首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
 Beech seedlings were grown under 8%, 13%, 23% and 100% relative light intensity for 2 years after germination. Starch, sucrose and monosaccharides from the bark and wood parenchyma of shoots and roots were analyzed during the course of the second year. The annual allocation pattern of starch revealed five successive phases: starch disintegration in November (1) was paralleled by high monosaccharide concentrations in the shoot cortex (≤ 33.4 mg/g DW). Seedlings of all light variants reached maximum sucrose concentrations (≤ 82.8 mg/g DW) during starch disintegration in January (2) that coincided with decreased monosaccharide contents. Up to mid-April, resynthesis of starch (3) occurred in most shaded and unshaded seedlings. In May, starch was converted into monosaccharides in all storage tissues (4). Seedlings grown under 13% light intensity showed de novo synthesis of starch (5) 4 weeks after bud burst. These seedlings reached 98% maximum starch storage capacity of the shoot and 89% of the root in July. In mid-October, the maximum starch concentration of the roots increased with light intensity, and this corresponded with an increase of lateral root growth. The variation of shoot and root dry weight was closely related to the content of nonstructural carbohydrates during the second year. The shift of shoot growth to the first half of the growing season and the suppression of lateral root growth during the second half is assumed to be a strategy of young beech to survive under light limiting conditions. Received: 22 May 1997 / Accepted: 10 October 1997  相似文献   

2.
We explored the different mechanisms developed by naturally regenerated seedlings of Quercus ilex L. (Holm oak) under Mediterranean conditions compared to container-seedlings commonly used in plantations. We examined the differences in root architecture (including topology and morphology) and shoot parameters. The results showed that there are many differences in the architecture of the root system as well as in the shoot morphology between the two types of seedlings. The naturally regenerated seedlings were smaller with regard to most of the shoot and root parameters, but they developed a longer taproot, only first order lateral roots, and presented a more herringbone-like root system compared to the container seedlings. Conversely, all types of container seedlings, were larger and had a more extended root system with many orders of lateral roots, while their taproot length was restricted within the container’s depth. The quotient log (α)/ log (μ) for all seedlings, showed a tendency to decrease with plant size. A strict herringbone root system with an elongated taproot may be the optimal root architecture for Quercus ilex L. seedlings in order to survive under Mediterranean conditions.  相似文献   

3.
残留地膜对番茄幼苗形态和生理特性的影响   总被引:10,自引:0,他引:10  
采用盆栽试验的方法,研究了土壤中残留地膜对番茄(Lycopersicon esculentum L.)幼苗形态及生理特性的影响.结果表明,残留地膜使番茄幼苗的株高、茎粗、地上部和根系鲜重、根系活力及叶片氮代谢水平等降低;而且根系的IBA含量降低和ABA含量增加,抑制了根系的生长.同时地膜残留量越大,抑制的效果越显著.这...  相似文献   

4.
  • Tree mortality induced by drought is one of the most complex processes in ecology. Although two mechanisms associated with water and carbon balance are proposed to explain tree mortality, outstanding problems still exist.
  • Here, in order to test how the root system benefits survival and resprouting of Haloxylon ammodendron seedlings, we examined the various water‐ and carbon‐related physiological indicators (shoot water potential, photosynthesis, dark respiration, hydraulic conductance and non‐structural carbohydrates [NSC]) of H. ammodendron seedlings, which were grown in drought and control conditions throughout a grow season in greenhouse.
  • The survival time of the seedling root system (died 70 days after drought) doubled the survival time of the shoot (died at 35 days). Difference in survival time between shoot and root resulted from sustained root respiration supported by increased NSC in roots under drought. Furthermore, investment into the root contributed to resprouting following drought. Based on these results, a death criterion is proposed for this species. The time sequence of major events indicated that drought shifted carbon allocation between shoot and root and altered the flux among different sinks (growth, respiration or storage). The interaction of water and carbon processes determined death or survival of droughted H. ammodendron seedlings.
  • These findings revealed that the ‘root protection’ strategy is critical in determining survival and resprouting of this species, and provided insights into the effects of carbon and water dynamics on tree mortality.
  相似文献   

