首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 201 毫秒
1.
Cryptococcus neoformans is a fungal pathogen that causes cryptococcal meningitis in immunocompromised individuals. Existing antifungal treatment plans have high mammalian toxicity and increasing drug resistance, demonstrating the dire need for new, nontoxic therapeutics. Antimicrobial peptoids are one alternative to combat this issue. Our lab has recently identified a tripeptoid, AEC5, with promising efficacy and selectivity against C. neoformans. Here, we report studies into the broad-spectrum efficacy, killing kinetics, mechanism of action, in vivo half-life, and subchronic toxicity of this compound. Most notably, these studies have demonstrated that AEC5 rapidly reduces fungal burden, killing all viable fungi within 3 hours. Additionally, AEC5 has an in vivo half-life of 20+ hours and no observable in vivo toxicity following 28 days of daily injections. This research represents an important step in the characterization of AEC5 as a practical treatment option against C. neoformans infections.  相似文献   

2.
Amphotericin B (AMB) is a highly hydrophobic antifungal, whose use is limited by its toxicity and poor solubility. To improve its solubility, AMB was reacted with a functionalized polyethylene glycol (PEG), yielding soluble complex AmB-PEG formulations that theoretically comprise of chemically conjugated AMB-PEG and free AMB that is physically associated with the conjugate. Reverse-phase chromatography and size exclusion chromatography methods using HPLC were developed to separate conjugated AMB-PEG and free AmB, enabling the further characterization of these formulations. Using HPLC and dynamic light scattering analyses, it was observed that the AMB-PEG 2 formulation, having a higher molar ratio of 2 AMB: 1 PEG, possesses more free AMB and has relatively larger particle diameters compared to the AMB-PEG 1 formulation, that consists of 1 AMB: 1 PEG. The identity of the conjugate was also verified using mass spectrometry. AMB-PEG 2 demonstrates improved antifungal efficacy relative to AMB-PEG 1, without a concurrent increase in in vitro toxicity to mammalian cells, implying that the additional loading of free AMB in the AMB-PEG formulation can potentially increase its therapeutic index. Compared to unconjugated AMB, AMB-PEG formulations are less toxic to mammalian cells in vitro, even though their MIC50 values are comparatively higher in a variety of fungal strains tested. Our in vitro results suggest that AMB-PEG 2 formulations are two times less toxic than unconjugated AMB with antifungal efficacy on Candida albicans and Cryptococcus neoformans.  相似文献   

3.
To further explore the structure activity relationships (SARs) of our previously discovered antifungal lead compound (1), a series of biphenyl imidazole analogues were designed, synthesized and evaluated for their in vitro antifungal activity. Many of the synthesized compounds showed excellent activity against Candida albicans and Candida tropicalis. Among these compounds, 2-F substituted analogue 12m displayed the most remarkable in vitro activity against C. albicans, C. neoformans, A. fumigatus and fluconazole-resistant C. alb. strains, which is superior or comparable to the activity of the reference drugs fluconazole and itraconazole. Notably, the compound 12m exhibited low inhibition profiles for various human cytochrome P450 isoforms and showed low toxicity to mammalian A549 cells and U87 cells. The SARs and binding mode established in this study will be useful for further lead optimization.  相似文献   

4.
The human diseases caused by the fungal pathogens Cryptococcus neoformans and Cryptococcus gattii are associated with high rates of mortality and toxic or cost-prohibitive therapeutic protocols. The need for affordable antifungals to combat cryptococcal disease is unquestionable. Benzimidazoles are potentially attractive antifungal compounds that were introduced in clinical practice nearly 60 years ago to treat helminthic infections. In addition to being safe, their cost of treatment is extraordinarily low. Several studies suggested benzimidazoles as promising anticryptococcal agents combining low-cost and high antifungal efficacy. So far, anti-cryptococcal activities were demonstrated for 16 different benzimidazoles. In particular, albendazole, mebendazole, flubendazole, and fenbendazole have potent in vitro antifungal activity against C. neoformans and C. gattii. Mice lethally infected with C. neoformans and treated with fenbendazole had 100 % survival when the drug was administered intranasally. In this review, we discuss the potential of benzimidazoles as potential anti-cryptococcal agents, including a general literature overview, most recent findings, mechanism of antifungal action, costs, toxicity, and antifungal potential in vivo.  相似文献   

5.
Benzofuran-5-ol derivatives were synthesized and tested for in vitro antifungal activity against Candida, Aspergillus species, and Cryptococcus neoformans. Among them tested, many benzofuran-5-ols showed good antifungal activity. The results suggest that benzofuran-5-ols would be promising antifungal agents.  相似文献   

