首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
2.
3.
4.
To illustrate the development of the source-to-sink transition in maize leaves during the grain-filling period, an integrated physiological-agronomic approach is presented in this study. The evolution of physiological markers such as total leaf nitrogen (N), chlorophyll, soluble protein, amino acid and ammonium contents was monitored from silking to a period close to maturity in different leaf stages of three maize genotypes grown at high and low levels of N fertilization. In addition, the activities of glutamine synthetase (GS) and glutamate dehydrogenase (GDH), two enzymes known to play a direct or an indirect role during leaf N remobilization, were measured. In the three genotypes examined, we found that a general decrease of most metabolic and enzyme markers occurred during leaf ageing and that this decrease was enhanced when plants were N starved. In contrast, such variations were not observed between different sections of a single leaf even at an advanced stage of leaf senescence. We found that there is a strong correlation between total N, chlorophyll, soluble protein and GS activity, which is not dependent upon the N fertilization level, which indicates the N status of the plant, either in a single leaf or during ageing. In contrast, ammonium, amino acids and GDH activity were not subject to such variations, thus suggesting that they are indicators of the metabolic activity of the whole plant in response to the level of N fertilization. The use of these markers to predict the N status of maize as a function of both plant development and N availability is discussed.  相似文献   

5.
The modulation of primary nitrogen metabolism by hypoxic stress was studied in young Medicago truncatula seedlings. Hypoxic seedlings were characterized by the up-regulation of glutamate dehydrogenase 1 (GDH1) and mitochondrial alanine aminotransferase (mAlaAT), and down-regulation of glutamine synthetase 1b (GS1b), NADH-glutamate synthase (NADH-GOGAT), glutamate dehydrogenase 3 (GDH3), and isocitrate dehydrogenase (ICDH) gene expression. Hypoxic stress severely inhibited GS activity and stimulated NADH-GOGAT activity. GDH activity was lower in hypoxic seedlings than in the control, however, under either normoxia or hypoxia, the in vivo activity was directed towards glutamate deamination. (15)NH(4) labelling showed for the first time that the adaptive reaction of the plant to hypoxia consisted of a concerted modulation of nitrogen flux through the pathways of both alanine and glutamate synthesis. In hypoxic seedlings, newly synthesized (15)N-alanine increased and accumulated as the major amino acid, asparagine synthesis was inhibited, while (15)N-glutamate was synthesized at a similar rate to that in the control. A discrepancy between the up-regulation of GDH1 expression and the down-regulation of GDH activity by hypoxic stress highlighted for the first time the complex regulation of this enzyme by hypoxia. Higher rates of glycolysis and ethanol fermentation are known to cause the fast depletion of sugar stores and carbon stress. It is proposed that the expression of GDH1 was stimulated by hypoxia-induced carbon stress, while the enzyme protein might be involved during post-hypoxic stress contributing to the regeneration of 2-oxoglutarate via the GDH shunt.  相似文献   

6.
The function of ascorbate oxidase in tobacco   总被引:28,自引:0,他引:28  
  相似文献   

7.
Tomato (Lycopersicon esculentum var. Better Boy) plants were transformed with a tomato leaf wound-inducible polygalacturonase (PG) beta-subunit gene in the antisense orientation (PGbetaS-AS) under the control of the cauliflower mosaic virus 35S promoter. The leaves of the transgenic plants exhibited small localized lesions, which eventually enlarged and spread throughout the entire surfaces of the leaves, resulting in cell death. The same lesions were also observed in the peduncle of developing flowers, extending to the whole flower causing abscission, resulting in a sterile phenotype. Leaves of transgenic plants exhibited elevated levels of PG activity, hydrogen peroxide, and enhanced defense signaling in response to wounding and elicitor treatment. The defense signaling increased was accompanied by an increased resistance toward tobacco hornworm (Manduca sexta) larvae. The cumulative results suggest that in the absence of the beta-subunit protein in tomato leaves, an increase in PG activity occurred that led to an enhanced wound response, the formation of lesions leading to severe necrosis, and an abscission of developing flowers.  相似文献   

