首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of naturally occurring 3,3-dimethylallyloxy- and geranyloxycoumarins and alkaloids were chemically synthesized and tested as anti-inflammatory agents for their inhibitory effects on nitric oxide production in LPS-stimulated RAW 264.7 cells. Results indicated that the alkaloid of fungal origin 3-methylbut-2-enyl-4-methoxy-8-[(3-methylbut-2-enyl)oxy]quinoline-2-carboxylate, commonly known as Ppc-1, and coumarins having an unsubstituted 2-benzopyrone ring exhibited the highest activity with IC50 values from 23 to 34 μM without having poor or not detectable cytotoxicity. Indomethacine and L-NAME used as reference drugs provided by far less activities.  相似文献   

2.
In an effort to identify novel anti-inflammatory compounds, a series of flavone derivatives were synthesized and biologically evaluated for their inhibitory effects on the production of nitric oxide (NO) and prostaglandin E2 (PGE2), representative pro-inflammatory mediators, in LPS-induced RAW 264.7 cells. Their structure-activity relationship was also investigated. In particular, we found that compound 3g displayed more potent inhibitory activities on PGE2 production, similar inhibitory activities on NO production and less weak cytotoxicity than luteolin, a natural flavone known as a potent anti-inflammatory agent.  相似文献   

3.
Two new diarylheptanoids with a tetrahydropyran ring, kravanhol A (1) and kravanhol B (2), along with one known diarylheptanoid renealtin A (3) were isolated from the fruits of Amomum kravanh. The structures of compounds 1 and 2 were established by analysis of spectroscopic data and their absolute configurations were determined by Mosher's method and CD experiments. Compound 2 showed inhibitory effect on nitric oxide production in lipopolysaccharide-activated RAW264.7 macrophages with an IC50 value of 38.9 ± 1.8 μM.  相似文献   

4.
Membrane-integrated nitric oxide reductase (NOR) reduces nitric oxide (NO) to nitrous oxide (N2O) with protons and electrons. This process is essential for the elimination of the cytotoxic NO that is produced from nitrite (NO2?) during microbial denitrification. A structure-guided mutagenesis of NOR is required to elucidate the mechanism for NOR-catalyzed NO reduction. We have already solved the crystal structure of cytochrome c-dependent NOR (cNOR) from Pseudomonas aeruginosa. In this study, we then constructed its expression system using cNOR-gene deficient and wild-type strains for further functional study. Characterizing the variants of the five conserved Glu residues located around the heme/non-heme iron active center allowed us to establish how the anaerobic growth rate of cNOR-deficient strains expressing cNOR variants correlates with the in vitro enzymatic activity of the variants. Since bacterial strains require active cNOR to eliminate cytotoxic NO and to survive under denitrification conditions, the anaerobic growth rate of a strain with a cNOR variant is a good indicator of NO decomposition capability of the variants and a marker for the screening of functionally important residues without protein purification. Using this in vivo screening system, we examined the residues lining the putative proton transfer pathways for NO reduction in cNOR, and found that the catalytic protons are likely transferred through the Glu57 located at the periplasmic protein surface. The homologous cNOR expression system developed here is an invaluable tool for facile identification of crucial residues in vivo, and for further in vitro functional and structural studies.  相似文献   

5.
A series of heterocyclic derivatives including indoles, pyrazines along with oximes and esters were synthesized from lupeol and evaluated for anti-inflammatory activity through inhibition of lipopolysaccharide (LPS) induced nitric oxide (NO) production in RAW 264.7 and J774A.1 cells. All the synthesized molecules of lupeol were found to be more active in inhibiting NO production with an IC50 of 18.4–48.7 μM in both the cell lines when compared to the specific nitric oxide synthase (NOS) inhibitor, L-NAME (IC50 = 69.21 and 73.18 μM on RAW 264.7 and J774A.1 cells, respectively). The halogen substitution at phenyl ring of indole moiety leads to potent inhibition of NO production with half maximal concentration ranging from 18.4 to 41.7 μM. Furthermore, alkyl (11, 12) and p-bromo/iodo (15, 16) substituted compounds at a concentration of 20 μg/mL exhibited mild inhibition (29–42%) of LPS-induced tumor necrosis factor alpha (TNF-α) and weak inhibition (10–22%) towards interleukin 1-beta (IL-1β) production in both the cell lines. All the derivatives were found to be non-cytotoxic when tested at their IC50 (μM). These findings suggest that the derivatives of lupeol could be a lead to potent inhibitors of NO.  相似文献   