6.
Cryptococcus neoformans PKH2-01 and PKH2-02 are orthologous to mammalian PDK1 kinase genes. Although orthologs of these kinases have been extensively studied in S. cerevisiae, little is known about their function in pathogenic fungi. In this study, we show that PKH2-02 but not PKH2-01 is required for C. neoformans to tolerate cell wall, oxidative, nitrosative, and antifungal drug stress. Deletion of PKH2-02 leads to decreased basal levels of Pkc1 activity and, consequently, reduced activation of the cell wall integrity mitogen-activated protein kinase (MAPK) pathway in response to cell wall, oxidative, and nitrosative stress. PKH2-02 function also is required for tolerance of fluconazole and amphotericin B, two important drugs for the treatment of cryptococcosis. Furthermore, OSU-03012, an inhibitor of human PDK1, is synergistic and fungicidal in combination with fluconazole. Using a Galleria mellonella model of low-temperature cryptococcosis, we found that PKH2-02 is also required for virulence in a temperature-independent manner. Consistent with the hypersensitivity of the pkh2-02Δ mutant to oxidative and nitrosative stress, this mutant shows decreased survival in murine phagocytes compared to that of wild-type (WT) cells. In addition, we show that deletion of PKH2-02 affects the interaction between C. neoformans and phagocytes by decreasing its ability to suppress production of tumor necrosis factor alpha (TNF-α) and reactive oxygen species. Taken together, our studies demonstrate that Pkh2-02-mediated signaling in C. neoformans is crucial for stress tolerance, host-pathogen interactions, and both temperature-dependent and -independent virulence.  相似文献   

7.
8.
The design, synthesis, in vitro evaluation, and conformational study of nitrosopyrimidine derivatives acting as antifungal agents are reported. Different compounds structurally related with 4,6-bis(alkyl or arylamino)-5-nitrosopyrimidines were evaluated. Some of these nitrosopyrimidines have displayed a significant antifungal activity against human pathogenic strains. In this paper, we report a new group of nitrosopyrimidines acting as antifungal agents. Among them, compounds 2a, 2b and 15, the latter obtained from a molecular modeling study, exhibited antifungal activity against Candida albicans, Candida tropicalis and Cryptococcus neoformans. We have performed a conformational and electronic analysis on these compounds by using quantum mechanics calculations in conjunction with Molecular Electrostatic Potentials (MEP) obtained from B3LYP/6–31G(d) calculations. Our experimental and theoretical results have led us to identify a topographical template which may provide a guide for the design of new nitrosopyrimidines with antifungal effects.  相似文献   

9.
Furo[2,3-f]quinolin-5-ol derivatives were synthesized and tested for in vitro antifungal activity against Candida,Aspergillus species, and Cryptococcus neoformans. Among them tested, many furo[2,3-f]quinolin-5-ols showed good antifungal activity. The results suggest that furo[2,3-f]quinolin-5-ols would be promising antifungal agents.  相似文献   

10.
Zinc is an important transition metal in all living organisms and is required for numerous biological processes. However, excess zinc can also be toxic to cells and cause cellular stress. In the model fungus Saccharomyces cerevisiae, a vacuolar zinc transporter, Zrc1, plays important roles in the storage and detoxification of excess intracellular zinc to protect the cell. In this study, we identified an ortholog of the S. cerevisiae ZRC1 gene in the human fungal pathogen Cryptococcus neoformans. Zrc1 was localized in the vacuolar membrane in C. neoformans, and a mutant lacking ZRC1 showed significant growth defects under high-zinc conditions. These results suggested a role for Zrc1 in zinc detoxification. However, contrary to our expectation, the expression of Zrc1 was induced in cells grown in zinc-limited conditions and decreased upon the addition of zinc. These expression patterns were similar to those of Zip1, the high-affinity zinc transporter in the plasma membrane of C. neoformans. Furthermore, we used the zrc1 mutant in a murine model of cryptococcosis to examine whether a mammalian host could inhibit the survival of C. neoformans using zinc toxicity. We found that the mutant showed no difference in virulence compared with the wildtype strain. This result suggests that Zrc1-mediated zinc detoxification is not required for the virulence of C. neoformans, and imply that zinc toxicity may not be an important aspect of the host immune response to the fungus.  相似文献   

11.
Discovery of novel antifungal agents against Aspergillus fumigatus and Cryptococcus neoformans remains a significant challenge in current antifungal therapy. Herein the antifungal natural product sampangine was used as the lead compound for novel antifungal drug discovery. A series of D-ring scaffold hopping derivatives were designed and synthesized to improve antifungal activity and water solubility. Among them, the thiophene derivative S2 showed broad-spectrum antifungal activity, particularly for Aspergillus fumigatus and Cryptococcus neoformans. Moreover, compound S2 also revealed better water solubility than sampangine, which represents a promising antifungal lead compound for further structural optimization.  相似文献   