8.
Interconversion between glutamate and 2-oxoglutarate, which can be catalysed by glutamate dehydrogenase (GDH), is a key reaction in plant carbon (C) and nitrogen (N) metabolism. However, the physiological role of plant GDH has been a controversial issue for several decades. To elucidate the function of GDH, the expression of GDH in various tissues of Arabidopsis thaliana was studied. Results suggested that the expression of two Arabidopsis GDH genes was differently regulated depending on the organ/tissue types and cellular C availability. Moreover, Arabidopsis mutants defective in GDH genes were identified and characterized. The two isolated mutants, gdh1-2 and gdh2-1, were crossed to make a double knockout mutant, gdh1-2/gdh2-1, which contained negligible levels of NAD(H)-dependent GDH activity. Phenotypic analysis on these mutants revealed an increased susceptibility of gdh1-2/gdh2-1 plants to C-deficient conditions. This conditional phenotype of the double knockout mutant supports the catabolic role of GDH and its role in fuelling the TCA cycle during C starvation. The reduced rate of glutamate catabolism in the gdh2-1 and gdh1-2/gdh2-1 plants was also evident by the growth retardation of these mutants when glutamate was supplied as the alternative N source. Furthermore, amino acid profiles during prolonged dark conditions were significantly different between WT and the gdh mutant plants. For instance, glutamate levels increased in WT plants but decreased in gdh1-2/gdh2-1 plants, and aberrant accumulation of several amino acids was detected in the gdh1-2/gdh2-1 plants. These results suggest that GDH plays a central role in amino acid breakdown under C-deficient conditions.  相似文献   

9.
10.
11.
Plants accumulate high levels of Gamma amino butyric acid (GABA) in response to different environmental stresses and GABA metabolism has different functions such as osmotic and pH regulation, bypass of tricarboxylic acid cycle, and C:N balance. The cytoplasmic male sterile (CMS) II mutant of Nicotiana sylvestris has a deletion in the mitochondrial gene nad7 which encodes the NAD7 subunit of complex I which causes increased leaf respiration, impaired photosynthesis, slower growth and increased amino acid levels. In this study we aimed to elucidate the role of GABA and GABA metabolism in different genotypes of the same plant system under salt stress (100mM NaCl) in short (24h) and long (7, 14 and 21 days) terms. We have investigated the differences in leaf fresh and dry weights, relative water content, photosynthetic efficiency (F(v)/F(m)), glutamate dehydrogenase (GDH, EC 1.4.1.4) and glutamate decarboxylase (GAD, EC 4.1.1.15) enzyme activities, GABA content and GAD gene expression profiles. GDH activity showed variations in CMSII and wild type (WT) plants in the first 24h. GAD gene expression profiles were in good agreement with the GAD enzyme activity levels in CMSII and WT plants after 24h. In long-term salinity, GAD activities increased in WT but, decreased in CMSII. GABA accumulation in WT and CMSII plants in short and long term was induced by salt stress. Variations in GDH and GAD activities in relation to GABA levels were discussed and GABA metabolism has been proposed to be involved in better performance of CMSII plants under long term salinity.  相似文献   

12.
Despite the large amount of data regarding sucrose-binding proteins (SBP), their functions remain largely unknown and controversial. In this investigation we performed a detailed temporal and spatial characterization of the phenotypes related to photosynthesis, sucrose exudation and carbohydrate metabolism in SBP antisense plants to gain insights into the physiological role of SBP. Significant reductions in net photosynthesis and in stomatal conductance were observed in the SBP antisense lines but were restricted to the vegetative phase, and persisted during a daily time course at this phase. Photosynthesis was saturated at a substantially lower irradiance in source leaves of the antisense lines, suggesting that light utilization is decreased in these plants. A slight reduction in soluble sugars was observed throughout the development of source leaves, partially overlapping a decrease in sucrose synthase activity (EC 2.4.1.13); whereas a transient increase in starch and adinosine diphosphate (ADP)-glucose pyrophosphorylase activity (EC 2.7.7.27) as well as decreased leaf sucrose exudation were detected in the beginning of the vegetative phase. These changes in source leaves were accompanied by reductions in sucrose and starch in sink leaves, hexoses and sucrose in roots and hexoses in shoot apex, which were observed before the occurrence of a significant reduction in height and in leaf number in the transgenic lines. These alterations in growth parameters did not persist throughout the development, but were associated with a delay in flowering time and leaf senescence in the SBP antisense lines. A likely involvement of SBP in sink strength is discussed.  相似文献   

