首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The differentiation of spermatids in Hoplias malabaricus is characterized by chromatin compaction, flagellum development, nuclear rotation, nuclear fossa formation, and excess cytoplasm elimination. In the resulting spermatozoon, the head is round and the nucleus contains chromatin compacted in thick filaments, peripherically arranged, to a central electron-lucent area. The acrosome is absent. The nuclear fossa is eccentric but not pronounced. The proximal centriole penetrates it and is oblique to the flagellum. The long midpiece has several converging elongate vesicles, forming membranous hoops in the initial segment of the flagellum, but has no cytoplasmic channel. The mitochondria are elongate and branched or C-shaped and located around the initial segment of the axoneme. The lateral flagellum does not show lateral projections. The ultrastructural characteristics of H.malabaricus spermatozoa are similar to the Cypriniformes.  相似文献   

2.
The ultrastructure of spermiogenic stages and spermatozoa of representatives of two gymnotiform families, Gymnotus cf. anguillaris (Gymnotidae) and Brachyhypopomus cf. pinnicaudatus (Hypopomidae) were studied. Spermiogenesis of both species is characterized by lateral development of the flagellum and formation of a nuclear fossa. Some differences were found between these species, such as whether (B. cf. pinnicaudatus) or not (G. cf. anguillaris) nuclear rotation occurs, permanence of the cytoplasmic channel, and type and localization of the nuclear fossa. In the G. cf. anguillaris spermatozoon the nucleus is spherical with highly condensed chromatin. The nuclear fossa is shallow and lateral and is associated with the centriolar complex through stabilizing fibrils. The midpiece is short, with many vesicles, a cytoplasmic channel, and elongate mitochondria. In the B. cf. pinnicaudatus spermatozoon the ovoid nucleus is elongated lateral and posterior to the centriolar complex, and has highly condensed chromatin. The eccentric nuclear fossa is of the moderate type, and contains the entire centriolar complex. The midpiece is long, with numerous vesicles, elongate mitochondria, and no cytoplasmic channel. In both species the flagella are laterally disposed in relation to the nucleus and comprise of the classical 9+2 axoneme. Most of the characteristics found in the spermatozoa of these two species of Gymnotiformes are shared with species of Characiformes, whereas only a few are also found in Siluriformes. This suggests that Gymnotiformes and Characiformes may be more closely related than previously proposed.  相似文献   

3.
大黄鱼精子的超微结构   总被引:43,自引:1,他引:43  
尤永隆  林丹军 《动物学报》1997,43(2):119-126
大黄鱼的精子由头产和尾部两部分组成。头部结构较为独特,其腹侧有一较大的细胞核,背部有中心粒复合体。头部的后端是袖套。细胞核的腹面稍向外突出背面则稍向内凹。细胞核中的染以质浓缩成致密的团块状。团块状的染色质之间分布着松散的纤维状染色质。植入窝位于细胞核的背部表面,由细胞核背面向内凹陷而成,呈一沟状,其走向与精子的长轴平行。  相似文献   

4.
Scanning and transmission electron microscopy were used to investigate the fine structure of sperm of the Mediterranean amberjack Seriola dumerilii. Each spermatozoon has an ovoid head which lacks an acrosome, a short, irregularly-shaped midpiece and a long flagellar tail. The midpiece houses eight spherical mitochondria, which are separated from the axoneme by the cytoplasmic canal. The centrioles are arranged approximately at right angles to each other. The proximal centriole lies inside, and the distal centriole outside, the nuclear fossa. The flagellum is inserted eccentrically into the head and is tangential to the nucleus, so that the spermatozoon is asymmetrical. It contains the conventional 9 + 2 axoneme, shows intratubular differentiations in the A microtubules of doublets 1, 2, 5 and 6, and possesses one pair of lateral fins. On the basis of its ultrastructural organization, the amberjack sperm resembles type II sperm as defined previously, except for the presence of the proximal centriole inside the nuclear fossa. This could result from a partial rotation of the nucleus during spermiogenesis.  相似文献   

