首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolation and primary structure of rat secretin   总被引:2,自引:0,他引:2  
A major form of rat secretin was purified to homogeneity from small intestine, being detected with a porcine secretin radioimmunoassay throughout 7 chromatographic steps. The sequence of the heptacosapeptide amide H-S-D-G-T-F-T-S-E-L-S-R-L-Q-D-S-A-R-L-Q-R-L-L-Q-G-L-V-NH2 shows that rat secretin has a glutamine residue in position 14 instead of arginine as in pig secretin.  相似文献   

2.
The neuropeptides vasoactive intestinal peptide (VIP) and peptide histidine isoleucinamide (1-27) (PHI) and the hormone secretin were purified from the small intestine of guinea pig, being detected by radioimmunoassay and radioreceptor assay throughout six to seven chromatographic steps. After elution on a reverse-phase C18 column, the three peptides were separated on a Fractogel column. After cation-exchange chromatography of each peptide on Mono S, the final steps were performed using a reverse-phase RP8-e column. Guinea pig PHI differed from porcine PHI in having Tyr and Arg residues instead of Phe and Lys in, respectively, position 10 and 20. We confirmed the original sequence of guinea pig VIP previously documented (with Leu5, Thr9, Met19 and Val26). We also established the similarity of the primary structure of guinea pig secretin with that of porcine and bovine.  相似文献   

3.
The protein compositions of pig pancreatic secretions collected under stimulation by secretin alone or in combination with caerulein were compared by SDS polyacrylamide gel electrophoresis. Different sets of proteins were observed in these two different conditions. One of the major proteins secreted under secretin alone was immunologically similar to the 92 kDa glycoprotein characteristic of the pig zymogen granule membrane. Since its proportion in the two secretions was drastically different and since this protein is exclusively found in the acinar cell, these observations support the view that the proteins released by the pig pancreas under secretin stimulation alone, and under the combination of secretin + caerulein do not originate from the same intracellular pool of the acinar cell and that the secretin-induced secretion does not derive from zymogen granules.  相似文献   

4.
VIP, a potent vasodilator peptide, is reported to be identical in pig, cow, human and rat but to differ in four amino acids in chicken. This report describes the purification of dog VIP from the small intestine of a single animal. The purification method is based on tissue extraction with a sequence of organic solvents. The extracted VIP is concentrated onto cation-exchange cellulose and brought to purity by three HPLC steps. A 30% final yield of pure VIP was obtained from the original extract. Dog VIP was found to have the following sequence: His-Ser-Asp-Ala-Val-Phe-Thr-Asp-Asn-Tyr-Thr-Arg-Leu-Arg-Lys-Gln-Met-Ala -Val-Lys-Lys-Tyr-Leu-Asn-Ser-Ile-Leu-Asn. Thus the amino acid sequence of dog VIP is identical with all the mammalian VIP's which have been reported. This suggests that a high degree of conservation throughout the molecule may be required for VIP bioactivity.  相似文献   

5.
We investigated the abilities of VIP and secretin to occupy receptors and to increase cellular cyclic AMP using dispersed acini from guinea pig pancreas. The dose-inhibition curve for inhibition of binding of 125I-VIP by VIP was broad with detectable inhibition at 0.1 nM VIP, half-maximal inhibition at 2 nM VIP and complete inhibition at 10 microM VIP. Secretin also inhibited binding of 125I-VIP was compatible with two VIP-preferring receptors with one class having a high affinity for VIP (Kd 1.1 nM) and a low affinity for secretin (Kd 5 microM) and the other class having an intermediate affinity for VIP (Kd 470 nM). The dose inhibition curve for inhibition of binding of 125I-secretin by secretin was not broad. Half-maximal inhibition occurred with 7 nM secretin or with 10 microM VIP. Computer analysis was compatible with a single secretin-preferring receptor with a high affinity for secretin (Kd 7 nM) and a low affinity for VIP (Kd 5.9 microM). Comparison of the ability of VIP to increase cyclic AMP with or without the secretin-receptor antagonist, secretin-5-27, demonstrated only occupation of the high affinity VIP-preferring or high affinity secretin-preferring receptors increase cyclic AMP. Our results demonstrate that, in contrast to previous reports, guinea pig pancreatic acini possess 3 classes of receptors that interact with VIP and secretin. The low affinity receptor seen with 125I-VIP is not the same as the secretin-preferring receptor and does not increase cellular cyclic AMP.  相似文献   

