首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A collection of 54 clinical and agricultural isolates of Burkholderia cenocepacia was analyzed for genetic relatedness by using multilocus sequence typing (MLST), pathogenicity by using onion and nematode infection models, antifungal activity, and the distribution of three marker genes associated with virulence. The majority of clinical isolates were obtained from cystic fibrosis (CF) patients in Michigan, and the agricultural isolates were predominantly from Michigan onion fields. MLST analysis resolved 23 distinct sequence types (STs), 11 of which were novel. Twenty-six of 27 clinical isolates from Michigan were genotyped as ST-40, previously identified as the Midwest B. cenocepacia lineage. In contrast, the 12 agricultural isolates represented eight STs, including ST-122, that were identical to clinical isolates of the PHDC lineage. In general, pathogenicity to onions and the presence of the pehA endopolygalacturonase gene were detected only in one cluster of related strains consisting of agricultural isolates and the PHDC lineage. Surprisingly, these strains were highly pathogenic in the nematode Caenorhabditis elegans infection model, killing nematodes faster than the CF pathogen Pseudomonas aeruginosa PA14 on slow-kill medium. The other strains displayed a wide range of pathogenicity to C. elegans, notably the Midwest clonal lineage which displayed high, moderate, and low virulence. Most strains displayed moderate antifungal activity, although strains with high and low activities were also detected. We conclude that pathogenicity to multiple hosts may be a key factor contributing to the potential of B. cenocepacia to opportunistically infect humans both by increasing the prevalence of the organism in the environment, thereby increasing exposure to vulnerable hosts, and by the selection of virulence factors that function in multiple hosts.The betaproteobacterium Burkholderia cenocepacia, 1 of now 17 classified species belonging to the Burkholderia cepacia complex (BCC), is ubiquitous and extremely versatile in its metabolic capabilities and interactions with other organisms (38, 40, 57, 58). Strains of B. cenocepacia are pathogens of onion and banana plants, opportunistic pathogens of humans, symbionts of numerous plant rhizospheres, contaminants of pharmaceutical and industrial products, and inhabitants of soil and surface waters (14, 29, 33, 34, 37, 45). Originally described as a pathogen of onions (8), organisms of the BCC emerged in the past 3 decades as serious human pathogens, capable of causing devastating chronic lung infections in persons with cystic fibrosis (CF) or chronic granulomatous disease (21, 24, 28). Infections due to BCC are a serious concern to CF patients due to their inherent antibiotic resistance and high potential for patient-to-patient transmission (23). Although 16 of the BCC species have been recovered from respiratory secretions of CF patients in many countries (46, 58), B. cenocepacia has been the most common species isolated in North America, detected in 50% of 606, 83% of 447, and 45.6% of 1,218 patients in recent studies (35, 46, 52).The epidemiology of infectious disease caused by B. cenocepacia appears to involve patient-to-patient spread of genetically distinct lineages. B. cenocepacia lineages, such as ET12, Midwest, and PHDC, have been identified from large numbers of individuals in disease outbreaks in North America and Europe (11, 32, 54). A recently developed multilocus sequence typing (MLST) scheme has been shown to be a reliable epidemiologic tool for differentiating between the five subgroups (IIIA to IIIE) of B. cenocepacia, and strains representing three of these subgroups (IIIA, IIIB, and IIID) have been recovered from CF patients (2). Outside of the patient-to-patient transmission of clonal lineages, the mode of acquisition of strains causing sporadic cases of B. cenocepacia in CF patients remains unclear, although environmental sources are a logical reservoir for infection. Previously, an isolate of B. cenocepacia indistinguishable from the PHDC epidemic clonal lineage by using standard typing methods (e.g., repetitive-sequence-based PCR, randomly amplified polymorphic DNA, pulsed-field gel electrophoresis) was detected in an agricultural soil sample (34). Similarly, three distinct MLST sequence types containing both clinical and environmental (plant and soil) B. cenocepacia isolates were identified (1). These findings suggest that natural populations of B. cenocepacia in soil or associated with plants are a potential reservoir for the emergence of new human pathogenic lineages.Experimental models for the study of virulence potential and traits of B. cenocepacia include mouse and rat models with genetic defects allowing chronic lung infections to be established (e.g., see reference 48). Nematode (Caenorhabditis elegans), alfalfa (Medicago sativa), and onion (Allium cepa) models have also been routinely utilized for the identification of virulence factors (5, 29, 31). C. elegans has been extensively used to study the pathogenesis and virulence factors of a wide variety of bacterial and fungal pathogens (9, 15, 42, 51, 56). In several pathogens, including Pseudomonas (56) and Burkholderia (20), putative virulence factors important for the pathogenesis in mammalian systems (15, 51) have been identified using the C. elegans model. The C. elegans model might be limited in the detection of host-specific virulence factors; however, several attributes, such as small size and rapid development, make it an excellent whole animal model for pathogenesis research (16, 51).The evidence that individual strains of B. cenocepacia can be pathogenic to both plants and humans and are prevalent in various environmental niches has provoked particular interest in elucidating the clinical pathogenic potential of environmental isolates. The basis of this study was to examine whether genetically related B. cenocepacia strains exhibit shared characteristics that contribute to their pathogenicity in multiple hosts and to examine the potential for circulating environmental isolates to emerge as new clinical pathogens. Here, we tested the degree of virulence in animal (nematode) and plant (onion) infection models, the production of antifungal activity, and the genetic relatedness of clinical and environmental B. cenocepacia subgroup IIIB strains predominantly isolated from Michigan.  相似文献   

2.