5.
Pecio A 《Folia biologica》2003,51(1-2):55-62
The main characteristic features of spermiogenesis in Chilodus punctatus (Characiformes) are rotation of the nucleus, development of a nuclear fossa, which extends as a narrow invagination deep into the nucleus and the way in which flagellum is formed. The chromatin condensation proceeds during the spermiogenesis from heterogeneous through homogenous and granular to a highly compact one present in the mature spermatozoon. Mature Ch. punctatus spermatozoon shows a spherical nucleus, short midpiece and flagellum with lateral fins. The centrioles are in perpendicular arrangement and are located in the deep nuclear fossa, which extends towards the anterior pole of the nucleus. The midpiece contains a few mitochondria, which are separated from the anterior fragment of flagellum by the cytoplasmic channel. Spermiogenesis and spermatozoon ultrastructure conform to the pattern observed in other ostariophysans, but for the first time the presence of lateral fins along flagellum has been documented in a representative of Characiformes.  相似文献   

6.
本文研究卵胎生硬骨鱼褐菖(Sebastiscusmarmoratus)精细胞的成熟变化和精子结构。褐菖精细胞发育晚期已具有硬骨鱼类精子的结构雏形:细胞核的背面较平坦,腹面稍外鼓,呈弧面;染色质浓缩成团块状,核的腹侧和后端的染色质较致密;中心粒复合体由近端中心粒和基体组成,近端中心粒和基体排成“L”形;近端中心粒向细胞核的背侧伸出中心粒附属物,中心粒附属物由9条微管组成,9条微管围成一筒状结构,类似轴丝。在晚期精细胞形成精子的过程中,中心粒附属物和近端中心粒相继退缩以至消失不见,同时细胞核后端的形状也随着发生变化。中心粒附属物和近端中心粒的相继消失可以看作是成熟的最后标志。精子的中心粒复合体由基体及其上方的基体帽组成,袖套接于核的后端,其中约有30~40个线粒体;鞭毛从袖套腔中伸出,鞭毛的中心结构是轴丝;轴丝外方为细胞质形成的侧鳍,在鞭毛的近核段,轴丝两侧的侧鳍较宽且不对称。  相似文献   

7.
用扫描和透射电子显微镜研究了尼罗河鲶——盾头歧须鮠(Synodontis schall)的精子发生和精子的超微结构。精巢中含有无数肾形的生精小叶,我们将其称为"精原无限型"。尽管其精子发生的大体过程与同类鱼无异。但是,在细节上仍具其独特之处。这些特点未见在其他硬骨鱼中报道过。其特点主要是:生精过程中不发生细胞核的旋转,中心粒复合体和轴丝起始段直接发生在核的基底面垂直线上,有无数的粗的固定纤维将近端中心粒和远端中心粒的近侧部连接到细胞核上。另外,精子发生过程中还包括染色质浓缩,细胞质和线粒体向细胞核的尾端迁移,在核的后端中轴位置上形成中等大小的核后凹,近端中心粒和远端中心粒的一部分嵌在核后凹之内,短的胞质内陷管将线粒体与鞭毛分隔开。精子头部接近圆形,无顶体或顶体泡,鞭毛的中段及胞质内陷管均较短,整个鞭毛却很长,鞭毛侧面无翼膜,轴丝呈典型的9 2结构。上述结果显示,盾头歧须鮠的精子发生具有类型Ⅰ和类型Ⅱ的共同派生特征,这种特征在常见的其他硬骨鱼中也是常有的。但是,正如文献所报道过的另两种尼罗河鲶——金鯵(Chrysichthys auratus)和电鲶(Malapterurus electricus)中的情况一样,盾头歧须的精子发生与类型Ⅲ的精子发生过程更为相似。  相似文献   

8.
Spermiogenesis in the aplysiid, Aplysia kurodai (Gastropoda, Opisthobranchia) was studied by transmission electron microscopy, with special attention to acrosome formation and the helical organization of the nucleus and the other sperm components. In the early spermatid, the periphery of the nucleus differentiates into three characteristics parts. The first part is that electron-dense deposits accumulate on the outer nuclear envelope. This part is destined to be the anterior side of the sperm because a tiny acrosome is organized on its mid-region at the succeeding stage of spermiogenesis. The second part, in which electron-dense material attaches closely to the inner side of the nuclear envelope, is the presumptive posterior side. A centriolar fossa is formed in this part and the axoneme of the flagellum extends from the fossa. A number of lamellar vesicles derived from mitochondria assemble around the axoneme and form the flagellum complex. The third part is recognized by the chromatin which condenses locally along the inner nuclear envelope. During development of the spermatid, this part extends to form a spiral nucleus accompanied by chromatin condensation and formation of microtubular lamellae outside the extending nucleus.
Finally, in the mature sperm, a tiny, spherical acrosomal vesicle is detected at the apex. The slender nucleus, overlapping both the primary and secondary helices which are composed of different structural elements, winds around the flagellum axoneme.  相似文献   