13.
Glutamate (Glu) dehydrogenase (GDH) catalyses the reversible amination of 2-oxoglutarate for the synthesis of Glu using ammonium as a substrate. This enzyme preferentially occurs in the mitochondria of companion cells of a number of plant species grown on nitrate as the sole nitrogen source. For a better understanding of the controversial role of GDH either in ammonium assimilation or in the supply of 2-oxoglutarate (F. Dubois, T. Terce-Laforgue, M.B. Gonzalez-Moro, M.B. Estavillo, R. Sangwan, A. Gallais, B. Hirel [2003] Plant Physiol Biochem 41: 565-576), we studied the localization of GDH in untransformed tobacco (Nicotiana tabacum) plants grown either on low nitrate or on ammonium and in ferredoxin-dependent Glu synthase antisense plants. Production of GDH and its activity were strongly induced when plants were grown on ammonium as the sole nitrogen source. The induction mainly occurred in highly vascularized organs such as stems and midribs and was likely to be due to accumulation of phloem-translocated ammonium in the sap. GDH induction occurred when ammonia was applied externally to untransformed control plants or resulted from photorespiratory activity in transgenic plants down-regulated for ferredoxin-dependent Glu synthase. GDH was increased in the mitochondria and appeared in the cytosol of companion cells. Taken together, our results suggest that the enzyme plays a dual role in companion cells, either in the mitochondria when mineral nitrogen availability is low or in the cytosol when ammonium concentration increases above a certain threshold.  相似文献   

14.
The effect of cadmium (Cd) was investigated on the in vitro activities of leaf and root enzymes involved in carbon (C) and nitrogen (N) metabolism of bean (Phaseolus vulgaris L. cv. Morgane). Cd induced a high increase in maximal extractable activity of glutamate dehydrogenase (NADH-GDH, EC 1.4.1.2). Cd promoted ammonium accumulation in leaves and roots, and a tight correlation was observed between ammonium amount and GDH activity. Changes in GDH activity appear to be mediated by the increase in ammonium levels by Cd treatment. Cd stress also enhanced the activities of phosphoenolypyruvate carboxylase (PEPC, EC 4.1.1.31) and NADP(+)-isocitrate dehydrogenase (NADP(+)-ICDH, EC 1.1.1.42) in leaves while they were inhibited in roots. Immuno-titration, the PEPC sensitivity to malate and PEPC response to pH indicated that the increase in PEPC activity by Cd was due to de novo synthesis of the enzyme polypeptide and also modification of the phosphorylation state of the enzyme. Cd may have modified, via a modulation of PEPC activity, the C flow towards the amino acid biosynthesis. In leaves, Cd treatments markedly modified specific amino acid contents. Glutamate and proline significantly accumulated compared to those of the control plants. This study suggests that Cd stress is a part of the syndrome of metal toxicity, and that a readjustment of the co-ordination between N and C metabolism via the modulation of GDH, PEPC and ICDH activities avoided the accumulation of toxic levels of ammonium.  相似文献   

15.
The activities of phosphofructokinase (PFK), fructose diphosphatase (FDP), nicotinamide adenine dinucleotide (NAD) and NAD phosphate (NADP)-linked isocitrate dehydrogenases (IDHNAD, IDHNADP), two NAD-linked glutamate dehydrogenases (GDH1, GDH2), and isocitrate lyase were studied during the development of the two phenotypes, ordinary colorless and resistant sporangia (OC and RS plants), of water mold Blastocladiella emersonii in synchronized liquid cultures. The OC plants had a generation time of about 12 h, whereas the RS plants required 3.5 days to reach maturity. All the enzymes were present throughout the development of both phenotypes. In zoospores, PFK, FDP, and GDH2 were localized in the cytosol. The IDHNADP activity was distributed with two-thirds in the soluble and one-third in the particulate fraction. GDH1 and IDHNAD showed the same distribution and were predominantly present in the particulate fraction, presumably in the mitochondria. Isocitrate lyase was found in the particulate fraction. The enzyme levels changed considerably during development. FDP and IDHNADP varied in a parallel manner. Similarly, the three enzymes PFK, IDHNAD and GDH1 showed parallel variations. The activity patterns for all enzymes were different for the OC and RS pathways. Isocitrate lyase exhibited the largest changes in activity during development. Thus, during OC plant formation, its activity decreased by a factor of 20. GDH2 varied similarly to PFK and IDHNADP during OC plant development, whereas it behaved like isocitrate lyase during RS plant development. The ratios between anabolic and catabolic enzymes were higher in mature plants than in zoospores and higher in RS plants than in OC plants. The results indicate that the variations in the enzyme levels are secondary to the critical changes involved in the transition from one developmental pathway to the other.  相似文献   