6.
Secretin is a 27 amino acid peptide which stimulates the secretion of bicarbonate, enzymes and potassium ion from the pancreas. A complementary DNA encoding the rat secretin receptor was isolated from a CDM8 expression library of NG108-15 cell line. The secretin receptor expressed in COS cells could specifically bind the iodinated secretin with high and low affinities. Co-expression of the secretin receptor with the alpha-subunit of rat Gs protein increased the concentration of the high affinity receptor in the membrane fraction of the transfected COS cells. Secretin could stimulate accumulation of cAMP in COS cells expressing the cloned secretin receptor. The nucleotide sequence analysis of the cDNA has revealed that the secretin receptor consists of 449 amino acids with a calculated Mr of 48,696. The secretin receptor contains seven putative transmembrane segments, and belongs to a family of the G protein-coupled receptor. However, the amino acid sequence of the secretin receptor has no significant similarity with that of other G protein-coupled receptors. A 2.5 kb mRNA coding for the secretin receptor could be detected in NG108-15 cells, and rat heart, stomach and pancreatic tissue.  相似文献   

7.
An Mr 21 000 polypeptide, designated APPG, has been purified by reverse-phase, high-performance liquid chromatography (RP-HPLC), from acid extracts of porcine anterior pituitary glands. This acidic protein possesses an isoelectric point of 4.9. Amino acid analysis shows that it is not a glycoprotein and estimates it to contain about 173 amino acids. NH2-terminal sequence analysis allowed the determination of the first 50 residues unambiguously. A computer data bank search using a mutation data matrix and comparison with 269 012 protein segments indicated that this is a novel polypeptide sequence. However, this search revealed suggestive sequence homologies to a number of peptides of known sequence, including duck proinsulin (30%), Rous sarcoma virus transforming protein TVFV60 (24%) and pig secretin (26%).  相似文献   

8.
《Peptides》1998,19(6):1055-1062
The rabbit secretin receptor cDNA was cloned from rabbit pancreas using combined polymerase chain reaction (PCR)/rapid amplification of cDNA ends (PCR/RACE) approaches. The rabbit cDNA encoded 445 amino acids and had 80 and 85% homology with rat- and human receptor, respectively, in terms of nucleic and amino acid sequences. Several regions where the rabbit receptor sequence diverged from the rat/human receptor sequences were observed in the putative extracellular domains of the receptor. A cDNA coding for a similar sequence with a 76 bp deletion after the 5th transmembrane domain was also found; it probably encoded an inactive protein. The whole rabbit secretin receptor cDNA was subcloned in expression vector pCR3.1, then stably and transiently transfected in Chinese hamster ovary (CHO) cells. The pharmacological properties of the rat and rabbit secretin receptor studies were compared by radiolabeled secretin binding, binding inhibition, and adenylate cyclase activation (using secretin analogs and fragments). Porcine secretin was equipotent with rabbit secretin on the rabbit secretin receptor, but fivefold more potent than rabbit secretin on the rat receptor. This was due to the serine → arginine residue replacement, in position 16 of rabbit secretin. Amino terminal modified secretin analogs (secretin(2–27), [E3]secretin, [N3]secretin) and VIP were less potent than secretin on both secretin receptors, but more potent on the rabbit than on the rat receptor. The carboxy-terminally truncated fragment (1–26) had the same reduced potency on rat and rabbit receptors. Thus, the rabbit secretin receptor had original properties, different from those of the rat receptor.  相似文献   