6.
Arvelexin is one of major constituents of Brassica rapa that exerts anti-inflammatory activities. Several indolyl-3-acetonitrile derivatives were synthesized as arvelexin analogs and evaluated for their abilities to inhibit NO and PGE2 productions in LPS-induced RAW 264.7 cells. Of the indolyl-3-acetonitriles synthesized, compound 2k, which possesses a hydroxyl group at C-7 position of the indole ring and an N-methyl substituent, more potently inhibited NO and PGE2 productions and was less cytotoxic than arvelexin on macrophage cells.  相似文献   

7.
This study was designed to isolate and identify a potent inhibitory compound against nitric oxide (NO) production from the stem bark of Ulmus pumila L. Ethyl acetate fraction of hot water extract registered a higher level of total phenolics (756.93 mg GAE/g) and also showed strong DPPH (IC50 at 5.6 μg/mL) and ABTS (TEAC value 0.9703) radical scavenging activities than other fractions. Crude extract and its fractions significantly decreased nitrite accumulation in LPS-stimulated RAW 264.7 cells indicating that they potentially inhibited the NO production in a concentration dependent manner. Based on higher inhibitory activity, the ethyl acetate fraction was subjected to Sephadex LH-20 column chromatography and yielded seven fractions and all these fractions registered appreciable levels of inhibitory activity on NO production. The most effective fraction F1 was further purified and subjected to 1H, 13C-NMR and mass spectrometry analysis and the compound was identified as icariside E4. The results suggest that the U. pumila extract and the isolated compound icariside E4 effectively inhibited the NO production and may be useful in preventing inflammatory diseases mediated by excessive production of NO.  相似文献   

8.
Aiming to develop potent JAK inhibitors, two series of 4-(1H-pyrazol-4-yl)-7H-pyrrolo[2,3-d]pyrimidine derivatives (8a–8p and 11a–11i) were designed and synthesized by coalescing various N-acylpiperidine motifs with baricitinib. The pharmacological results based on enzymatic and cellular assays identified the optimized compound 11e, which exerted over 90% inhibition rates against JAK1 and JAK2, and displayed the most compelling anti-inflammatory efficacy superior to baricitinib by inhibiting NO generation from LPS-induced RAW264.7 macrophages. Importantly, low cytotoxity of 11e was revealed by the IC50 value of 88.2 μM against normal RAW264.7 cells. The binding mode of 11e with JAK1 and JAK2 identified the essential structural bases in accord with SARs analysis. Furthermore, cellular morphology observation and western blot analysis disclosed the ability of 11e to relieve cells inflammatory damage by significantly down-regulating LPS-induced high expression of JAK1, JAK2, as well as pro cytokine IL-1β. Together, 11e was verified as a promising lead for JAK inhibitors for the treatment of inflammatory diseases.  相似文献   

9.
Piperlongumine (PL) and its derivatives were synthesized by the direct reaction between acid chloride of 3,4,5-trimethoxycinnamic acid and various amides/lactams. Later their anti-inflammatory effects were evaluated in lipopolysaccharide (LPS)-induced RAW-264.7 macrophages. Of the piperlogs prepared in this study, the maximum (91%) inhibitory activity was observed with PL (IC50 = 3 μM) but showed cytotoxicity whereas compound 3 (IC50 = 6 μM) which possess α,β-unsaturated γ-butyrolactam moiety offered good level (65%) of activity with no cytotoxicity. This study revealed that amide/lactam moiety connected to cinnamoyl group with minimum 3 carbon chain length and α,β-unsaturation is fruitful to show potent anti-inflammatory activity.  相似文献   

