首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.

Background

Histone demethylases (HDMs) have a prominent role in epigenetic regulation and are emerging as potential therapeutic cancer targets. The search for small molecules able to inhibit HDMs in vivo is very active but at the present few compounds were found to be specific for defined classes of these enzymes.

Methodology/Principal Findings

In order to discover inhibitors specific for H3K4 histone demethylation we set up a screening system which tests the effects of candidate small molecule inhibitors on a S.cerevisiae strain which requires Jhd2 demethylase activity to efficiently grow in the presence of rapamycin. In order to validate the system we screened a library of 45 structurally different compounds designed as competitive inhibitors of α -ketoglutarate (α-KG) cofactor of the enzyme, and found that one of them inhibited Jhd2 activity in vitro and in vivo. The same compound effectively inhibits human Jumonji AT-Rich Interactive Domain (JARID) 1B and 1D in vitro and increases H3K4 tri-methylation in HeLa cell nuclear extracts (NEs). When added in vivo to HeLa cells, the compound leads to an increase of tri-methyl-H3K4 (H3K4me3) but does not affect H3K9 tri-methylation. We describe the cytostatic and toxic effects of the compound on HeLa cells at concentrations compatible with its inhibitory activity.

Conclusions/Significance

Our screening system is proved to be very useful in testing putative H3K4-specific HDM inhibitors for the capacity of acting in vivo without significantly altering the activity of other important 2-oxoglutarate oxygenases.  相似文献   

6.
We have investigated the composition of the conserved Ccr4-Not complex during different physiological states of Saccharomyces cerevisiae. Major changes were found, most notably in the expression of the central scaffold protein Not1p, which was strongly reduced in the absence of glucose. The low expression of Not1p was also evident from the inability of Pop2p to co-purify Not1p in cells from cultures lacking glucose. However, Not1p was still essential under conditions of low expression. The downregulation of Not1p indicates that many of the Ccr4-Not complex components are likely to have roles outside of the complex. We suggest that the use of different carbon sources will be a good starting point to unravel these functions.  相似文献   

7.
8.
9.
10.
11.
In this work, we determine that the Saccharomyces cerevisiae Ccr4-Not complex controls ubiquitination of the conserved ribosome-associated heterodimeric EGD (enhancer of Gal4p DNA binding) complex, which consists of the Egd1p and Egd2p subunits in yeast and is named NAC (nascent polypeptide-associated complex) in mammals. We show that the EGD complex subunits are ubiquitinated proteins, whose ubiquitination status is regulated during cell growth. Egd2p has a UBA domain that is not essential for interaction with Egd1p but is required for stability of Egd2p and Egd1p. Ubiquitination of Egd1p requires Not4p. Ubiquitination of Egd2p also requires Not4p, an intact Not4p RING finger domain, and all other subunits of the Ccr4-Not complex tested. In the absence of Not4p, Egd2p mislocalizes to punctuate structures. Finally, the EGD complex can be ubiquitinated in vitro by Not4p and Ubc4p, one of the E2 enzymes with which Not4p can interact. Taken together our results reveal that the EGD ribosome-associated complex is ubiquitinated in a regulated manner, and they show a new role for the Ccr4-Not complex in this ubiquitination.  相似文献   

12.
13.
14.
Yuan Q  Jäntti J 《PloS one》2010,5(10):e13323

Background

The Saccharomyces cerevisiae syntaxin1 homologues Sso1p and Sso2p perform an essential function in membrane fusion in exocytosis. While deletion of either SSO1 or SSO2 causes no obvious phenotype in vegetatively grown cells, deletion of both genes is lethal. In sporulating diploid S. cerevisiae cells only Sso1p, but not Sso2p, is needed for membrane fusion during prospore membrane formation. Mass spectrometry and in vivo labeling data suggest that serines 23, 24, and 79 in Sso1p and serines 31 and 34 in Sso2p can be phosphorylated in vivo. Here we set out to assess the contribution of phosphorylation on Sso protein in vivo function.

