首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pyrrolobenzodiazepine (PBD) and duocarmycin families are DNA-interactive agents that covalently bond to guanine (G) and adenine (A) bases, respectively, and that have been joined together to create synthetic dimers capable of cross-linking G–G, A–A, and G–A bases. Three G–A alkylating dimers have been reported in publications to date, with defined DNA-binding sites proposed for two of them. In this study we have used molecular dynamics simulations to elucidate preferred DNA-binding sites for the three published molecular types. For the PBD–CPI dimer UTA-6026 (1), our simulations correctly predicted its favoured binding site (i.e., 5′-C(G)AATTA-3′) as identified by DNA cleavage studies. However, for the PBD–CI molecule (‘Compound 11’, 3), we were unable to reconcile the results of our simulations with the reported preferred cross-linking sequence (5′-ATTTTCC(G)-3′). We found that the molecule is too short to span the five base pairs between the A and G bases as claimed, but should target instead a sequence such as 5′-ATTTC(G)-3′ with two less base pairs between the reacting G and A residues. Our simulation results for this hybrid dimer are also in accord with the very low interstrand cross-linking and in vitro cytotoxicity activities reported for it. Although a preferred cross-linking sequence was not reported for the third hybrid dimer (‘27eS’, 2), our simulations predict that it should span two base pairs between covalently reacting G and A bases (e.g., 5′-GTAT(A)-3′).  相似文献   

2.
We designed and synthesized human telomere alkylating N-methylpyrrole-N-methylimidazole (PI) polyamide conjugates (16). The C-type conjugates 13 possessed a chlorambucil moiety at the C terminus, whereas the N-type conjugates 46 had one of these moieties at the N terminus. The DNA alkylating activity of these conjugates was evaluated by high-resolution denaturing polyacrylamide gel electrophoresis using a 220 bp DNA fragment containing the human telomere repeat sequence 5′-(GGGTTA)4-3′/5′-(TAACCC)4-3′. C-type conjugates are designed to alkylate the G-rich-strand-containing 5′-GGGTTA-3′ and N-type conjugates were designed to alkylate the complementary C-rich strand-containing 5′-TAACCC-3′ sequence. The difference between conjugates 13 and 46 lies in the linker region between the polyamide moiety and chlorambucil. Conjugates 1 and 4 efficiently alkylated the 5′-GGTTAGGGTTA-3′ and 5′-CCCTAACCCTAA-3′ sequences, respectively, by recognizing 11 bp in the presence of distamycin A (Dist), in a heterotrimeric manner: one long alkylating polyamide conjugate (16) and two short partners (Dist).  相似文献   

3.
2′-O-Psoralen-conjugated antisense oligonucleotide was able to recognize a point mutation of mRNA. It had outstanding ability to photo-cross-link only to oligoribonucleotides (ORN) having a point mutation. This type of antisense molecule is the only one of its kind so far. To give high photo-cross-linking efficiency and sequence selectivity to antisense molecules, we synthesized novel photo-reactive oligonucleotides (2′-Ps-xom) containing psoralen at the 2′-O-position adenosine via an ethoxymethylene (2′-Ps-eom), propoxymethylene (2′-Ps-pom) and butoxymethylene (2′-Ps-bom) linker, respectively. We evaluated the photo-cross-linking efficiency and sequence selectivity in photo-cross-linking of 2′-Ps-xom to the complementary ORN and to an ORN having a mismatch base. Among them, 2′-Ps-eom exhibited superior photo-cross-linking efficiency with high sequence selectivity.  相似文献   