9.
In accordance with the characteristic shape of the nucleus and degree of condensation of the nuclear substance, spermiogenesis in Euhadra hickonis can be roughly divided into four stages. The chromatin in the highly polymorphic nucleus of the first stage, early spermatid, forms relatively thick (ca. 50 nm) fibrils which associate here and there into irregular clumps. In the next stage, the spermatid nucleus becomes conspicuously spherical, its contents appear more finely homogeneous and the irregular clumps of chromatin are few. In the third stage, the nucleus gradually takes on an ellipsoidal shape as the antero-posterior axis shortens. The anterior part of its envelope becomes structurally modified in preparation for the adherence to it of the developing acrosome, and an implantation fossa forms posteriorly at the center of a second area where the nuclear envelope has been modified. The diameter of the chromatin fibrils again increases and those near the implantation fossa become oriented perpendicular to the nuclear envelope.
As the nucleus elongates in the fourth stage, a concentric sheath of microtubules closely surrounds it. These appear to depolymerize as the nuclear elongation proceeds, so that they are no longer present in the head region of the mature spermatozoon. The diameter of the chromatin fibrils increases to about 10 nm and they become oriented parallel to the long axis of the cell. With the decrease in the nuclear volume the fibrils unite laterally to form longitudinal sheets, and these finally merge in the mature spermatozoon into a mass of very dense chromatin without perceptible internal structure.  相似文献   

10.
玫瑰无须鲃精子的超微结构   总被引:9,自引:0,他引:9  
透射和扫描电镜研究显示玫瑰无须售巴(Puntius conchonius)的精子由头、中片和尾三部分组成。头部无顶体,呈球形或卵圆形,主要由细胞核组成,核内染色质致密。核前端几乎无细胞质存在,核膜紧密靠近细胞质膜,而在核的后端有少量细胞质存在。在核后端偏于一侧处有一个浅的核后凹,中心粒复合体部分地镶嵌于其中,中心粒复合体由近端中心粒和远端中心粒组成,二者呈钝角形排列,鞭毛从远端中心粒的末端发出。中片由前边的主要部分——领和后边细薄的袖套构成。领内含有数个不规则分布的线粒体包埋于细胞质中,袖套的长短、粗细差别较大,有的精子没有袖套。由于与鞭毛的不对称连接,使得头部及中片均呈不对称型。尾是一根细长的鞭毛,尾丝具有典型的“9+2”微管结构,尾部两侧均无侧鳍。与鲤科其它鱼精子相比,该鱼精子的主要特征是具有长短不一的袖套,领内有不同数量的液泡,且有些空泡向外界开口呈孔状。袖套的长短与领内液泡化水平似有某种相互联系,这也许与精子的老化程度有关[动物学报51(5):892—897,2005]。  相似文献   

11.
Scanning and transmission electron microscopy were used to investigate the fine structure of the sperm of the sparid fish Pagellus bogaraveo.The spermatozoon of P. bogaraveo belongs, like that of the other sparid fish, to the teleostean “type I” spermatozoon with the flagellar axis insert perpendicular to the nuclear fossa. It has an ovoidal head, a short, cylindrically shaped midpiece and a long tail region. The nucleus reveals a deep invagination (nuclear fossa), in which the centriolar complex is located, and a satellite nuclear notch shaped like a golf club. The two centrioles are perpendicular to each other and show a conventional “9+0” pattern. The distal centriole is attached to the nuclear envelope by means of basal feet and radial fibers made of electron-dense material. Below the basal plate, plasma membrane pinches in, and the necklace, a specialized connection joining axonemal doublets to the plasma membrane, is visible. The short midpiece houses one mitochondrion. The flagellum is perpendicularly and eccentrically with respect to the nucleus and contains the conventional “9+2” axoneme.  相似文献   

12.
Spermiogenesis and spermatozoal structure were studied in Cichla intermedia, a primitive species of Neotropical Cichlids. The analysis shows that spermiogenesis is characterized by chromatin compaction, flagellum development, nuclear rotation, nuclear fossa formation and residual cytoplasm elimination. In the spermatozoa, the head is round, the nucleus contains highly condensed filamentous clusters of chromatin and an acrosome is absent. The nuclear fossa is slightly eccentric and shows a projection that penetrates into the nuclear outline. The proximal centriole is located in the initial segment of the nuclear fossa. The midpiece and the cytoplasmic channel are long. The mitochondria, about 10 in number, are round or slightly elongated, disposed in two layers around the initial segment of the flagellum. The flagellum has a classical 9+2 axoneme and two lateral fins. The data available show that no characteristics of spermiogenesis or spermatozoa are exclusively found in members of the suborder Labroidei. However, three characteristics seem to be exclusively observed in Cichlidae: (1) compact filamentous clusters of chromatin; (2) slightly eccentric nuclear fossa; and, (3) number of mitochondria.  相似文献   