Principal Findings

Different mutant versions of SSO1 and SSO2 were generated to target the phosphorylation sites in Sso1p and Sso2p. Basal or overexpression of phospho-mimicking or putative non-phosphorylated Sso1p or Sso2p mutants resulted in no obvious growth phenotype. However, S79A and S79E mutations caused a mild defect in the ability of Sso1p to complement the temperature-sensitive growth phenotype of sso2-1 sso1Δ cells. Combination of all mutations did not additionally compromise Sso1p in vivo function. When compared to the wild type SSO1 and SSO2, the phosphoamino acid mutants displayed similar genetic interactions with late acting sec mutants. Furthermore, diploid cells expressing only the mutant versions of Sso1p had no detectable sporulation defects. In addition to sporulation, also pseudohyphal and invasive growth modes are regulated by the availability of nutrients. In contrast to sporulating diploid cells, deletion of SSO1 or SSO2, or expression of the phospho-mutant versions of SSO1 or SSO2 as the sole copies of SSO genes caused no defects in haploid or diploid pseudohyphal and invasive growth.

Conclusions

The identified phosphorylation sites do not significantly contribute to the in vivo functionality of Sso1p and Sso2p in S. cerevisiae.  相似文献   

15.

Background

The cotton (Gossypium spp.) fiber cell is an important unicellular model for studying cell differentiation. There is evidence suggesting that phosphorylation is a critical post-translational modification involved in regulation of a wide range of cell activities. Nevertheless, the sites of phosphorylation in G. hirsutum and their regulatory roles in fiber cell initiation are largely unknown. In this study, we employed a mass spectrometry-based phosphoproteomics to conduct a global and site-specific phosphoproteome profiling between ovules of a fuzzless-lintless (fl) Upland cotton (G. hirsutum) mutant and its isogenic parental wild type (WT) at -3 and 0 days post-anthesis (DPA).

Results

A total of 830 phosphopeptides and 1,592 phosphorylation sites from 619 phosphoproteins were identified by iTRAQ (isobaric tags for relative and absolute quantitation). Of these, 76 phosphoproteins and 1,100 phosphorylation sites were identified for the first time after searching the P3DB public database using the BLAST program. Among the detected phosphopeptides, 69 were differentially expressed between the fl mutant and its WT in ovules at -3 and 0 DPA. An analysis using the Motif-X program uncovered 19 phosphorylation motifs, 8 of which were unique to cotton. A further metabolic pathway analysis revealed that the differentially phosphorylated proteins were involved in signal transduction, protein modification, carbohydrate metabolic processes, and cell cycle and cell proliferation.

Conclusions

Our phosphoproteomics-based research provides the first global overview of phosphorylation during cotton fiber initiation, and also offers a helpful dataset for elucidation of signaling networks in fiber development of G. hirsutum.

Electronic supplementary material

The online version of this article (doi: 10.1186/1471-2164-15-466) contains supplementary material, which is available to authorized users.  相似文献   

16.
Eukaryotic cells control their proteome by regulating protein production and protein clearance. Protein production is determined to a large extent by mRNA levels, whereas protein degradation depends mostly upon the proteasome. Dysfunction of the proteasome leads to the accumulation of non-functional proteins that can aggregate, be toxic for the cell, and, in extreme cases, lead to cell death. mRNA levels are controlled by their rates of synthesis and degradation. Recent evidence indicates that these rates have oppositely co-evolved to ensure appropriate mRNA levels. This opposite co-evolution has been correlated with the mutations in the Ccr4-Not complex. Consistently, the deadenylation enzymes responsible for the rate-limiting step in eukaryotic mRNA degradation, Caf1 and Ccr4, are subunits of the Ccr4-Not complex. Another subunit of this complex is a RING E3 ligase, Not4. It is essential for cellular protein solubility and has been proposed to be involved in co-translational quality control. An open question has been whether this role of Not4 resides strictly in the regulation of the deadenylation module of the Ccr4-Not complex. However, Not4 is important for proper assembly of the proteasome, and the Ccr4-Not complex may have multiple functional modules that participate in protein quality control in different ways. In this work we studied how the functions of the Caf1/Ccr4 and Not4 modules are connected. We concluded that Not4 plays a role in protein quality control independently of the Ccr4 deadenylase, and that it is involved in clearance of aberrant proteins at least in part via the proteasome.  相似文献   

17.

Background and Aims

Seed yield and dormancy status are key components of species fitness that are influenced by the maternal environment, in particular temperature. Responses to environmental conditions can differ between ecotypes of the same species. Therefore, to investigate the effect of maternal environment on seed production, this study compared two contrasting Arabidopsis thaliana ecotypes, Cape Verdi Isle (Cvi) and Burren (Bur). Cvi is adapted to a hot dry climate and Bur to a cool damp climate, and they exhibit winter and summer annual phenotypes, respectively.