4.
No-carrier-added (NCA) R(+)-7-chloro-8-hydroxy-3-(3′-[18F]fluoropropyl)-1-phenyl-2,3,4,5-tetrahydro-3-benzazepine (2b) (an analog of dopamine D-1 receptor ligand SCH 23390), ethyl 8-fluoro-5,6-dihydro-5-(3′-fluoropropyl)-6-oxo-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylate (4b) and 3′-[18F]fluoropropyl 8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylate (6b) (analogs of the benzodiazepine RO 15-1788) were synthesized by alkylation of the corresponding nor-compound with NCA 1-[18F]fluoro-3-iodopropane in 10–15% yield (EOB) in ~110min and with a mass of 2–3nmol. Compound 2 is less potent (~ 12–14 times) than SCH 23390 in binding to rat striatal membranes in vitro. Compounds 2b, 4b and 6b exhibit no specific anatomical distribution to mouse brain. These results suggest that the substituent at position 3 of SCH 23390, and position 5 and carboxylate group of RO 15-1788 are critical determinants both of affinity and selectivity for receptor binding, and underscores the evaluation necessary when even minor changes (C1 to C3) are made in bioactive compounds.  相似文献   

5.
6.
《Inorganica chimica acta》2006,359(9):3014-3019
The competitive reactions of mononucleobase cations SP-4-2-[PtCl(9-EtGua)(NH3)(quinoline)]+, 1, and trans-[PtCl(9-EtGua)(pyridine)2]+, 2, with 5′-guanosine monophosphate (5′-GMP) and N-Acetylmethionine (N-AcMet) were studied by 1H NMR Spectroscopy. The results confirmed the previously observed kinetic selectivity for sulfur over nitrogen binding. The symmetric bis(pyridine) complex reacted faster than the ammine/quinoline moiety – the estimated half-times for reaction with 5′-GMP and N-AcMet were, respectively, 7.4 and 2.3 h for 1 and 4.90 and <0.75 h for 2. Thus modification of the planar amine can enhance sulfur selectivity – based on the observed rates a S/N selectivity ratio of 3.2 is obtained for 1 but >6.5 for 2. Applications of these findings were extended to study the reaction of 1 and 2 with Ubiquitin. One principal adduct corresponding to chloride displacement is observed for both species and in this case little difference in rate is observed. The likely binding site is the unique methionine residue. The percentage of platinum-bound ubiquitin is higher for 1 and 2 than the parent dichlorides trans-[PtCl2(NH3)(quinoline)] and trans-[PtCl2(pyridine)2]. The results suggest that systematic ligand modification can modulate sulfur donor specificity and suggest possible structural features for design of platinum-based bifunctional DNA–protein cross-linking agents, rather than the DNA–DNA cross-linking principally adopted by the anticancer drug cisplatin and congeners.  相似文献   

7.
Orthogonally positioned diamino/dicationic polyamides (PAs) have good water solubility and enhanced binding affinity, whilst retaining DNA minor groove and sequence specificity compared to their monoamino/monocationic counterparts. The synthesis and DNA binding properties of the following diamino PAs: f-IPI (3a), f-IPP (4), f-PIP (5), and f-PPP (6) are described. P denotes the site where a 1-propylamino group is attached to the N1-position of the heterocycle. Binding of the diamino PAs to DNA was assessed by DNase I footprinting, thermal denaturation, circular dichroism titration, biosensor surface plasmon resonance (SPR), and isothermal titration calorimetry (ITC) studies. According to SPR studies, f-IPI (3a) bound more strongly (Keq = 2.4 × 108 M?1) and with comparable sequence selectivity to its cognate sequence 5′-ACGCGT-3′ when compared to its monoamino analog f-IPI (1). The binding of f-IPI (3a) to 5′-ACGCGT-3′ via the stacked dimer motif was balanced between enthalpy and entropy, and that was quite different from the enthalpy-driven binding of its monoamino parent f-IPI (1). f-IPP (4) also bound more strongly to its cognate sequence 5′-ATGCAT-3′ (Keq = 7.4 × 106 M?1) via the side-by-side stacked motif than its monoamino analog f-IPP (2a). Although f-PPP (6) bound via a 1:1 motif, it bound strongly to its cognate sequence 5′-AAATTT-3′ (Keq = 4.8 × 107 M?1), 15-times higher than the binding of its monoamino analog f-PPP (2c), albeit f-PPP bound via the stacked motif. Finally, f-PIP (5) bound to its target sequence 5′-ATCGAT-3′ as a stacked dimer and it has the lowest affinity among the diamino PAs tested (Keq <1 × 105 M?1). This was about two times lower in affinity than the binding of its monoamino analog f-PIP (2b). The results further demonstrated that the ‘core rules’ of DNA recognition by monoamino PAs also apply to their diamino analogs. Specifically, PAs that contain a stacked IP core structure bind most strongly (highest binding constants) to their cognate GC doublet, followed by the binding of PAs with a stacked PP structure to two degenerate AT base pairs, and finally the binding of PAs with a PI core to their cognate CG doublet.  相似文献   