5.
Wenger  K.  Gupta  S. K.  Furrer  G.  Schulin  R. 《Plant and Soil》2002,242(2):217-225
White spruce [Picea glauca (Moench) Voss] seedlings were inoculated with Hebeloma crustuliniforme and treated with 25 mM NaCl to examine the effects of salinized soil and mycorrhizae on root hydraulic conductance and growth. Mycorrhizal seedlings had significantly greater shoot and root dry weights, number of lateral branches and chlorophyll content than non-mycorrhizal seedlings. Salt treatment reduced seedling growth in both non-mycorrhizal and mycorrhizal seedlings. However, needles of salt-treated mycorrhizal seedlings had several-fold higher needle chlorophyll content than that in non-mycorrhizal seedlings treated with salt. Mycorrhizae increased N and P concentrations in seedlings. Na levels in shoots and roots of salt-treated mycorrhizal seedlings were significantly lower and root hydraulic conductance was several-fold higher than in non-mycorrhizal seedlings. A reduction of about 50% in root hydraulic conductance of mycorrhizal seedlings was observed after removal of the fungal hyphal sheath. Transpiration and root respiration rates were reduced by salt treatments in both groups of seedlings compared with the controls, however, both transpiration and respiration rates of salt-treated mycorrhizal seedlings were as high as those in the non-mycorrhizal seedlings that had not been subjected to salt treatment. The reduction of shoot Na uptake while increasing N and P absorption and maintaining high transpiration rates and root hydraulic conductance may be important resistance mechanisms in ectomycorrhizal plants growing in salinized soil.  相似文献   

6.
Differences in morphology, biomass allocations and physiological responses were investigated in seedlings of Mastic tree (Pistacia lentiscus L.) and Cork oak (Quercus suber L.) submitted to contrasting fertilization and light regimes during early growth. These species are two evergreen sclerophyllous Mediterranean species frequently used in Mediterranean reforestation programmes. Fertilization was the treatment that affected most of the morphological and physiological variables evaluated in P. lentiscus and Q. suber seedlings. Leaf area and specific leaf area (SLA) were affected by shading treatment in both species, showing higher values in seedlings grown under shade. P. lentiscus seedlings showed a high capacity to modify root morphological variables and root hydraulic conductance (KR) with the fertilization treatment. In contrast, Q. suber showed low to moderate root system changes with the treatments applied, although the fertilization level affected biomass allocation (i.e., root to shoot ratio) in both species. Under high water demand, P. lentiscus seedlings with high KR allowed transpiration (E) to increase without increasing the water potential gradient between soil and leaves. In Q. suber, high fertilization induced significant increases in photosynthesis (A), as well as a tendency to increase E with significantly lower leaf water potential (ψL).  相似文献   

7.
Plants respond to low nutrient availability by modifying root morphology and root system topology. Root responses to nitrogen (N) and phosphorus (P) limitation may affect plant capacity to withstand water stress. But studies on the effect of nutrient availability on plant ability to uptake and transport water are scarce. In this study, we assess the effect of nitrogen and phosphorus limitation on root morphology and root system topology in Pistacia lentiscus L seedlings, a common Mediterranean shrub, and relate these changes to hydraulic conductivity of the whole root system. Nitrogen and phosphorus deprivation had no effect on root biomass, but root systems were more branched in nutrient limited seedlings. Total root length was higher in seedlings subjected to phosphorus deprivation. Root hydraulic conductance decreased in nutrient-deprived seedlings, and was related to the number of root junctions but not to other architectural traits. Our study shows that changes in nutrient availability affect seedling water use by modifying root architecture. Changes in nutrient availability should be taken into account when evaluating seedling response to drought.  相似文献   

8.
为了阐明Cu2O纳米颗粒(NPs)暴露对植物根系的毒性效应,本研究以小麦品种‘周麦18’为材料,采用水培试验方法,研究了10、50、100和200 mg·L-1浓度的Cu2O-NPs对小麦幼苗生长、根系活性、形态结构及细胞遗传学毒性的影响。结果表明: 不同浓度的Cu2O-NPs降低了小麦幼苗的根芽长度、鲜重、根活性和根冠比,增加了初生根的数量;随着Cu2O-NPs浓度的升高,幼苗根伸长区缩短、根系变硬变脆、根径增加、根冠变大;100 mg·L-1浓度的Cu2O-NPs处理下,小麦根尖有丝分裂指数显著降低,根尖细胞形状不规则化、质壁分离、细胞出现空泡化、细胞核核膜模糊、核内染色体异常。在水培条件下,Cu2O-NPs对小麦幼苗具有一定的遗传学毒性效应,从而影响小麦幼苗的生长发育和根系形态结构。  相似文献   