12.
The polyene antifungal agent Amphotericin B exhibits potent and broad spectrum fungicidal activity. However, high nephrotoxicity can hinder its administration in resource poor settings. Quantification of early fungicidal activity in studies of HIV patients with cryptococcosis demonstrate that 5-Fluorocytosine therapy in combination with Amphotericin B results in faster clearance than with Amphotericin B alone. In vitro synergy between the two drugs has also been reported but the mechanism by which 5-Fluorocytosine synergizes with Amphotericin B has not been delineated. In this study we set out to investigate the effect of genetic mutation or pharmacologic repression of de novo pyrimidine and purine biosynthesis pathways on the Amphotericin B susceptibility of Cryptococcus neoformans. We demonstrate that a ura- derivative of wild type Cryptococcus neoformans strain H99 is hypersensitive to Amphotericin B. This sensitivity is remediated by re-introduction of a wild type URA5 gene, but not by addition of exogenous uracil to supplement the auxotrophy. Repression of guanine biosynthesis by treatment with the inosine monophosphate dehydrogenase inhibitor, mycophenolic acid, was synergistic with Amphotericin B as determined by checkerboard analysis. As in Cryptococcus neoformans, a ura derivative of Candida albicans was also hypersensitive to Amphotericin B, and treatment of Candida albicans with mycophenolic acid was likewise synergistic with Amphotericin B. In contrast, neither mycophenolic acid nor 5-FC had an effect on the Amphotericin B susceptibility of Aspergillus fumigatus. These studies suggest that pharmacological targeting of nucleotide biosynthesis pathways has potential to lower the effective dose of Amphotericin B for both C. neoformans and C. albicans. Given the requirement of nucleotide and nucleotide sugars for growth and pathogenesis of Cryptococcus neoformans, disrupting nucleotide metabolic pathways might thus be an effective mechanism for the development of novel antifungal drugs.  相似文献   

13.
In the present study, the in vitro susceptibility and capsular width from both melanized and non-melanized Cryptococcus neoformans cells in the presence of Pimenta pseudocaryophyllus crude extract were determined. The results were compared with those obtained for voriconazole and amphotericin B. Melanization was obtained in minimal medium broth with the addition of L-dopa, and the antifungal susceptibility tests were performed using the broth microdilution method. Capsular width of 30 cells of each one of the isolates in medium with crude extracts of P. pseudocaryophyllus or voriconazole or amphotericin B at a concentration corresponding to 0.5?times the minimal inhibitory concentration (MIC) was measured, and the mean was calculated. The MICs and minimal fungicidal concentrations (MFCs) for plant extract and voriconazole were identical for both melanized and non-melanized C. neoformans isolates, but for amphotericin, the MFCs for melanized cells were up to 8?times higher than for non-melanized cells. The capsular width of C. neoformans cells was smaller (p?<?0.001) in the presence crude extract of P. pseudocaryophyllus and of voriconazole regardless melanization. The findings of capsule alterations of C. neoformans verified in this study provide fertile ways for future research into the effects of antifungal agents on the pathogenesis of cryptococcosis.  相似文献   

14.
A series of 4-chloro-2H-thiochromenes featuring nitrogen-containing side chains were designed, synthesized and tested in vitro for their antifungal activities. The results of preliminary antifungal tests showed that most target compounds exhibited good inhibitory activities against Candida albicans, Cryptococcus neoformans, Candida tropicalis. Notably, compounds 10e and 10y showed most potent activity in vitro against a variety of fungal pathogens with low MICs. Meanwhile, low cytotoxicity on mammalian cells has been observed for compounds 10e and 10y in the tested concentrations by the MTT assay. Therefore, the 4-chloro-2H-thiochromenes with nitrogen-containing groups provide new lead structures in the search for novel antifungal agents.  相似文献   

15.
Cryptococcus gattii is a resurgent fungal pathogen that primarily infects immunocompetent hosts. Thus, it poses an increasingly significant impact on global public health; however, the mechanisms underlying its pathogenesis remain largely unknown. We conducted a detailed characterization of the deubiquitinase Ubp5 in the biology and virulence of C. gattii using the hypervirulent strain R265, and defined its properties as either distinctive or shared with C. neoformans. Deletion of the C. gattii Ubp5 protein by site-directed disruption resulted in a severe growth defect under both normal and stressful conditions (such as high temperature, high salt, cell wall damaging agents, and antifungal agents), similar to the effects observed in C. neoformans. However, unlike C. neoformans, the C. gattii ubp5Δ mutant displayed a slight enhancement of capsule and melanin production, indicating the evolutionary convergence and divergence of Ubp5 between these two sibling species. Attenuated virulence of the Cg-ubp5Δ mutant was not solely due to its reduced thermotolerance at 37°C, as shown in both worm and mouse survival assays. In addition, the assessment of fungal burden in mammalian organs further indicated that Ubp5 was required for C. gattii pulmonary survival and, consequently, extrapulmonary dissemination. Taken together, our work highlights the importance of deubiquitinase Ubp5 in the virulence composite of both pathogenic cryptococcal species, and it facilitates a better understanding of C. gattii virulence mechanisms.  相似文献   