8.
A number of 5-oxo-pyrazolo[1,5-c]quinazolines (series B-1), bearing at position-2 the claimed (hetero)aryl moiety (compounds 18) but also a carboxylate group (914), were designed as hA3 AR antagonists. This study produced some interesting compounds endowed with good hA3 receptor affinity and high selectivity, being totally inactive at all the other AR subtypes. In contrast, the corresponding 5-ammino derivatives (series B-2) do not bind or bind with very low affinity at the hA3 AR, the only exception being the 5-N-benzoyl compound 19 that shows a hA3 Ki value in the high μ-molar range. Evaluation of the synthetic intermediates led to the identification of some 5(3)-(2-aminophenyl)-3(5)-(hetero)arylpyrazoles 2024 with modest affinity but high selectivity toward the hA3 AR subtype. Molecular docking of the herein reported tricyclic and simplified derivatives was carried out to depict their hypothetical binding mode to our model of hA3 receptor.  相似文献   

9.
N6-(3-Iodobenzyl)adenosine-5′-N-methyluronamide (1a, IB-MECA) exhibited polypharmacological characteristics targeting A3 adenosine receptor (AR), peroxisome proliferator-activated receptor (PPAR) γ, and PPARδ, simultaneously. The bioisosteric replacement of oxygen in 4′-oxoadenosines with selenium significantly increased the PPARδ-binding activity. 2-Chloro-N6-(3-iodobenzyl)-4′-selenoadenosine-5′-N-methyluronamide (3e) and related 4′-selenoadenosine derivatives significantly enhanced adiponectin biosynthesis during adipogenesis in human bone marrow mesenchymal stem cells (hBM-MSCs). The PPARδ-binding affinity, but not the A3 AR binding affinity, of 4′-selenoadenosine derivatives correlated with their adiponectin secretion stimulation. Compared with the sugar ring of 4′-oxoadenosine, that of 4′-selenoadenosine was more favorable in forming the South sugar conformation. In the molecular docking simulation, the South sugar conformation of compound 3e formed additional hydrogen bonds inside the PPARδ ligand-binding pocket compared with the North conformation. Therefore, the sugar conformation of 4′-selenoadenosine PPAR modulators affects the ligand binding affinity against PPARδ.  相似文献   

10.
A series of cinnolines/quinolines was prepared and it was found that 4-phenyl-cinnoline/quinolines with either a 2′,3′ or 2′,5′-disubstituted benzyloxy moiety or the 1-Me-7-indole methoxy moiety on the meta position of the 4-phenyl ring showed good binding selectivity for LXRβ over LXRα. The LXRβ binding selective modulators displayed good activity for inducing ABCA1 gene expression in J774 macrophage cell line and poor efficacy in the LXRα Gal4 functional assay. 26, 37 and 41 were examined for their ability to induce SREBP-1c gene expression in Huh-7 liver cell line and they were weak partial agonists.  相似文献   