9.
This study examines differences in the morpho-physiological responses of low- and high-cadmium (Cd) accumulating peanut (Arachis hypogaea L.) cultivars to Cd stress. The biomass, Cd accumulation, leaf gas exchange, root morphology, root respiration, and hydraulic conductivity of Qishan 208 (low-Cd accumulator) and Haihua 1 (high-Cd accumulator) were determined via a hydroponic experiment. Exposure of peanut plants to 2 and 20 μM Cd considerably decreased their shoot biomass, net photosynthetic rate, transpiration rate, stomatal conductance, total root length, number of root tips, root respiration, and hydraulic conductivity. The root biomass, root surface area, and average diameter were unaffected by Cd exposure. The two cultivars differed in Cd accumulation and morpho-physiological responses to Cd stress. Qishan 208 accumulated less Cd in plant tissues but was more sensitive to Cd stress than Haihua 1. The total root length, surface area, average diameter, number of root tips, and root respiration rate of Haihua 1 were significantly higher than those of Qishan 208. The well-developed root system and higher root respiration of Haihua 1 may be responsible for its high Cd accumulation capacity.  相似文献   

10.
Acer buergerianum Miq. (Trident maple) is a native species of China with a large distribution, but exist in small population. Water and light are two important factors limiting plant growth and are crucial in the framework of forest regeneration. However, there is no consensus on how shade interacts with drought. Four hypotheses in the recent literature variously predict that shade will have a stronger, weaker or equal impact on seedlings under drought stress. This study investigated the interactive responses of A. buergerianum to light and water focusing on seedling growth, leaf morphology and biomass partitioning by performing a growth experiment in pots with different water supply regimes [15, 35, 55, 75, 95 % of field capacity (FC)] combined with two light regimes (10 and 66 % of full sunlight). After 123 days treatment, the results showed that shade greatly reduced growth and biomass, in contrast enhancing the amount of chlorophyll, the amount of water in the leaves, and the specific leaf area. Drought reduced growth, biomass, and the bulk of the leaves. Most leaf traits and biomass characteristics had strong interactions in their responses to light and water treatments. Allometric analysis revealed that water and light had no effects on root to shoot ratios, main root to lateral root ratios, and root mass ratios. Shade alleviated the negative impact of drought. A. buergerianum successfully adapted to the various light and water conditions. We recommend a water supply above 15 % FC to keep the seedlings vigorous, under both sunlight conditions.  相似文献   

11.
Summary The vesicular-arbuscular mycorrhizal (VAM) fungus,Glomus versiforme increased significantly the growth ofAsparagus officinalis under controlled conditions using Turface as the growth medium. The growth responses, including increases in root fresh weight, numbers of shoots, shoot dry weight, and shoot height follow a pattern similar to other mycorrhizal systems. Indigenous VAM fungi appeared to have negative effects on average shoot fresh and dry weight, number of shoots per pot and average shoot height on one year oldA. officinalis seedlings obtained from the field and grown under controlled conditions. These results may be due either to the high levels of soluble phosphate present in the soil or the ineffectiveness of the particular indigenous fungi as mycorrhizal fungi in asparagus. Indigenous mycorrhizal fungi overwinter in asparagus root crown as vesicles and as external and internal hyphae. Soil obtained from the same fields as the one year old crowns was a good source of mycorrhizal inoculum for sterile seedlings.  相似文献   