9.
Distribution,ontogeny and ultrastructure of the mammalian secretin cell   总被引:4,自引:0,他引:4  
Summary Immunocytochemically, secretin cells have been demonstrated to occur in the duodenum and jejunum of several mammals. Calculations on the relative frequency of such cells indicate that the bulk of secretin occurs in the jejunum, a fact supporting the view that secretin may be released by physiological stimulants other than hydrochloric acid. Electron microscopical identification of cat and pig secretin cells confirmed their identity with the ultrastructurally defined S cells, and staining experiments revealed that secretin cells were argyrophilic both with the method of Grimelius and with that of Hellerström and Hellman. Secretin cells are detected already in the 17-day old fetal rat duodenum and show a developmental pattern similar to that displayed by the gastrin cells. It is suggested that secretin may play a role in the early regulation of growth of the fetal gastrointestinal tract. Acknowledgements: Supported by grants from the Danish and Swedish MRC  相似文献   

10.
1. The responsiveness of adenylate cyclase and enzyme secretin for secretin and the C-terminal octapeptide of pancreozymin has been investigated in particulate fractions of the pancreas of five different species. 2. The adenylate cyclase is sensitive to the C-terminal octapeptide of pancreozymin in all species investigated. 3. The enzyme is much more sensitive to secretin in rat and cat than in mouse and rabbit, whereas with guinea pig intermediate values are obtained. 4. The enzyme secretion is stimulated by secretin in pancreatic fragments of rat and cat, but not in those of mouse and rabbit. 5. These results suggest that in species where secretin stimulated enzyme secretion, it does so by stimulating the adenylate cyclase system.  相似文献   

11.
Secretin and vasoactive intestinal peptide (VIP), but not glucagon, stimulate accumulation of cyclic AMP in dispersed guinea pig pancreatic acinar cells. Secretin stimulated cellular accumulation of cyclic AMP by interacting with a single class of high affinity receptors. On the other hand, the dose-response curve for VIP-stimulated cellular cyclic AMP was biphasic and reflected interaction of this peptide with two classes of receptors. Results obtained with synthetic fragments of VIP and secretin indicate that the receptor having a high affinity for VIP has a low affinity for secretin, interacts with, but does not distinguish among, secretin, secretin 5-27 and [6-tyrosine] secretin or among secretin 14-27, VIP 14-28, VIP 15-28, and increases cellular cyclic AMP when occupied by VIP, but not when occupied by secretin, [6-tyrosine] secretin, or secretin 1-14. The receptor having a low affinity for VIP has a high affinity for secretin, interacts with and distinguishes among secretin, secretin 5-27, and [6-tyrosine] secretin, interacts with secretin 14-27 but not with VIP 14-28 or VIP 15-28, and increases cellular cyclic AMP when occupied by VIP, secretin, [6-tyrosine] secretin, or secretin 1-14.  相似文献   

12.
The presence of receptors, recognized by vasoactive intestinal peptide (VIP) as well as by PHI (a peptide with N-terminal histidine and C-terminal isoleucine amide), was documented in lung membranes from rat, mouse, guinea pig and man by the ability of these receptors, once occupied, to stimulate adenylate cyclase. In lung membranes from rat, mouse and guinea pig, the capacity of VIP, PHI and secretin to stimulate the enzyme and the potency of the same peptides to compete with 125I-VIP for binding to VIP receptors were similar, the affinity decreasing in the order: VIP greater than PHI greater than secretin. In addition, dose-effect curves were compatible with the coexistence of high-affinity and low-affinity VIP receptors, in the four animal species considered. If PHI was able to recognize all VIP receptors it could not, however, discriminate the subclasses of VIP receptors.  相似文献   