3.
4.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

5.
The bacterium Burkholderia cenocepacia is pathogenic for sufferers from cystic fibrosis (CF) and certain immunocompromised conditions. The B. cenocepacia strain most frequently isolated from CF patients, and which serves as the reference for CF epidemiology, is J2315. The J2315 genome is split into three chromosomes and one plasmid. The strain was sequenced several years ago, and its annotation has been released recently. This information should allow genetic experimentation with J2315, but two major impediments appear: the poor potential of J2315 to act as a recipient in transformation and conjugation and the high level of resistance it mounts to nearly all antibiotics. Here, we describe modifications to the standard electroporation procedure that allow routine transformation of J2315 by DNA. In addition, we show that deletion of an efflux pump gene and addition of spermine to the medium enhance the sensitivity of J2315 to certain commonly used antibiotics and so allow a wider range of antibiotic resistance genes to be used for selection.Burkholderia cenocepacia is part of the Burkholderia cepacia complex (Bcc), a group of closely related bacteria of soil, water, and roots (41) recently updated to at least 15 related species (42). Bcc displays many interesting features (see reference 27 for a review). Originally discovered as responsible for soft onion rot (3), Bcc species also interact beneficently with plants (see reference 34 for a review) and may degrade pollutants such as phthalate or the herbicide 2,4,5-trichlorophenoxyacetic acid (2,4,5,-T) (25, 33). But it is the emergence of Bcc as an opportunistic pathogen of people suffering from cystic fibrosis (CF) (19) and immunocompromizing conditions that has drawn most attention to these bacteria. Among Bcc species, Burkholderia multivorans and B. cenocepacia are the most prevalent in the epidemiology of CF. In particular, strains of the ET12 lineage of B. cenocepacia were responsible for a major transcontinental epidemic among CF patients in the 1990s (20), an outbreak aggravated by the high levels of resistance to nearly all antibiotics that characterizes Bcc. Species of the Bcc have large genomes (7 to 9 Mb) composed of two or three chromosomes and one or more plasmids, an unusual genomic organization among bacteria. The first Bcc genome to be sequenced was that of B. cenocepacia J2315 (also known as LMG16656), the type strain of the ET12 lineage and the reference strain for CF epidemiology; the sequence was completed and made available by the Wellcome Trust Sanger Institute in 2003. It revealed three chromosomes of 3.9, 3.2, and 0.9 Mb and a plasmid of 93 kb. The annotation of this genome was released recently (15).The pathogenicity and multipartite genome of B. cenocepacia make it an important subject for both practical and fundamental study. Genetic modification is essential to the success of many such investigations. Unfortunately, J2315 throws up major barriers to genetic manipulation. Standard electrotransformation techniques are ineffective with this strain, as also found elsewhere (26). Conjugal introduction of DNA has proved unreliable despite adaptations (7) that have enabled occasional successes with B. cenocepacia species (9, 40) including J2315 (39) (see also Results below). Besides, the natural resistance of J2315 to antibiotics, high even on the scale of the generally extensive resistance of B. cenocepacia species (31), severely restricts the use of antibiotic resistance in genetic selections. Circumventing these problems by resorting to a proxy strain, B. cenocepacia K56-2, that has not been sequenced and is more permissive to gene transfer (26, 17, 32, 9) runs the risk that results will be of uncertain relevance to J2315.In the context of our general aim to decipher the role of the four replicon-specific ParABS systems of J2315 (6), we have sought to overcome these obstacles. We report here the reproducible electrotransformation of J2315, and we analyze factors that improve its efficiency. We report also our isolation of a J2315 derivative with reduced antibiotic resistance and the broadened selection possibilities this offers. Detailed protocols are provided which should facilitate studies of this pathogen.  相似文献   

6.