10.
The 80% methanolic extract of Euonymus alatus leaves and twigs afforded three new lignans, (−)-threo-4,9,4′,9′-tetrahydroxy-3,7,3′,5′-tetramethoxy-8-O-8′-neolignan (1), (−)-threo-4,9,4′,9′-tetrahydroxy-3,5,7,3′-tetramethoxy-8-O-8′-neolignan (2), (7R,8R,7′R)-(+)-lyoniresinol (3), together with seventeen known lignans (4-20). The structures of 1-20 were elucidated by extensive 1D and 2D spectroscopic methods including 1H NMR, 13C NMR, 1H-1H COSY, HMQC, HMBC and NOESY. All the isolated compounds except for dilignans (19 and 20) significantly inhibited nitric oxide production in lipopolysaccharide-stimulated RAW264.7 cells.  相似文献   

11.
Nystatin is known to deplete lipid rafts from mammalian cell membranes. Lipid rafts have been reported to be necessary for lipopolysaccharide signaling. In this study, it was unexpectedly found that lipopolysaccharide-induced nitric oxide production was not inhibited, but rather increased in the presence of a non-cytotoxic concentration of nystatin. Surprisingly, treatment with nystatin induced only NO production and iNOS expression in RAW264.7 cells. At the concentration used, no changes in the expression of GM1 ganglioside, a lipid raft marker on RAW264.7 cells, was seen. From studies using several kinds of inhibitors for signaling molecules, nystatin-induced NO production seems to occur via the iκB/NF-κB and the PI3 K/Akt pathway. Furthermore, because nystatin is known to activate the Na-K pump, we examined whether the Na-K pump inhibitor amiloride suppresses nystatin-induced NO production. It was found that amiloride significantly inhibited nystatin-induced NO production. The results suggest that a moderate concentration of nystatin induces NO production by Na-pump activation through the PI3 kinase/Akt/NF-κB pathway without affecting the condition of lipid rafts.  相似文献   

12.
A seco-triterpenoid, sentulic acid (SA) isolated from Sandoricum koetjape Merr attenuated nitric oxide (NO) production following co-stimulation with lipopolysaccharide (LPS) and interferon-gamma (IFNγ) in RAW264.7 macrophage cells. The mRNA expression levels of proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), IFNγ, interleukin (IL)-6, and IL-12 in LPS/IFNγ co-stimulated RAW264.7 cells also decreased upon SA treatment. To determine the molecular mechanisms underlying the inhibitory effect of SA on LPS/IFNγ-induced NO production in RAW264.7 cells, we further analyzed Toll-like receptor (TLR) signaling by western blotting. The expression of TLR4 and IFN signaling molecules in cells treated with SA was significantly suppressed compared to that in cells not treated with SA. Additionally, SA inhibited the binding of LPS to the TLR4 receptor in RAW264.7 cells stimulated with Alexa Fluor 488-conjugated LPS. These results demonstrate that SA attenuates NO production after LPS/IFNγ co-stimulation in RAW264.7 cells by inhibiting the binding of LPS to TLR4. Our findings suggest that SA is beneficial for the treatment of inflammatory diseases.  相似文献   

13.
Sulfuretin is one of major constituents of Rhus verniciflua that exerts anti-inflammatory activities. Some of aurones were synthesized as sulfuretin derivatives and evaluated for their abilities to inhibit NO and PGE2 production in LPS-induced RAW 264.7 cells in order to reveal the relationship. Of the aurones synthesized in the present study, 2h and 2i, which possess C-6 hydroxyl group in A-ring and methoxy substituents in B-ring, more potently inhibited NO and PGE2 production and were less cytotoxic than sulfuretin.  相似文献   

14.
15.
The effect of D-galactosamine (D-GalN) on nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells was examined. D-GalN augmented the production of NO, but not tumor necrosis factor (TNF)-alpha in LPS-stimulated RAW 264.7 cells. Pretreatment of D-GalN augmented the NO production whereas its post-treatment did not. D-GalN augmented the NO production in RAW 264.7 cells stimulated with either TNF-alpha and interferon-gamma. The augmentation of LPS-induced NO production by D-GalN was due to enhanced expressions of an inducible type of NO synthase mRNA and proteins. Intracellular reactive oxygen species (ROS) were exclusively generated in RAW 264.7 cells stimulated with D-GalN and LPS. Scavenging of intracellular ROS abrogated the augmentation of NO production. It was therefore suggested that D-GalN might augment LPS-induced NO production through the generation of intracellular ROS.  相似文献   

