1 (TRPA1), is activated by a broad range of noxious stimuli. Cdk5, a member of the Cdk family, has recently been identified as a modulator of pain signaling pathways. In the current study, we investigated the extent to which Cdk5 modulates TRPA1 activity. Cdk5 inhibition was found to attenuate TRPA1 response to agonist in mouse DRG sensory neurons. Additionally, the presence of active Cdk5 was associated with increased TRPA1 phosphorylation in transfected HEK293 cells that was roscovitine-sensitive and absent in the mouse mutant S449A full-length channel. Immunopurified Cdk5 was observed to phosphorylate human TRPA1 peptide substrate at S448A in vitro. Our results point to a role for Cdk5 in modulating TRPA1 activity.  相似文献   

15.
Adult size in Drosophila results from the ratio of the rate of biomass increase and the rate of differentiation, both rates being temperature sensitive. Data on rates and size are collected in two tropical and two temperate Drosophila species; differentiation rate is higher in the two tropical species, growth rate differs between the large and small species of similar climatic origin. A biophysical model is used to evaluate the temperature dependence of adult size in Drosophila. The model is based upon the Sharpe–Schoolfield equation connecting enzyme kinetics and biological rates. Temperature sensitivities of growth rate, development time, and wing and thorax size are characterized by biophysical parameters. The biophysical parameter indicating trait specific temperature sensitivity is lower in tropical species than in temperate species, both for growth rate and for differentiation rate. In the larger species of a climate pair, thorax size and wing size prove to differ in pattern of temperature dependence; in the smaller species of a geographical pair, thorax size and wing size have identical patterns of temperature dependence.  相似文献   

16.
NOG1 is a nucleolar GTPase that is critical for 60S ribosome biogenesis. Recently, NOG1 was identified as one of the downstream regulators of target of rapamycin (TOR) in yeast. It is reported that TOR is involved in regulating lifespan and fat storage in Caenorhabditis elegans. Here, we show that the nog1 ortholog (T07A9.9: nog-1) in C. elegans regulates growth, development, lifespan, and fat metabolism. A green fluorescence protein (GFP) promoter assay revealed ubiquitous expression of C. elegans nog-1 from the early embryonic to the adult stage. Furthermore, the GFP-tagged NOG-1 protein is localized to the nucleus, whereas the aberrant NOG-1 protein is concentrated in the nucleolus. Functional studies of NOG-1 in C. elegans further revealed that nog-1 knockdown resulted in smaller broodsize, slower growth, increased life span, and more fat storage. Moreover, nog-1 over-expression resulted in decreased life span. Taken together, our data suggest that nog-1 in C. elegans may be an important player in regulating life span and fat storage via the insulin/IGF pathway.  相似文献   

17.
To enable us to study expression of tyrosine hydroxylase [TH; tyrosine 3-monooxygenase; L-tyrosine tetrahydropteridine:oxygen oxidoreductase (3-hydroxylating); EC 1.14.16.2] as a measure of dopaminergic neuron function in future experiments, methods were developed to quantify TH mRNA levels in cultures of dopaminergic mesencephalic cells. The model of selective dopaminergic toxicity of 1-methyl-4-phenylpyridinium (MPP+) was used to verify the specificity of our methods. Fetal (embryonic day 15) rat ventral mesencephalic cell cultures were treated with 15 microM MPP+ for 48 h, conditions previously shown to reduce the number of TH-immunoreactive neurons, TH activity, and dopamine uptake to 5-10% of control values. This treatment decreased the number of neurons labeled by TH in situ hybridization to 9% of untreated controls and caused a strong reduction of the abundance of TH mRNA in Northern blots. Our findings establish TH mRNA expression as a parameter for future studies of toxic and trophic effects on cultured dopaminergic neurons, and they support the view that MPP+ destroys dopaminergic neurons.  相似文献   

18.
Abstract: Integrating physiological and behavioral observations into ecological field studies of animals can provide novel insights into relationships among animal behavior, physiology, and ecology. We describe and evaluate a new technique for simultaneously collecting body temperature (Tb) and burrow use data for semi-fossorial mammals by combining light-sensitive radiotransmitters and implanted temperature-sensitive dataloggers. We used this approach to collect core Tb and activity data for 9 free-ranging arctic ground squirrels (Spermophilus parryii) in northern Alaska, USA, at approximately 5-minute intervals for 30–90 days each to address questions related to thermoregulation, energetics, foraging, sociality, and timing of activity in natural environments.  相似文献   

19.
Male reproductive behavior is highly dependent upon gonadal steroids. However, between individuals and across species, the role of gonadal steroids in male reproductive behavior is highly variable. In male B6D2F1 hybrid mice, a large proportion (about 30%) of animals demonstrate the persistence of the ejaculatory reflex long after castration. This provides a model to investigate the basis of gonadal steroid-independent male sexual behavior. Here we assessed whether non-gonadal steroids promote mating behavior in castrated mice. Castrated B6D2F1 hybrids that persisted in copulating (persistent copulators) were treated with the androgen receptor blocker, flutamide, and the aromatase enzyme inhibitor, letrozole, for 8 weeks. Other animals were treated with the estrogen receptor blocker, ICI 182,780, via continual intraventricular infusion for 2 weeks. None of these treatments eliminated persistent copulation. A motivational aspect of male sexual behavior, the preference for a receptive female over another male, was also assessed. This preference persisted after long-term castration in persistent copulators, and administration of ICI 182,780 did not influence partner preference. To assess the possibility of elevated sensitivity to sex steroids in brains of persistent copulators, we measured mRNA levels for genes that code for the estrogen receptor-α, androgen receptor, and aromatase enzyme in the medial preoptic area and bed nucleus of the stria terminalis. No differences in mRNA of these genes were noted in brains of persistent versus non-persistent copulators. Taken together our results suggest that non-gonadal androgens and estrogens do not maintain copulatory behavior in B6D2F1 mice which display copulatory behavior after castration.  相似文献   

20.
《Endocrine practice》2023,29(2):119-126
ObjectiveTo determine lipohypertrophy (LH) in patients with type 1 diabetes mellitus (T1DM) on multiple daily insulin injections (MDII) or continuous subcutaneous insulin infusion (CSII) and to reveal the factors associated with the development and severity of LH.MethodsSixty-six patients with T1DM treated with MDII (n = 35, 53%) or CSII (n = 31, 47%) for at least 1 year were included. LH localizations were detected with palpation and ultrasonography (USG).ResultsThe LH detection rate with USG was significantly higher than that by palpation in the whole group (P < .001). The LH was detected with USG in 30 (85.7%) patients in the MDII group and 22 (71.0%) patients in the CSII group (P = .144). Advanced LH was detected in 13 (37.1%) of the patients treated with MDII and in 3 (9.7%) of the patients treated with CSII. LH was more severe in the MDII group than in the CSII group (P = .013). Diabetes duration and length of infusion set use were significantly longer and body mass index, hypoglycemia, and complication rates were higher in patients with LH than those in patients without LH (P < .05). A positive correlation was found between LH severity and HbA1C and insulin dose (P < .05, for both). MDII as insulin administration method, incorrect rotation, and a history of ketosis were found to be the most related factors with LH severity in a multiple linear regression analysis (P < .05).ConclusionUSG might be an effective approach for detecting and evaluating the severity of LH. MDII might cause more severe LH than CSII in patients with T1DM. In this study, LH was found to be associated mostly with incorrect rotation technique and a history of ketosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号