The sequestration of iron by mammalian hosts represents a significant obstacle to the establishment of a bacterial infection. In response, pathogenic bacteria have evolved mechanisms to acquire iron from host heme. Bacillus anthracis, the causative agent of anthrax, utilizes secreted hemophores to scavenge heme from host hemoglobin, thereby facilitating iron acquisition from extracellular heme pools and delivery to iron-regulated surface determinant (Isd) proteins covalently attached to the cell wall. However, several Gram-positive pathogens, including B. anthracis, contain genes that encode near iron transporter (NEAT) proteins that are genomically distant from the genetically linked Isd locus. NEAT domains are protein modules that partake in several functions related to heme transport, including binding heme and hemoglobin. This finding raises interesting questions concerning the relative role of these NEAT proteins, relative to hemophores and the Isd system, in iron uptake. Here, we present evidence that a B. anthracis S-layer homology (SLH) protein harboring a NEAT domain binds and directionally transfers heme to the Isd system via the cell wall protein IsdC. This finding suggests that the Isd system can receive heme from multiple inputs and may reflect an adaptation of B. anthracis to changing iron reservoirs during an infection. Understanding the mechanism of heme uptake in pathogenic bacteria is important for the development of novel therapeutics to prevent and treat bacterial infections.Pathogenic bacteria need to acquire iron to survive in mammalian hosts (12). However, the host sequesters most iron in the porphyrin heme, and heme itself is often bound to proteins such as hemoglobin (14, 28, 85). Circulating hemoglobin can serve as a source of heme-iron for replicating bacteria in infected hosts, but the precise mechanisms of heme extraction, transport, and assimilation remain unclear (25, 46, 79, 86). An understanding of how bacterial pathogens import heme will lead to the development of new anti-infectives that inhibit heme uptake, thereby preventing or treating infections caused by these bacteria (47, 68).The mechanisms of transport of biological molecules into a bacterial cell are influenced by the compositional, structural, and topological makeup of the cell envelope. Gram-negative bacteria utilize specific proteins to transport heme through the outer membrane, periplasm, and inner membrane (83, 84). Instead of an outer membrane and periplasm, Gram-positive bacteria contain a thick cell wall (59, 60). Proteins covalently anchored to the cell wall provide a functional link between extracellular heme reservoirs and intracellular iron utilization pathways (46). In addition, several Gram-positive and Gram-negative bacterial genera also contain an outermost structure termed the S (surface)-layer (75). The S-layer is a crystalline array of protein that surrounds the bacterial cell and may serve a multitude of functions, including maintenance of cell architecture and protection from host immune components (6, 7, 18, 19, 56). In bacterial pathogens that manifest an S-layer, the “force field” function of this structure raises questions concerning how small molecules such as heme can be successfully passed from the extracellular milieu to cell wall proteins for delivery into the cell cytoplasm.Bacillus anthracis is a Gram-positive, spore-forming bacterium that is the etiological agent of anthrax disease (30, 33). The life cycle of B. anthracis begins after a phagocytosed spore germinates into a vegetative cell inside a mammalian host (2, 40, 69, 78). Virulence determinants produced by the vegetative cells facilitate bacterial growth, dissemination to major organ systems, and eventually host death (76-78). The release of aerosolized spores into areas with large concentrations of people is a serious public health concern (30).Heme acquisition in B. anthracis is mediated by the action of IsdX1 and IsdX2, two extracellular hemophores that extract heme from host hemoglobin and deliver the iron-porphyrin to cell wall-localized IsdC (21, 45). Both IsdX1 and IsdX2 harbor near iron transporter domains (NEATs), a conserved protein module found in Gram-positive bacteria that mediates heme uptake from hemoglobin and contributes to bacterial pathogenesis upon infection (3, 8, 21, 31, 44, 46, 49, 50, 67, 81, 86). Hypothesizing that B. anthracis may contain additional mechanisms for heme transport, we provide evidence that B. anthracis S-layer protein K (BslK), an S-layer homology (SLH) and NEAT protein (32, 43), is surface localized and binds and transfers heme to IsdC in a rapid, contact-dependent manner. These results suggest that the Isd system is not a self-contained conduit for heme trafficking and imply that there is functional cross talk between differentially localized NEAT proteins to promote heme uptake during infection.  相似文献   

7.