12.
In previous experiments systematic differences have been found in the morphology, carbon economy and chemical composition of seedlings of inherently fast- and slow-growing plant species, grown at a non-limiting nutrient supply. In the present experiment it was investigated whether these differences persist when plants are grown at suboptimal nutrient supply rates. To this end, plants of the inherently fast-growing Holcus lanatus L. and the inherently slow-growing Deschampsia flexuosa (L.) Trin. were grown in sand at two levels of nitrate supply. Growth, photosynthesis, respiration and carbon and nitrogen content were studied over a period of 4 to 7 weeks. At low N-supply, the potentially fast-growing species still grew faster than the potentially slow-growing one. Similarly, differences in leaf area ratio (leaf area:total dry weight), specific leaf area (leaf area:leaf dry weight) and leaf weight ratio (leaf dry weight:total dry weight), as observed at high N-supply persisted at low N-availability. The only growth parameter for which a substantial Species × N-supply interaction was found was the net assimilation rate (increase in dry weight per unit leaf area and time). Rates of photosynthesis, shoot respiration and root respiration, expressed per unit leaf, shoot and root weight, respectively, were lower for the plants at low N-availability and higher for the fast-growing species. Species-specific variation in the daily carbon budget was mainly due to variation in carbon fixation. Lower values at low N were largely determined by both a lower C-gain of the leaves and a higher proportion of the daily gain spent in root respiration. Interspecific variation in C-content and dry weight:fresh weight ratio were similar at low and high N-supply. Total plant organic N decreased with decreasing N-supply, without differences between species. It is concluded that most of the parameters related to growth, C-economy and chemical composition differ between species and/or are affected by N-supply, but that differences between the two species at high N-availability persist at low N-supply.  相似文献   

13.
Photosynthesis, respiration and growth of two cultivars of carrotwith contrasting ratios of shoot: storage root weight at maturity,were compared during initiation of the storage root at 20 °C.Partition of assimilate between shoot, roots and respirationshowed no varietal differences but distribution between storageand fibrous roots was different from the time that the storageroot could be morphologically identified. For both cultivarsover the period investigated, approximately 64% of net photosynthesiswas partitioned to the shoot with 5% lost as respiration duringthe dark and 59% used in growth. Of that exported to the rootsystem (36%), 19% (of net photosynthesis) was used in growthand 17% was lost in respiration. In the cultivar with greatershoot: storage root ratio at maturity, 4.6% was allocated tothe storage root in contrast to 7.5% in the cultivar with alesser shoot: storage ratio at maturity. It is concluded thatgreater dry matter accumulation in the storage root of the lattercultivar does not result from transient differences in respiratoryloss and is not evident in shoot to total root dry matter distributionover this period. Daucus carota L, carrot, assimilate partition, shoot, storage root, shoot: root ratio  相似文献   

14.
One of the proposed mechanisms through which plant growth-promoting rhizobacteria (PGPR) enhance plant growth is the production of plant growth regulators, especially cytokinin. However, little information is available regarding cytokinin-producing PGPR inoculation on growth and water stress consistence of forest container seedlings under drought condition. This study determined the effects of Bacillus subtilis on hormone concentration, drought resistance, and plant growth under water-stressed conditions. Although no significant difference was observed under well-watered conditions, leaves of inoculated Platycladus orientalis (oriental thuja) seedlings under drought stress had higher relative water content and leaf water potential compared with those of noninoculated ones. Regardless of water supply levels, the root exudates, namely sugars, amino acids and organic acids, significantly increased because of B. subtilis inoculation. Water stress reduced shoot cytokinins by 39.14 %. However, inoculation decreased this deficit to only 10.22 %. The elevated levels of cytokinins in P. orientalis shoot were associated with higher concentration of abscisic acid (ABA). Stomatal conductance was significantly increased by B. subtilis inoculation in well-watered seedlings. However, the promoting effect of cytokinins on stomatal conductance was hampered, possibly by the combined action of elevated cytokinins and ABA. B. subtilis inoculation increased the shoot dry weight of well-watered and drought seedlings by 34.85 and 19.23 %, as well as the root by 15.445 and 13.99 %, respectively. Consequently, the root/shoot ratio significantly decreased, indicative of the greater benefits of PGPR on shoot growth than root. Thus, inoculation of cytokinin-producing PGPR in container seedlings can alleviate the drought stress and interfere with the suppression of shoot growth, showing a real potential to perform as a drought stress inhibitor in arid environments.  相似文献   