16.
25 new trans-stilbene and trans-stilbazole derivatives were investigated using in vitro and in silico techniques. The selectivity and potency of the compounds were assessed using commercial ELISA test. The obtained results were incorporated into 2D QSAR assay. The most promising compound 4-nitro-3′,4′,5′-trihydroxy-trans-stilbene (N1) was synthetized and its potency and selectivity were confirmed. N1 was classified as preferential COX-2 inhibitor. Its ability to inhibit COX-2 in MCF-7 cell line was established and its cytotoxicity by MTT test was assessed. The compound was more cytotoxic than celecoxib within studied concentration range. Finally, the investigated trans-stilbene was docked into COX-1 and COX-2 active sites using “CDOCKER” protocol.  相似文献   

17.
We examined whether inhibitors of the arachidonic acid cascade inhibited nitric oxide (NO) production, as measured by nitrite concentration, either in macrophages or by their cytosolic fractions. Nitrite production by peritoneal macrophages from mice receiving OK-432 treatment was significantly inhibited by phospholipase A2 inhibitors [dexamethasone and 4-bromophenacyl bromide (4-BPB)], lipoxygenase inhibitors [nordihydroguaiaretic acid (NDGA) and ketoconazole] and a glutathioneS-transferase (leukotrienes LTA4-LTC4) inhibitor (ethacrynic acid). However, caffeic acid and esculetin, inhibitors of 5- and 12-lipoxygenase respectively, were not inhibitory. On the other hand, indomethacin, a cyclooxygenase inhibitor, slightly inhibited whereas another inhibitor, ibuprofen, did not. Inhibition of the nitrite production by dexamethasone, 4-BPB, NDGA and ethacrynic acid was also demonstrated when the macrophages were restimulated ex vivo with OK-432 or with lipopolysaccharide. The inhibitory activity of dexamethasone, NDGA and ethacrynic acid was significantly reduced by ex vivo restimulation with OK-432, whereas that of 4-BPB was hardly affected. Furthermore, the inhibitory activity of dexamethasone, NDGA and ethacrynic acid was much higher when the macrophages were continuously exposed to the agents than when they were pulsed. Meanwhile, inhibition by 4-BPB was almost the same with either treatment. In addition, the inhibitory activity of these agents was not blocked withl-arginine, a substrate of NO synthases, or with arachidonate metabolites (LTB4, LTC4 and LTE4). Ethacrynic acid and 4-BPB, but not dexamethasone and NDGA, also inhibited nitrite production by the cytosolic fractions from OK-432-restimulated peritoneal macrophages, and the inhibitory activity of 4-BPB was superior to that of ethacrynic acid. These agents, however, did not inhibit nitrite production from sodium nitroprusside, a spontaneous NO-releasing compound. These results indicate that dexamethasone, 4-BPB, NDGA and ethacrynic acid inhibited the production of NO by macrophages through at least two different mechanisms: one was inhibited by dexamethasone, NDGA and ethacrynic acid and the other by 4-BPB. Furthermore, 4-BPB and ethacrynic acid directly inhibited the activity of the NO synthase in macrophages, suggesting that the agents work by binding to the active site(s) of the enzyme.  相似文献   

18.
Monoamine oxidase B (MAO-B) and nitric oxide synthase (NOS) have both been implicated in the pathology of neurodegenerative diseases. In an attempt to design dual-target-directed drugs that inhibit both these enzymes, a series of pteridine-2,4-dione analogues were synthesised. The compounds were found to be relatively weak NOS inhibitors but showed promising MAO-B activity with 6-amino-5-[(E)-3-(3-chloro-phenyl)-prop-2-en-(E)-ylideneamino]-1,3-dimethyl-1H-pyrimidine-2,4-dione and 6-[(E)-2-(3-chloro-phenyl)-vinyl]-1,3-dimethyl-1H-pteridine-2,4-dione inhibiting MAO-B with IC50 values of 0.602 and 0.314 μM, respectively. The pteridine-2,4-dione analogues thus show promise as scaffolds for the development of potent reversible MAO-B inhibitors and as observed in earlier studies, the most potent inhibitors were obtained with 3-chlorostyryl substitution.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号