Bacteria often infect their hosts from environmental sources, but little is known about how environmental and host-infecting populations are related. Here, phylogenetic clustering and diversity were investigated in a natural community of rhizobial bacteria from the genus Bradyrhizobium. These bacteria live in the soil and also form beneficial root nodule symbioses with legumes, including those in the genus Lotus. Two hundred eighty pure cultures of Bradyrhizobium bacteria were isolated and genotyped from wild hosts, including Lotus angustissimus, Lotus heermannii, Lotus micranthus, and Lotus strigosus. Bacteria were cultured directly from symbiotic nodules and from two microenvironments on the soil-root interface: root tips and mature (old) root surfaces. Bayesian phylogenies of Bradyrhizobium isolates were reconstructed using the internal transcribed spacer (ITS), and the structure of phylogenetic relatedness among bacteria was examined by host species and microenvironment. Inoculation assays were performed to confirm the nodulation status of a subset of isolates. Most recovered rhizobial genotypes were unique and found only in root surface communities, where little bacterial population genetic structure was detected among hosts. Conversely, most nodule isolates could be classified into several related, hyper-abundant genotypes that were phylogenetically clustered within host species. This pattern suggests that host infection provides ample rewards to symbiotic bacteria but that host specificity can strongly structure only a small subset of the rhizobial community.Symbiotic bacteria often encounter hosts from environmental sources (32, 48, 60), which leads to multipartite life histories including host-inhabiting and environmental stages. Research on host-associated bacteria, including pathogens and beneficial symbionts, has focused primarily on infection and proliferation in hosts, and key questions about the ecology and evolution of the free-living stages have remained unanswered. For instance, is host association ubiquitous within a bacterial lineage, or if not, do host-infecting genotypes represent a phylogenetically nonrandom subset? Assuming that host infection and free-living existence exert different selective pressures, do bacterial lineages diverge into specialists for these different lifestyles? Another set of questions addresses the degree to which bacteria associate with specific host partners. Do bacterial genotypes invariably associate with specific host lineages, and is such specificity controlled by one or both partners? Alternatively, is specificity simply a by-product of ecological cooccurrence among bacteria and hosts?Rhizobial bacteria comprise several distantly related proteobacterial lineages, most notably the genera Azorhizobium, Bradyrhizobium, Mesorhizobium, Rhizobium, and Sinorhizobium (52), that have acquired the ability to form nodules on legumes and symbiotically fix nitrogen. Acquisition of nodulation and nitrogen fixation loci has likely occurred through repeated lateral transfer of symbiotic loci (13, 74). Thus, the term “rhizobia” identifies a suite of symbiotic traits in multiple genomic backgrounds rather than a taxonomic classification. When rhizobia infect legume hosts, they differentiate into specialized endosymbiotic cells called bacteroids, which reduce atmospheric nitrogen in exchange for photosynthates from the plant (35, 60). Rhizobial transmission among legume hosts is infectious. Rhizobia can spread among hosts through the soil (60), and maternal inheritance (through seeds) is unknown (11, 43, 55). Nodule formation on hosts is guided by reciprocal molecular signaling between bacteria and plant (5, 46, 58), and successful infection requires a compatible pairing of legume and rhizobial genotypes. While both host and symbiont genotypes can alter the outcome of rhizobial competition for adsorption (34) and nodulation (33, 39, 65) of legume roots, little is known about how this competition plays out in nature.Rhizobia can achieve reproductive success via multiple lifestyles (12), including living free in the soil (14, 44, 53, 62), on or near root surfaces (12, 18, 19, 51), or in legume nodules (60). Least is known about rhizobia in bulk soil (not penetrated by plant roots). While rhizobia can persist for years in soil without host legumes (12, 30, 61), it appears that growth is often negligible in bulk soil (4, 10, 14, 22, 25). Rhizobia can also proliferate in the rhizosphere (soil near the root zone) of legumes (4, 10, 18, 19, 22, 25, 51). Some rhizobia might specialize in rhizosphere growth and infect hosts only rarely (12, 14, 51), whereas other genotypes are clearly nonsymbiotic because they lack key genes (62) and must therefore persist in the soil. The best-understood rhizobial lifestyle is the root nodule symbiosis with legumes, which is thought to offer fitness rewards that are superior to life in the soil (12). After the initial infection, nodules grow and harbor increasing populations of bacteria until the nodules senesce and the rhizobia are released into the soil (11, 12, 38, 40, 55). However, rhizobial fitness in nodules is not guaranteed. Host species differ in the type of nodules they form, and this can determine the degree to which differentiated bacteroids can repopulate the soil (11, 12, 38, 59). Furthermore, some legumes can hinder the growth of nodules with ineffective rhizobia, thus punishing uncooperative symbionts (11, 27, 28, 56, 71).Here, we investigated the relationships between environmental and host-infecting populations of rhizobia. A main objective was to test the hypothesis that rhizobia exhibit specificity among host species as well as among host microenvironments, specifically symbiotic nodules, root surfaces, and root tips. We predicted that host infection and environmental existence exert different selective pressures on rhizobia, leading to divergent patterns of clustering, diversity, and abundance of rhizobial genotypes.  相似文献   

8.