Methods

Bur and Cvi plants were grown in reciprocal controlled environments that simulated their native environments. Reproductive development, seed production and subsequent germination behaviour were investigated. Measurements included: pollen viability, the development of floral structure, and germination at 10 and 25 °C in the light to determine dormancy status. Floral development was further investigated by applying gibberellins (GAs) to alter the pistil:stamen ratio.

Key Results

Temperature during seed development determined seed dormancy status. In addition, seed yield was greatly reduced by higher temperature, especially in Bur (>90 %) compared with Cvi (approx. 50 %). The reproductive organs (i.e. stamens) of Bur plants were very sensitive to high temperature during early flowering. Viability of pollen was unaffected, but limited filament extension relative to that of the pistils resulted in failure to pollinate. Thus GA applied to flowers to enhance filament extension largely overcame the effect of high temperature on yield.

Conclusions

High temperature in the maternal environment reduced dormancy and negatively affected the final seed yield of both ecotypes; however, the extent of these responses differed, demonstrating natural variation. Reduced seed yield in Bur resulted from altered floral development not reduced pollen viability. Future higher temperatures will impact on seed performance, but the consequences may differ significantly between ecotypes of the same species.  相似文献   

18.
19.

Background

Members of the Mps1 kinase family play an essential and evolutionarily conserved role in the spindle assembly checkpoint (SAC), a surveillance mechanism that ensures accurate chromosome segregation during mitosis. Human Mps1 (hMps1) is highly phosphorylated during mitosis and many phosphorylation sites have been identified. However, the upstream kinases responsible for these phosphorylations are not presently known.

Methodology/Principal Findings

Here, we identify 29 in vivo phosphorylation sites in hMps1. While in vivo analyses indicate that Aurora B and hMps1 activity are required for mitotic hyper-phosphorylation of hMps1, in vitro kinase assays show that Cdk1, MAPK, Plk1 and hMps1 itself can directly phosphorylate hMps1. Although Aurora B poorly phosphorylates hMps1 in vitro, it positively regulates the localization of Mps1 to kinetochores in vivo. Most importantly, quantitative mass spectrometry analysis demonstrates that at least 12 sites within hMps1 can be attributed to autophosphorylation. Remarkably, these hMps1 autophosphorylation sites closely resemble the consensus motif of Plk1, demonstrating that these two mitotic kinases share a similar substrate consensus.

Conclusions/Significance

hMps1 kinase is regulated by Aurora B kinase and its autophosphorylation. Analysis on hMps1 autophosphorylation sites demonstrates that hMps1 has a substrate preference similar to Plk1 kinase.  相似文献   

20.

Background

Bisphenol A-glycidyl-methacrylate (BisGMA) employs as a monomer in dental resins. The leakage of BisGMA from composite resins into the peripheral environment can result in inflammation via macrophage activation. Prostaglandin E2 (PGE2) is a key regulator of immunopathology in inflammatory reactions. Little is known about the mechanisms of BisGMA-induced PGE2 expression in macrophage. The aim of this study was to evaluate the signal transduction pathways of BisGMA-induced PGE2 production in murine RAW264.7 macrophages.

Methodology/Principal Findings

Herein, we demonstrate that BisGMA can exhibit cytotoxicity to RAW264.7 macrophages in a dose- and time-dependent manner (p<0.05). In addition, PGE2 production, COX-2 expression, and cPLA2 phosphorylation were induced by BisGMA on RAW264.7 macrophages in a dose- and time-dependent manner (p<0.05). Moreover, BisGMA could induce the phosphorylation of ERK1/2 pathway (MEK1/2, ERK1/2, and Elk), p38 pathway (MEK3/6, p38, and MAPKAPK2), and JNK pathway (MEK4, JNK, and c-Jun) in a dose- and time-dependent manner (p<0.05). Pretreatment with AACOCF3, U0126, SB203580, and SP600125 significantly diminished the phosphorylation of cPLA2, ERK1/2, p38, and JNK stimulated by BisGMA, respectively (p<0.05). BisGMA-induced cytotoxicity, cPLA2 phosphorylation, PGE2 generation, and caspases activation were reduced by AACOCF3, U0126, SB203580, and SP600125, respectively (p<0.05).

Conclusions

These results suggest that BisGMA induced-PGE2 production may be via COX-2 expression, cPLA2 phosphorylation, and the phosphorylation of MAPK family. Cytotoxicity mediated by BisGMA may be due to caspases activation through the phosphorylation of cPLA2 and MAPKs family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号