15.
Seed represents a potentially ecologically sustainable source of planting units for restoring seagrasses, particularly for seagrasses where transplanting negatively impacts donor beds. However, newly germinated seeds may be nutrient limited as their underdeveloped root systems may constrain capacity to access sediment‐based resources. We conducted a study in land‐based aquaculture tanks to determine whether early growth of newly germinated Posidonia australis seedlings could be enhanced by adding inorganic nutrients to the sediment. Sediments were supplemented with nitrogen and phosphorus in a factorial design (no nutrients, N, P, N + P). Shoot survival, whole shoot biomass, root morphology, root architecture, and nutrient concentration of seedlings were assessed monthly for the first 4 months after germination. More than 90% of seedlings survived during the 4 months of the experiment, irrespective of nutrient treatment. Growth of P. australis seedlings was not enhanced by addition of N or P to the sediment despite nutrient uptake occurring. Seedling growth was found to be more dependent on seed nutrient reserves rather than external nutrient sources for at least the first 4 months after germination. Adding inorganic nutrients to the sediment also significantly reduced the development of the seedling root system in terms of biomass, length, and density of lateral root branches. This study demonstrated that inorganic nutrient supplements constrain root development and therefore capacity for successful anchorage of seagrass seedlings, and pose a significant limitation on seedling establishment when transferred to the field, as well as potentially limiting natural and transplanted seedling establishment in eutrophic sediments.  相似文献   

16.
In vitro directly micropropagated plantlets from three selected five-year-old Eucalyptus grandis Hill ex. Maiden hybrids were compared to their related half-sib seedlings for growth and growth pattern parameters under greenhouse conditions used for operational seedling production. The oven dry weights were determined from stem, leaf, and root samples collected every 40 days for four times. Relative growth rate, net assimilation rates and shoot:root ratio were calculated. Survival was 98% and 95% for plantlets and seedlings, respectively. Significant differences were observed between parents in terms of shoot and root dry weights and their ratios with similar ranking among plantlets and seedlings, suggesting genetic control over these traits. Plantlets started with significantly higher root: shoot ratios and stem, leaf, root, and total dry weight. Although seedlings had higher relative growth and net assimilation rates, all the initial differences decreased sharply over time.  相似文献   

17.
Root growth respiration and root maintenance respiration rate of the following species were determined: Hypochaeris radicata L. ssp. radicata L., H. radicata ssp. ericetorum Van Soest, Plantago lanceolata L., P. major L. ssp. major, P. major ssp. pleiosperma Pilgcr, P. maritime L., Senecio viscosus L., S. vulgaris L. and Urtica dioica L. A high root growth respiration (i.e. the amount of oxygen consumed for synthesis of a given weight of root material) implied a high maintenance respiration rate (i.e. the amount of oxygen consumed per unit of time and dry weight, but not connected with growth). High values of both components reflect a low efficiency of root respiratory processes. The efficiency of root respiration, as determined by the values for root growth respiration and root maintenance respiration rate could not be demonstrated to be of advantage in adaptation to soil conditions, as e.g. nitrogen content, moisture content and pH. It is concluded that (he degree of ‘wasteful utilization of sugars’ in roots, i.e. such consumption of sugars as cannot be related to structural growth, storage of carbohydrates or maintenance processes, depends on imbalance of transport of sugars from the shoot to the roots with utilization of sugars for synthesis of root material. The results are discussed in relation to Brouwer's explanation for the equilibrium between the growth of shoots and of roots. Root growth rate in the present species appears limited by a factor produced in the shoot under light conditions, and which factor is distinct from carbohydrates. The evidence presented shows that relatively inefficient root respiration does not imply a low growth rate. In regulation of plant growth the growth rate itself and also the shoot to-root ratio may be more important than the regulation of the efficiency of energy metabolism.  相似文献   