11.
On the basis of potent and selective binding affinity of truncated 4′-thioadenosine derivatives at the human A3 adenosine receptor (AR), their bioisosteric 4′-oxo derivatives were designed and synthesized from commercially available 2,3-O-isopropylidene-d-erythrono lactone. The derivatives tested in AR binding assays were substituted at the C2 and N6 positions. All synthesized nucleosides exhibited potent and selective binding affinity at the human A3 AR. They were less potent than the corresponding 4′-thio analogues, but showed still selective to other subtypes. The 2-Cl series generally were better than the 2-H series in view of binding affinity and selectivity. Among compounds tested, compound 5d (X = Cl, R = 3-bromobenzyl) showed the highest binding affinity (Ki = 13.0 ± 6.9 nM) at the hA3 AR with high selectivity (at least 88-fold) in comparison to other AR subtypes. Like the corresponding truncated 4′-thio series, compound 5d antagonized the action of an agonist to inhibit forskolin-stimulated adenylate cyclase in hA3 AR-expressing CHO cells. Although the 4′-oxo series were less potent than the 4′-thio series, this class of human A3 AR antagonists is also regarded as another good template for the design of A3 AR antagonists and for further drug development.  相似文献   

12.
Many sequence variations of the 8–17 RNA-cleaving deoxyribozyme have been isolated through in vitro selection. In an effort to understand how these sequence variations affect cleavage site selectivity, we systematically mutated the catalytic core of 8–17 and measured the cleavage activity of each mutant deoxyribozyme against all 16 possible chimeric (RNA/DNA) dinucleotide junctions. We observed sequence-function relationships that suggest how the following non-conserved positions in the catalytic core influence selectivity at the dinucleotide (5′ rN18-N1.1 3′) cleavage site: (i) positions 2.1 and 12 represent a primary determinant of the selectivity at the 3′ position (N1.1) of the cleavage site; (ii) positions 15 and 15.0 represent a primary determinant of the selectivity at the 5′ position (rN18) of the cleavage site and (iii) the sequence of the 3-bp intramolecular stem has relatively little influence on cleavage site selectivity. Furthermore, we report for the first time that 8–17 variants have the collective ability to cleave all dinucleotide junctions with rate enhancements of at least 1000-fold over background. Three optimal 8–17 variants, identified from ~75 different sequences that were examined, can collectively cleave 10 of 16 junctions with useful rates of 0.1 min−1, and exhibit an overall hierarchy of reactivity towards groups of related junctions according to the order NG > NA > NC > NT.  相似文献   

13.
Protein arginine methyltransferase 5 (PRMT5) is an epigenetics related enzyme that has been validated as a promising therapeutic target for human cancer. Up to now, two small molecule PRMT5 inhibitors has been put into phase I clinical trial. In the present study, a series of candidate molecules were designed by combining key pharmacophores of formerly reported PRMT5 inhibitors. The in vitro PRMT5 inhibitory testing of compound 4b14 revealed an IC50 of 2.71?μM, exhibiting high selectivity over PRMT1 and PRMT4 (>70-fold selective). As expected, 4b14 exhibited potent anti-proliferative activity against a panel of leukemia and lymphoma cells, including MV4-11, Pfeiffer, SU-DHL-4 and KARPAS-422. Besides, 4b14 showed significant cell cycle arrest and apoptosis-inducing effects, as well as reduced the cellular symmetric arginine dimethylation level of SmD3 protein. Finally, affinity profiling analysis indicated that hydrophobic interactions, π-π stacking and cation-π actions made the major contributions to the overall binding affinity. This scaffold provides a new chemical template for further development of better lead compounds targeting PRMT5.  相似文献   

14.
The synthesis, DNA binding characteristics and biological activity of an N-formamido pyrrole- and imidazole-containing H-pin polyamide (f-PIP H-pin, 2) designed to selectively target the ICB2 site on the topoIIα promoter, is reported herein. Thermal denaturation, circular dichroism, isothermal titration calorimetry, surface plasmon resonance and DNase I footprinting studies demonstrated that 2 maintained the selectivity of the unlinked parent monomer f-PIP (1) and with a slight enhancement in binding affinity (Keq = 5 × 105 M?1) to the cognate site (5′-TACGAT-3′). H-pin 2 also exhibited comparable ability to inhibit NF-Y binding to 1, as demonstrated by gel shift studies. However, in stark contrast to monomer 1, the H-pin did not affect the up-regulation of topoisomerase IIα (topoIIα) in cells (Western blot), suggesting that the H-pin does not enter the nucleus. This study is the first to the authors’ knowledge that reports such a markedly different cellular response between two compounds of almost identical binding characteristics.  相似文献   