13.
The sperm of Spio setosa (Polychaeta, Spionidae) are known to be very unusual in form; here, spermiogenesis and the structure of the spermatozoon in this species are described by transmission electron microscopy. While spermiogenesis is similar to that described for many other polychaetes, two notable exceptions to this process include the synthesis of abundant ring‐shaped and tubular, membrane‐bounded cytoplasmic inclusions in the midpiece, and the differentiation of a spirally shaped sperm head. Spermatids develop as free‐floating tetrads in the male's coelom. A microtubular manchette does not develop during chromatin condensation and nuclear elongation, and the spiral acrosome forms as a single Golgi‐derived vesicle that migrates anteriorly to become housed in a deep anterior nuclear fossa. Early in spermiogenesis, numerous Golgi‐derived, membrane‐bounded cytoplasmic inclusions appear in the cytoplasm; these ultimately occupy the sperm midpiece only. The mature spermatozoon in the male has a 15‐μm‐long head consisting of a nucleus coiled like a spring and a spiral acrosome with differentiated substructure, the posterior two thirds of which sits in an anterior nuclear fossa. The midpiece is wider than the rest of the spermatozoon and contains 9–10 spherical mitochondria surrounding the two centrioles, as well as numerous membrane‐bounded conoid and tubular cytoplasmic inclusions. The axoneme has a 9 + 2 arrangement of microtubules. By contrast, stored sperm in the female's seminal receptacles have lost the midpiece inclusions but contain an abundance of glycogen. The function of the midpiece inclusions remains unresolved, and the significance of their absence in stored sperm within the seminal receptacle and the appearance of midpiece glycogen stores remains unclear and requires additional investigation.  相似文献   

14.
Scanning and transmission electron microscopy were used to investigate the fine structure of the sperm of the sparid fish Sparus aurata L. The mature spermatozoon of gilthead sea bream belongs, like that of the other sparid fish, to a "type I" as defined by Mattei (1970). It has a spherical head which lacks an acrosome, a short, irregularly-shaped midpiece and a long cylindrical tail. The nucleus reveals a deep invagination (nuclear fossa) in which the centriolar complex is located. The two centrioles are approximately perpendicular to each other and show a conventional "9+0" pattern. The proximal centriole is associated with a cross-striated cylindrical body lying inside a peculiar satellite nuclear notch which appears as a narrow invagination of the nuclear fossa. The distal centriole is attached to the nuclear envelope by means of a lateral plate and radial fibres made of an electron-dense material. The short midpiece houses one mitochondrion. The flagellum is inserted perpendicularly into the base of the nucleus and contains the conventional 9+2 axoneme.  相似文献   

15.
Spermiogenesis in the Nile tilapia, Oreochromis niloticus, was observed ultrastructurally. The process of spermatid differentiation can be divided into six distinct stages based mainly on changes in the nucleus of spermatids. During the latter half of the process, nuclear chromatin condenses progressively to form many dense globules, which ultimately adhere tightly to pack the head of mature spermatozoa. During chromatin condensation the nucleus diminishes in size, and part of the nuclear envelope and nucleoplasm forms a vesicular structure that is finally discarded from the cells together with an associated thin layer of cytoplasm. The spermatozoon comprises a roundish head, a relatively small midpiece, and a relatively short flagellum consisting of the usual 9+2 axoneme. No acrosomal structure is developed during spermiogenesis.  相似文献   

16.
黄颡鱼(Pseudobagrus fulvidraco)精子的超微结构   总被引:1,自引:0,他引:1  
黄颡鱼精子由头部、中段和鞭毛(尾部)三部分组成。头部的主要结构是细胞核。核中浓缩了的染色质呈颗粒状。染色质中有核泡存在。核泡中有致密颗粒状物。植入窝里井状,从核后端往前深陷入核的中央。中段的中心粒复合体位于植入窝中,结构独特。近端中心粒和基体首尾相对,排在同一直线上。某些精子的近端中心粒的中央腔中能见到一、二个粗大的颗粒状物。基体的中央腔中有一对中央微管。近端中心粒和基体之间有中心粒间体将两者隔开。中段的袖套连接于细胞核之后,其中分布着线粒体和一些囊泡。近袖套内膜处的细胞质中有一层膜与袖套内膜平行。鞭毛细长,其起始端位于袖套腔中。鞭毛上长有两排侧鳍。侧鳍呈波纹状,分居轴丝两侧,大致与轴丝的两条中央微管同在一个平面上。侧鳍的基部有囊泡。  相似文献   