18.
Analysis of Respiratory Chain Regulation in Roots of Soybean Seedlings   总被引:11,自引:1,他引:10       下载免费PDF全文
Changes in the respiratory rate and the contribution of the cytochrome (Cyt) c oxidase and alternative oxidase (COX and AOX, respectively) were investigated in soybean (Glycine max L. cv Stevens) root seedlings using the 18O-discrimination method. In 4-d-old roots respiration proceeded almost entirely via COX, but by d 17 more than 50% of the flux occurred via AOX. During this period the capacity of COX, the theoretical yield of ATP synthesis, and the root relative growth rate all decreased substantially. In extracts from whole roots of different ages, the ubiquinone pool was maintained at 50% to 60% reduction, whereas pyruvate content fluctuated without a consistent trend. In whole-root immunoblots, AOX protein was largely in the reduced, active form at 7 and 17 d but was partially oxidized at 4 d. In isolated mitochondria, Cyt pathway and succinate dehydrogenase capacities and COX I protein abundance decreased with root age, whereas both AOX capacity and protein abundance remained unchanged. The amount of mitochondrial protein on a dry-mass basis did not vary significantly with root age. It is concluded that decreases in whole-root respiration during growth of soybean seedlings can be largely explained by decreases in maximal rates of electron transport via COX. Flux via AOX is increased so that the ubiquinone pool is maintained in a moderately reduced state.  相似文献   

19.
We explored the effect of high‐growth temperatures on a dominant North American boreal tree, black spruce [Picea mariana (Mill.) B.S.P.]. In 2004 and 2005, we grew black spruce at either 22 °C/16 °C day/night temperatures [low temperature (LT)] or 30°/24 °C [high temperature (HT)] and determined how temperature affected growth, leaf morphology, photosynthesis, respiration and thermotolerance. HT spruce were 20% shorter, 58% lighter, and had a 58% lower root : shoot ratio than LT trees. Mortality was negligible in the LT treatment, but up to 14% of HT seedlings died by the end of the growing season. HT seedlings had a higher photosynthetic temperature optimum, but net photosynthesis at growth temperatures was 19–35% lower in HT than LT trees. HT seedlings had both a lower apparent maximum ribulose‐1,5‐bisphosphate carboxylation capacity (Vcmax) and a lower apparent maximum electron transport rate (Jmax) than LT trees, indicating reduced allocation to photosynthetic components. Consistently, HT needles had 26% lower leaf nitrogen content than LT needles. At each measurement temperature, HT seedlings had 20–25% lower respiration rates than LT trees; however, this did not compensate for reduced photosynthetic rates at growth temperature, leading to a greater ratio of dark respiration to net carbon dioxide assimilation rate in HT trees. HT needles had 16% lower concentrations of soluble sugars than LT needles, but similar starch content. Growth at high temperatures increased the thermotolerance of black spruce. HT trees showed less PSII inhibition than LT seedlings and no increase in electrolyte leakage when briefly exposed to 40–57 °C. While trees that develop at high temperatures have enhanced tolerance for brief, extreme heat events, the reduction in root allocation indicates that seedlings will be more susceptible to episodic soil drying and less competitive for belowground resources in future climates of the boreal region.  相似文献   

20.
For a tree seedling to successfully establish in dense shrubbery, it must maintain function under heterogeneous resource availability. We evaluated leaf-level acclimation in photosynthetic capacity, seedling-level transpiration, and seedling morphology and growth to gain an understanding of the effects of above- and below-ground competition on Quercus robur seedlings. Experimental seedlings were established in a typical southern Swedish shrub community where they received 1 of 4 competition levels (above-ground, below-ground, above- and below-ground, or no competition), and leaf-level responses were examined between two growth flushes. Two years after establishment, first-flush leaves from seedlings receiving above-ground competition showed a maximum rate of photosynthesis (Amax) 40% lower than those of control seedlings. With the development of a second flush above the shrub canopy, Amax of these seedlings increased to levels equivalent to those of seedlings free of light competition. Shrubby competition reduced oak seedling transpiration such that seedlings exposed to above- and below-ground competition showed rates 43% lower than seedlings that were not exposed to competition. The impaired physiological function of oak seedlings growing amid competition ultimately led to a 60-74% reduction in leaf area, 29-36% reduction in basal diameter, and a 38-78% reduction in total biomass accumulation, but root to shoot ratio was not affected. Our findings also indicate that above-ground competition reduced Amax, transpiration and biomass accumulation more so than below-ground competition. Nevertheless, oak seedlings exhibited the ability to develop subsequent growth flushes with leaves that had an Amax acclimated to utilize increased light availability. Our findings highlight the importance of flush-level acclimation under conditions of heterogeneous resource availability, and the capacity of oak seedlings to initiate a positive response to moderate competition in a shrub community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号