15.
Antagonists for the serotonin receptor 2B (5-HT2B) have clinical applications towards migraine, anxiety, irritable bowl syndrome, and MDMA abuse; however, few selective 5-HT2B antagonists have been identified. Previous studies from these labs identified a natural product, 5-hydroxy-2-(2-phenylethyl)chromone (5-HPEC, 2) as the first non-nitrogenous ligand for the 5-HT2B receptor. Studies on 5-HPEC optimization led to the identification of 5-hydroxy-2-(3-phenylpropyl)chromone (5-HPPC, 3), which showed a tenfold improvement in binding affinity over 2 at 5-HT2B. This study aimed to further improve receptor pharmacology of this unique scaffold. Guided by molecular modeling studies modifications at the C-3′ and C-4′ positions of 3 were made to probe their effects on ligand binding affinity and efficacy. Among the derivatives synthesized 5-hydroxy-2-(3-(3-cyanophenyl)propyl)chromone (5-HCPC, 3d) showed the most promise with a multifold improvement in binding affinity (pKi = 7.1 ± 0.07) over 3 with retained antagonism.  相似文献   

16.
Early studies led to the identification of 3β-(4-methoxyphenyl)tropane-2β-carboxylic acid methyl ester (5) with high affinity at the DAT (IC50 = 6.5 nM) and 5-HTT (Ki = 4.3 nM), while having much less affinity at the NET (Ki = 1110 nM). In the present study, we replaced the 4′-methoxy group of the 3β-phenyl ring with a bioisosteric 4′-methylthio group to give 7a. We also synthesized a number of 3β-(4-alkylthiophenyl)tropanes 7be, 3β-(4-methylsulfinylphenyl) and 3β-(4-methylsulfonylphenyl)tropane analogues 7fh as well as the 3β-(4-alkylthiophenyl)nortropane derivatives 811 to further characterize the structure–activity relationship of this type of compound for binding at monoamine transporters. With exception of the 4′-methylsulfonyl analogue 7h, all the tested compounds possessed high binding affinities at the 5-HTT. The Ki values ranged from 0.19 nM to 49 nM. The 3β-(4-methylthiophenyl)tropane 7a and its N-(3-fluoropropyl) analogue 9a and N-allyl analogue 10a are the most selective compounds for the 5-HTT over the NET (NET/5-HTT = 314–364) in the series. However, none of the compounds showed selectivity similar to 5 for both the DAT and 5-HTT relative to the NET. This study provided useful SAR information for rational design of potent and selective monoamine transporter inhibitors.  相似文献   

17.
Fatty acid binding protein 4 (FABP4) and fatty acid binding protein 5 (FABP5) are mainly expressed in adipocytes and/or macrophages and play essential roles in energy metabolism and inflammation. When FABP4 function is diminished, FABP5 expression is highly increased possibly as a functional compensation. Dual FABP4/5 inhibitors are expected to provide beneficial synergistic effect on treating diabetes, atherosclerosis, and inflammation-related diseases. Starting from our previously reported selective FABP4 inhibitor 8, structural biology information was used to modulate the selectivity profile and to design potent dual FABP4/5 inhibitors with good selectivity against FABP3. Two compounds A16 and B8 were identified to show inhibitory activities against both FABP4/5 and good selectivity over FABP3, which could also reduce the level of forskolin-stimulated lipolysis in mature 3T3-L1 adipocytes. Compared with compound 8, these two compounds exhibited better anti-inflammatory effects in lipopolysaccharide-stimulated RAW264.7 murine macrophages, with decreased levels of pro-inflammatory cytokines TNFα and MCP-1 and apparently inhibited IKK/NF-κB pathway.  相似文献   