13.
To define the role of inorganic electrolyte secretion in hepatic bile formation, the effects of secretin, glucagon, and differently structured bile acids on bile flow and composition were studied in the dog, guinea pig, and rat. In the dog and guinea pig, secretin (2.5-10 clinical units X kg-1 X 30 min-1) increased bile flow and bicarbonate concentration in bile, a finding consistent with the hypothesis that the hormone stimulates a bicarbonate-dependent secretion possibly at the level of the bile ductule-duct. In the rat, secretin (5-15 CU X kg-1 X 30 min-1) failed to increase bile secretion. Glucagon (1.25-300 micrograms X kg-1 X 30 min-1) increased bile flow in all the three species, and produced no changes in biliary bicarbonate concentrations in the dog and rat. In the guinea pig, however, glucagon choleresis was associated with an increase in bicarbonate concentration in bile, similar to that observed with secretin. The choleretic activities of various bile acids (taurocholate, chenodeoxycholate, glycochenodeoxycholate, tauroursodeoxycholate, and ursodeoxycholic acid, infused at 30-360 mumol X kg-1 X 30 min-1) were similar in the rat (6.9-7.2 microL/mumol), but different in the guinea pig (11-31 microL/mumol). In the latter species, the more hydrophobic the bile acid, the greater was its choleretic activity. In all instances, bile acid choleresis was associated with a decline in the biliary concentrations of chloride, but with no major change in bicarbonate levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Tam JK  Lau KW  Lee LT  Chu JY  Ng KM  Fournier A  Vaudry H  Chow BK 《PloS one》2011,6(4):e19384
At present, secretin and its receptor have only been identified in mammals, and the origin of this ligand-receptor pair in early vertebrates is unclear. In addition, the elusive similarities of secretin and orexin in terms of both structures and functions suggest a common ancestral origin early in the vertebrate lineage. In this article, with the cloning and functional characterization of secretin receptors from lungfish and X. laevis as well as frog (X. laevis and Rana rugulosa) secretins, we provide evidence that the secretin ligand-receptor pair has already diverged and become highly specific by the emergence of tetrapods. The secretin receptor-like sequence cloned from lungfish indicates that the secretin receptor was descended from a VPAC-like receptor prior the advent of sarcopterygians. To clarify the controversial relationship of secretin and orexin, orexin type-2 receptor was cloned from X. laevis. We demonstrated that, in frog, secretin and orexin could activate their mutual receptors, indicating their coordinated complementary role in mediating physiological processes in non-mammalian vertebrates. However, among the peptides in the secretin/glucagon superfamily, secretin was found to be the only peptide that could activate the orexin receptor. We therefore hypothesize that secretin and orexin are of different ancestral origins early in the vertebrate lineage.  相似文献   

15.
The stimulatory effect of Gila monster venom on adenylate cyclase activity in rat pancreatic membranes was compared to that of porcine secretin and porcine VIP. The maximal effect exerted by the venom was identical to that of VIP but significantly lower than that of secretin. The effect of Gila monster venom could, however, be attributed to its interaction with secretin receptors rather than with VIP receptors, at variance with its previously described action on guinea pig pancreatic acini. Adenylate cyclase activation by both Gila monster venom and secretin in rat pancreatic membranes was, indeed: (1) dose-dependently inhibited by two secretin fragments secretin-(4-27) and secretin-(7-27), and (2) more severely depressed than VIP stimulation, after pretreating pancreatic membranes with dithiothreitol (DTT).  相似文献   

16.
We investigated the effects of dopamine and secrenin on the motility of the isolated guinea pig stomach. Changes in intragastric volume were continously recorded as a measure of gastric motility. When 0.25 μg/ml dopamine was given intra-arterially (i.a.) via the coeliac axis, the stomach relaxed, its spontaneous activity decreased, and its content augmented. This effect of dopamine could be selectively inhibited by the dopamine antagonists haloperidol (0.16 μg/ml) and domperidone (0.16 μg/ml); the latter is effective in the treatment of gastro-intestinal dysfunction. These observations demonstrate the presence of dopaminergic receptors in the guinea pig stomach. Similar conclusions can be reached for the rat stomach from 3H-domperidone displacement studies. Secretin (6.7 mU/ml i.a.) inhibited the vagally induced emptying of the stomach. This effect is reversed by domperidone (0.04 μg/ml). These results strongly suggest that dopamine or/and secretin are involved in the local feedback control of gastric motility; the action of secretin may be direct or indirect by release of dopamine. The local interference of domperidone with endogenous secretin and dopamine in the stomach may explain its gastrokinetic properties.  相似文献   