17.
The spermatozoon of Chiton marginatus is a long uniflagellate cell displaying structural features of “modified sperm.” The nucleus presents a conical shape with a long apical cylindrical extension. The chromatin is homogeneously dense. Scattered inside the condensed nucleus, a few nuclear lacunae are visible. The acrosomal complex is lacking. Some mitochondria are located in a laterofrontal structure side by side with the nucleus. The typical midpiece is absent. The cytoplasm forms a thin layer around the nucleus and the mitochondria. The proximal centriole is in a basal nuclear indent. The distal centriole serves to form the axoneme tail with the usual microtubular pattern. During nuclear maturation, the early spermatid nucleus is spherical and contains fine granular chromatin patches. The nuclear envelope shows a deposit of dense material at the base of the nucleus, forming a semicircular invagination occupied by a flocculent mass. In middle spermatid stage, the chromatin gets organized in filaments, coiled as a hank, attached over the inner surface of the basal thickening of the nuclear envelope. The nucleus starts to elongate anteroposteriorly. At the pointed apical portion of the spermatid, a group of microtubules is observed seeming to impose external pressure to the nucleus giving rise to the long apical nuclear point. The mitochondria have a basal position. Late spermatids have an elongated conical nucleus. The chromatin filaments are further condensed, and lacunae appear inside the nucleus. Some mitochondria migrate to a lateral position.  相似文献   

18.
大鲵精子的超微结构研究   总被引:4,自引:0,他引:4  
本文运用透射电镜和扫描电镜研究了大鲵(Andrias davidianus)精子的超微结构,大鲵精子由头部(head),中片(midpiece)和尾部(tail)三部分组成。头部有棒状细胞核,核内染色质高度浓缩,细胞核前方呈细丝状,但非顶体结构。头部后端凹陷,称为植入窝(implantation fossa),植入窝内有线粒体和中心粒等细胞器结构,此区域为精子的中片。精子尾部细长,主要由轴丝和附属纤维(accessory fiber)组成,轴丝的外面具有波动膜。  相似文献   

19.
The fine structure of the mature spermatozoon of the strepsipteranElenchus japonicus Esaki and Hashimoto (Elenchidae) is described using transmission electron microscopy. The spermatozoon was seen to have an elongated head, a tail containing a 9 + 9 + 2 axoneme, two mitochondrial derivatives and two accessory sheaths. The monolayered acrosome is conical in shape while the nucleus exhibits an internal channel of uncondensed chromatin. The tail is long, and in its final portion, the axoneme, loses its elements progressively. These results are compared with the sperm ultrastructure ofXenos moutoni De Buysson (Stylopidae) and with those of other insect orders, particularly the Coleoptera.  相似文献   

20.
We describe, for the first time, the spermatozoon ultrastructure of a dendrobatid frog, Epipedobates flavopictus. Mature spermatozoa of E. flavopictus are filiform, with a moderately curved head and a proportionally short tail. The acrosomal vesicle is a conical structure that covers the nucleus for a considerable distance. A homogeneous subacrosomal cone lies between the acrosome vesicle and the nucleus. The nucleus contains a nuclear space at its anterior end, and electron-lucent spaces and inclusions. No perforatorium is present. In the midpiece, the proximal centriole is housed inside a deep nuclear fossa. Mitochondria are scattered around the posterior end of the nucleus and inside the undulating membrane in the anterior portion of the tail. In transverse section the tail is formed by an U-shaped axial fiber connected to the axoneme through an axial sheath, which supports the undulating membrane. The juxta-axonemal fiber is absent. The spermatozoon of E. flavopictus has several characteristics not observed before in any anurans, such as a curved axial fiber, absence of a juxta-axonemal fiber, and presence of mitochondria in the typical undulating membrane. Our results endorse the view that, in anurans, the conical perforatorium and subacrosomal cone are homologous and that Dendrobatidae should be grouped within Bufonoidea rather than Ranoidea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号