18.
Stilbenes have been reported to be phytoestrogen compounds owing to its structural similarity to the estrogenic agent diethylstilbestrol. To find new stilbene-derivative phytoestrogens, isolation of stilbene-rich R. undulatum was performed and led to identify six new compounds (15 and 28), one newly determined absolute configurations compound (27) together with 21 previously reported compounds (626). The structures of compounds were determined on the basis of extensive spectroscopic methods including 1D and 2D NMR and CD spectra data. All the isolated compounds were tested for their estrogenic activities in HepG2 cells transiently transfected with ERα, ERβ and ERE-reporter plasmid. Among them, stilbene-derivatives, piceatannol 3′-O-β-d-xylopyranoside (12), cis-rhaponticin (16) and rhapontigenin 3′-O-β-d-glucopyranoside (17), showed the more potent binding affinity for estrogen receptors than 17β-estrodiol.  相似文献   

19.
The RDL GABA receptor is an attractive target of insecticides. Here we demonstrate that meta-diamides [3-benzamido-N-(4-(perfluoropropan-2-yl)phenyl)benzamides] are a distinct class of RDL GABA receptor antagonists showing high insecticidal activity against Spodoptera litura. We also suggest that the mode of action of the meta-diamides is distinct from that of conventional noncompetitive antagonists (NCAs), such as fipronil, picrotoxin, lindane, dieldrin, and α-endosulfan. Using a membrane potential assay, we examined the effects of the meta-diamide 3-benzamido-N-(2-bromo-4-(perfluoropropan-2-yl)-6-(trifluoromethyl)phenyl)-2-fluorobenzamide (meta-diamide 7) and NCAs on mutant Drosophila RDL GABA receptors expressed in Drosophila Mel-2 cells. NCAs had little or no inhibitory activity against at least one of the three mutant receptors (A2′S, A2′G, and A2′N), which were reported to confer resistance to NCAs. In contrast, meta-diamide 7 inhibited all three A2′ mutant receptors, at levels comparable to its activity with the wild-type receptor. Furthermore, the A2′S·T6′V mutation almost abolished the inhibitory effects of all NCAs. However, meta-diamide 7 inhibited the A2′S?T6′S mutant receptor at the same level as its activity with the wild-type receptor. In contrast, a G336M mutation in the third transmembrane domain of the RDL GABA receptor abolished the inhibitory activities of meta-diamide 7, although the G336M mutation had little effect on the inhibitory activities of conventional NCAs. Molecular modeling studies also suggested that the binding site of meta-diamides was different from those of NCAs. Meta-diamide insecticides are expected to be prominent insecticides effective against A2′ mutant RDL GABA receptors with a different mode of action.  相似文献   

20.
Phytochemical investigation of the ethanolic extract from the leaves of Cinnamomum parthenoxylon (Jack) Meisn. led to the isolation of (3R, 4R, 3′R, 4′R)-6,6′-dimethoxy-3, 4, 3′, 4′-tetrahydro-2H, 2′H-[3, 3′]bichromenyl-4, 4′-diol (1), 4-hydroxybenzaldehyde (2), 1,2,4-trihydroxybenzene (3), kaempferol-3-O-α-l-rhamnoside (4), herbacetin (5), quercetin-3-O-α-l-rhamnoside (6), daucosterol (7), and β-sitosterol (8). The structures were established by extensive analysis of their MS and NMR spectroscopic data and comparison with literature data. In the present research, all of the isolated compounds 18 are reported for the first time in the species C. parthenoxylon. Compounds 16 were firstly isolated from genus Cinnamomum. Compounds 1, 3, 5 and 6 have not been reported from any species in Lauraceae family. The chemotaxonomic significance of the isolated compounds is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号