17.
VIP, PHI and secretin were purified from rabbit small intestine throughout a maximum of 6 chromatographic steps. After elution on a reverse phase C18 column, the 3 peptides were separated on a Fractogel column using specific radioimmunoassays for detection. After cation exchange chromatography on Mono S, the final steps were performed using a reverse phase RP8-e column. For these steps, radioreceptor assays were utilized to detect VIP and PHI. We confirmed that the VIP sequence of rabbit was identical to that of porcine VIP. The PHI sequence was also found identical to that of porcine PHI. By contrast, rabbit secretin was highly original, differing from porcine secretin in having Leu, Arg and Leu-NH2 residues instead of Phe, Ser and Val-NH2 in, respectively, position 6, 16 and 27.  相似文献   

18.
Since secretin contains only an N-terminal histidyl and no tyrosyl residue, a synthetic secretin has been commercially prepared containing tyrosine in place of phenylalanine to facilitate the preparation of a radioiodine labeled tracer. We have found that although the rate of iodination of 6-Tyr-secretin is more rapid than that of secretin, the efficiency of iodination is not greatly increased and the shelf-life of the labeled product is not prolonged. The striking disadvantage of the use of 125I-6-Tyr-secretin as a tracer in radioimmunoassay is its diminished immunoreactivity with several guinea pig and rabbit antisera compared to 125I-secretin.  相似文献   

19.
Secretin is a 27-amino acid gastrointestinal hormone that stimulates the secretion of bicarbonate-rich pancreatic fluid. We isolated and analyzed the coding region of the gene for the rat secretin precursor. The entire coding region spans 692 base pairs and is divided into four regions corresponding to the signal peptide and NH2-terminal peptide, the secretin peptide and processing signal sequences, a part of the COOH-terminal peptide, and the remainder of the COOH-terminal peptide, which are interrupted by three short introns (81, 105, and 104 base pairs). The organization is similar to those of the genes for other members of the secretin family, glucagon and VIP/PHI-27 precursors, supporting the assumption that the genes for the secretin family peptide precursors originated from a common ancestral gene. We also demonstrated that the secretin precursor gene is widely expressed in the brain and in the hypophysis. The regional expression pattern of the secretin precursor gene in the brain is quite different from those of the glucagon and VIP/PHI-27 precursor genes. The secretin precursor gene is highly expressed in the medulla oblongata and pons of the brain and the hypophysis, the expression levels of which are comparable to those in the duodenum. The secretin precursor mRNA in the brain and the hypophysis has the same coding sequence as that in the duodenum, indicating that secretin in the brain and the hypophysis is produced from the same secretin precursor protein as that in the duodenum. This is the first evidence to be reported that the secretin precursor gene is definitely expressed in the brain.  相似文献   

20.
The specific binding of VIP to guinea pig brain membranes was tested by 1/ the ability of eight VIP and secretin analogs and fragments to inhibit the binding of 125I-VIP and 2/ the capacity of the same peptides to influence basal and VIP-stimulated adenylate cyclase activities. Among all peptides tested, only VIP, secretin, [Val5] secretin, and [Gln9, Asn15] secretin (5–27) were able to inhibit 125I-VIP binding. The adenylate cyclase activity was stimulated by VIP, secretin and [Val5] secretin. [Gln9, Asn15] secretin (5–27) although inactive per se was able to inhibit the VIP-stimulated adenylate cyclase activity competitively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号