首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Endothelial cells (ECs) are constantly exposed to shear stress, the action of which triggers signaling pathways and cellular responses. During inflammation, cytokines such as IL-6 increase in plasma. In this study, we examined the effects of steady flow on IL-6-induced endothelial responses. ECs exposed to IL-6 exhibited STAT3 activation via phosphorylation of Tyr705. However, when ECs were subjected to shear stress, shear force-dependent suppression of IL-6-induced STAT3 phosphorylation was observed. IL-6 treatment increased the phosphorylation of JAK2, an upstream activator of STAT3. Consistently, shear stress significantly reduced IL-6-induced JAK2 activation. Pretreatment of ECs with an inhibitor of MEK1 did not alter this suppression by shear stress, indicating that extracellular signal-regulated kinase (ERK1/2) was not involved. However, pretreatment of ECs with an endothelial nitric oxide synthase inhibitor (nitro-L-arginine methyl ester) attenuated this inhibitory effect of shear stress on STAT3 phosphorylation. Shear stress-treated ECs displayed decreased nuclear transmigration of STAT3 and reduced STAT3 binding to DNA. Intriguingly, ECs exposed to IL-6 entered the cell cycle, as evidenced by increasing G2/M phase, and shear stress to these ECs significantly reduced IL-6-induced cell cycle progression. STAT3-mediated IL-6-induced cell cycle was confirmed by the inhibition of the cell cycle in ECs infected with adenovirus carrying the inactive mutant of STAT3. Our study clearly shows that shear stress exerts its inhibitory regulation by suppressing the IL-6-induced JAK2/STAT3 signaling pathway and thus inhibits IL-6-induced EC proliferation. This shear force-dependent inhibition of IL-6-induced JAK2/STAT3 activation provides new insights into the vasoprotective effects of steady flow on ECs against cytokine-induced responses. shear stress; nitric oxide; cell cycle  相似文献   

9.
10.
11.
12.
13.
Nutrient overload is associated with the development of obesity, insulin resistance, and type II diabetes. High plasma concentrations of amino acids have been found to correlate with insulin resistance. At the cellular level, excess amino acids impair insulin signaling, the mechanisms of which are not fully understood. Here, we report that STAT3 plays a key role in amino acid dampening of insulin signaling in hepatic cells. Excess amino acids inhibited insulin-stimulated Akt phosphorylation and glycogen synthesis in mouse primary hepatocytes as well as in human hepatocarcinoma HepG2 cells. STAT3 knockdown protected insulin sensitivity from inhibition by amino acids. Amino acids stimulated the phosphorylation of STAT3 at Ser727, but not Tyr705. Replacement of the endogenous STAT3 with wild-type, but not S727A, recombinant STAT3 restored the ability of amino acids to inhibit insulin signaling, suggesting that Ser727 phosphorylation was critical for STAT3-mediated amino acid effect. Furthermore, overexpression of STAT3-S727D was sufficient to inhibit insulin signaling in the absence of excess amino acids. Our results also indicated that mammalian target of rapamycin was likely responsible for the phosphorylation of STAT3 at Ser727 in response to excess amino acids. Finally, we found that STAT3 activity and the expression of its target gene socs3, known to be involved in insulin resistance, were both stimulated by excess amino acids and inhibited by rapamycin. In conclusion, our study reveals STAT3 as a novel mediator of nutrient signals and identifies a Ser727 phosphorylation-dependent and Tyr705 phosphorylation-independent STAT3 activation mechanism in the modulation of insulin signaling.  相似文献   

14.
15.
《Phytomedicine》2014,21(8-9):1088-1091
STAT3 signaling pathway is an important target for human cancer therapy. Thus, the identification of small-molecules that target STAT3 signaling will be of great interests in the development of anticancer agents. The aim of this study was to identify novel inhibitors of STAT3 pathway from the roots of Zanthoxylum nitidum (Roxb.) DC. The bioassay-guided fractionation of MeOH extract of Z. nitidum using a STAT3-responsive gene reporter assay led to the isolation of angoline (1) as a potent and selective inhibitor of the STAT3 signaling pathway (IC50 = 11.56 μM). Angoline inhibited STAT3 phosphorylation and its target gene expression and consequently induced growth inhibition of human cancer cells with constitutively activated STAT3 (IC50 = 3.14–4.72 μM). This work provided a novel lead for the development of anti-cancer agents targeting the STAT3 signaling pathway.  相似文献   

16.
Chromatin immunoprecipitation in M14 melanoma cells showed that the protein ERp57 (endoplasmic reticulum protein 57) binds to DNA in the proximity of STAT3 in a subset of STAT3-regulated genes. In the same cells, IL-6 induced a significant increase of the expression of one of these genes, i.e. CRP. Upon depletion of ERp57 by RNA interference, the phosphorylation of STAT3 on tyrosine 705 was decreased, and the IL-6-induced activation of CRP expression was completely suppressed. In vitro experiments showed that ERp57 is also required for the binding of STAT3 to its consensus sequence on DNA. Thus ERp57, previously shown to associate with STAT3 in the cytosol and in the nuclear STAT3-containing enhanceosome, is a necessary cofactor for the regulation of at least a subset of STAT3-dependent genes, probably intervening both at the site of STAT3 phosphorylation and at the nuclear level.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号