16.
17.
Linker histone protein variants are expressed in different tissues, at various developmental stages or induced by specific environmental conditions in many plant species. In most cases, the function of these proteins remains unknown. In the work presented here an antisense strategy has been used to study the function of the drought-induced linker histone, H1-S of tomato. Three independent H1-S antisense tomato mutants, selected for their inability to accumulate H1-S in response to water stress, were studied. These mutants have been characterized at the physiological and morphological levels. Histone H1-S antisense transgenic plants developed normally indicating that H1-S does not play an important role in the basal functions of tomato development. No differences were detected in chromatin organization, excluding a structural role for H1-S in chromatin organization. However, differences between the wild-type and antisense plants were observed in leaf anatomy and physiological activities. This analysis indicates that H1-S has more than one function, at different times, in controlling plant water status, highlighting the complexity of the water stress response.  相似文献   

18.
To unravel the roles of sucrose synthase in carrot, we reduced its activity in transgenic carrot plants by an antisense approach. For this purpose, the cDNA for the main form of carrot sucrose synthase was expressed in antisense orientation behind the 35S promoter of cauliflower mosaic virus. In independent antisense plant lines grown in soil, sucrose synthase activity was reduced in tap roots but not in leaves. In the sink organs, sucrose utilization was markedly decreased and higher levels of sucrose but lower levels of UDP-glucose, glucose, fructose, starch and cellulose were found. The phenotype of the antisense plants clearly differed from that of control plants. Both leaves and roots were markedly smaller, and the antisense line with the lowest sucrose synthase activity also developed the smallest plants. In most of the plant lines, the leaf-to-root dry weight ratios were not changed, suggesting that sucrose synthase in carrot is a major determinant of plant growth rather than of sucrose partitioning. In contrast to the acid invertases, which are critical for partitioning of assimilated carbon between source leaves and tap roots (Tang et al., Plant Cell 11: 177–189 (1999)), sucrose synthase appears to be the main sucrose-cleaving activity, feeding sucrose into metabolism.  相似文献   

19.
The impact of reduced sedoheptulose-1,7-bisphosphatase (SBPase) activity on photosynthetic capacity and carbohydrate status was examined during leaf expansion and maturation in antisense transgenic tobacco (Nicotiana tabacum L. cv Samsun) plants. In wild-type plants, photosynthetic capacity was lowest in young expanding leaves and reached a maximum in the fully expanded, mature leaves. In contrast, the transgenic antisense SBPase plants had the highest photosynthetic rates in the young expanding leaves and lowest rates in the mature leaves. In the mature, fully expanded leaves of the transgenic plants photosynthetic capacity was closely correlated with the level of SBPase activity. However, in the youngest leaves of the SBPase antisense plants, photosynthetic rates were close to, or higher than, those observed in wild-type plants, despite having a lower SBPase activity than the equivalent wild-type leaves. Reductions in SBPase activity affected carbohydrate levels in both the mature and young developing leaves. The overall trend was for decreased SBPase activity to lead to reductions in carbohydrate levels, particularly in starch. However, these changes in carbohydrate content were also dependent on the developmental status of the leaf. For example, in young expanding leaves of plants with the smallest reductions in SBPase activity, the levels of starch were higher than in wild-type plants. These data suggest that the source status of the mature leaves is an important determinant of photosynthetic development.  相似文献   

20.
Exposure of oilseed rape (Brassica napus) plants to increasing leaf temperatures between 15 degrees C and 25 degrees C increased photorespiratory NH(4)(+) production from 0.7 to 3.5 micromol m(-2) s(-1). Despite the 5-fold increase in the rate of NH(4)(+) production, the NH(4)(+) concentration in root and leaf tissue water and xylem sap dropped significantly, whereas that in the leaf apoplastic fluid remained constant. The in vitro activity of glutamine synthetase (GS) in both leaves and roots also increased with temperature and in all cases substantially exceeded the observed rates of photorespiratory NH(4)(+) production. The surplus of GS in oilseed rape plants was confirmed using GS2 antisense plants with 50% to 75% lower in vitro leaf GS activity than in the wild type. Despite the substantial reduction in GS activity, there was no tendency for antisense plants to have higher tissue NH(4)(+) concentrations than wild-type plants and no overall correlation between GS activity and tissue NH(4)(+) concentration was observed. Antisense plants exposed to leaf temperatures increasing from 14 degrees C to 27 degrees C or to a trifold increase in the O(2) to CO(2) ratio did not show any change in steady-state leaf tissue NH(4)(+) concentration or in NH(3) emission to the atmosphere. The antisense plants also had similar leaf tissue concentrations of glutamine, glycine, and serine as the wild type, whereas glutamate increased by 38%. It is concluded that photorespiration does not control tissue or apoplastic levels of NH(4)(+) in oilseed rape leaves and, as a consequence, that photorespiration does not exert a direct control on leaf atmosphere NH(3) fluxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号