16.
17.
There is an urgent need for new chemotherapic agents to treat human fungal infections due to emerging and spreading globally resistance mechanisms. Among the new targets that have been recently investigated for the development of antifungal drugs there are the metallo-enzymes Carbonic Anhydrases (CAs, EC 4.2.1.1). The inhibition of the β-CAs identified in many pathogenic fungi leads to an impairment of parasite growth and virulence, which in turn leads to a significant anti-infective effect. Based on antifungal nucleoside antibiotics, the inhibition of the β-CAs from the resistance-showing fungi Candida glabrata (CgNce103), Cryptococcus neoformans (Can2) and Malasszia globosa (MgCA) with a series of benzenesulfonamides bearing nitrogenous bases, such as uracil and adenine, is here reported. Many such compounds display low nanomolar (<100 nM) inhibitory potency against Can2 and CgNce103, whereas the activity of MgCA is considerably less affected (inhibition constants in the range 138.8–5601.5 nM). The β-CAs inhibitory data were compared with those against α-class human ubiquitous isoforms. Interesting selective inhibitory activities for the target fungal CAs over hCA I and II were reported, which make nitrogenous base benzenesulfonamides interesting tools and leads for further investigations in search of new antifungal with innovative mechanisms of action.  相似文献   

18.
Cryptococcus neoformans is the leading cause of cryptococcal meningitis, which is associated with high mortality due to lack of effective treatment. Herein a series of tricyclic isoxazole derivatives with excellent anti-cryptococcal activities were identified by structural simplification and scaffold hopping of antifungal natural product sampangine. Particularly, compound 8a showed promising features as an anti-cryptococcal lead compound. It was highly active against C. neoformans (MIC80?=?0.031?μg/mL), which was more potent than fluconazole and voriconazole. Moreover, compound 8a showed potent fungicidal activity and had potent inhibitory effects against important virulence factors (i.e. biofilm, melanin and urease) of C. neoformans. Preliminary antifungal mechanism investigation revealed that compound 8a induced apoptosis of C. neoformans cells and arrested the cell cycle at the G1/S phase.  相似文献   

19.
Peptoids are peptidomimetic polymers that are resistant to proteolysis and less prone to immune responses; thus, they can provide a practical alternative to peptides. Among the various therapeutic applications that have been explored, cationic amphipathic peptoids have demonstrated broad-spectrum antibacterial activity, including activity towards drug-resistant bacterial strains. While their potency and activity spectrum can be manipulated by sequence variations, bacterial selectivity and systemic toxicity need to be improved for further clinical development. To this aim, we incorporated various hydrophobic or cationic residues to improve the selectivity of the previously developed antibacterial peptoid 1. The analogs with hydrophobic residues demonstrated non-specific cytotoxicity, while those with an additional cationic residue showed improved selectivity and comparable antibacterial activity. Specifically, compared to 1, peptoid 7 showed much lower hemolysis and cytotoxicity, while maintaining the antibacterial activity. Therefore, we believe that peptoid 7?has the potential to serve as a promising alternative to current antimicrobial therapies.  相似文献   

20.
A novel β-1,3-1,4-glucanase in the glycoside hydrolase family 5 (GH5) has been identified in the secretome of Paenibacillus polymyxa KF-1. The recombinant GH5 enzyme PpBglu5A shows broad substrate specificity, with strong lichenase activity, medium β-1,3-glucanase activity, and minimal cellulase activity. Barley β-glucan, lichenan, curdlan, and carboxymethyl cellulose are hydrolyzed to varying degrees by PpBglu5A, with the highest catalytic activity being observed with barley β-glucan. Hydrolysates from barley β-glucan or lichenan are primarily glucan oligosaccharides with degrees of polymerization from 2 to 4. PpBglu5A also hydrolyzes oat bran into oligosaccharides mainly consisted of di-, tri-, and tetra- oligosaccharides that are useful in the preparation of gluco-oligosaccharides. In addition to hydrolytic activity, transglycosylation was also observed with PpBglu5A and cellotriose as substrate. An in vitro assay indicated that the recombinant PpBglu5A has antifungal activity and can inhibit the growth of Canidia albicans. These results suggest that PpBglu5A exhibits unique properties and may be useful as an antifungal agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号