9.
10.
Factors potentially contributing to the lower incidence of Lyme borreliosis (LB) in the far-western than in the northeastern United States include tick host-seeking behavior resulting in fewer human tick encounters, lower densities of Borrelia burgdorferi-infected vector ticks in peridomestic environments, and genetic variation among B. burgdorferi spirochetes to which humans are exposed. We determined the population structure of B. burgdorferi in over 200 infected nymphs of the primary bridging vector to humans, Ixodes pacificus, collected in Mendocino County, CA. This was accomplished by sequence typing the spirochete lipoprotein ospC and the 16S-23S rRNA intergenic spacer (IGS). Thirteen ospC alleles belonging to 12 genotypes were found in California, and the two most abundant, ospC genotypes H3 and E3, have not been detected in ticks in the Northeast. The most prevalent ospC and IGS biallelic profile in the population, found in about 22% of ticks, was a new B. burgdorferi strain defined by ospC genotype H3. Eight of the most common ospC genotypes in the northeastern United States, including genotypes I and K that are associated with disseminated human infections, were absent in Mendocino County nymphs. ospC H3 was associated with hardwood-dominated habitats where western gray squirrels, the reservoir host, are commonly infected with LB spirochetes. The differences in B. burgdorferi population structure in California ticks compared to the Northeast emphasize the need for a greater understanding of the genetic diversity of spirochetes infecting California LB patients.In the United States, Lyme borreliosis (LB) is the most commonly reported vector-borne illness and is caused by infection with the spirochete Borrelia burgdorferi (3, 9, 52). The signs and symptoms of LB can include a rash, erythema migrans, fever, fatigue, arthritis, carditis, and neurological manifestations (50, 51). The black-legged tick, Ixodes scapularis, and the western black-legged tick, Ixodes pacificus, are the primary vectors of B. burgdorferi to humans in the United States, with the former in the northeastern and north-central parts of the country and the latter in the Far West (9, 10). These ticks perpetuate enzootic transmission cycles together with a vertebrate reservoir host such as the white-footed mouse, Peromyscus leucopus, in the Northeast and Midwest (24, 35), or the western gray squirrel, Sciurus griseus, in California (31, 46).B. burgdorferi is a spirochete species with a largely clonal population structure (14, 16) comprising several different strains or lineages (8). The polymorphic ospC gene of B. burgdorferi encodes a surface lipoprotein that increases expression within the tick during blood feeding (47) and is required for initial infection of mammalian hosts (25, 55). To date, approximately 20 North American ospC genotypes have been described (40, 45, 49, 56). At least four, and possibly up to nine, of these genotypes are associated with B. burgdorferi invasiveness in humans (1, 15, 17, 49, 57). Restriction fragment length polymorphism (RFLP) and, subsequently, sequence analysis of the 16S-23S rRNA intergenic spacer (IGS) are used as molecular typing tools to investigate genotypic variation in B. burgdorferi (2, 36, 38, 44, 44, 57). The locus maintains a high level of variation between related species, and this variation reflects the heterogeneity found at the genomic level of the organism (37). The IGS and ospC loci appear to be linked (2, 8, 26, 45, 57), but the studies to date have not been representative of the full range of diversity of B. burgdorferi in North America.Previous studies in the northeastern and midwestern United States have utilized IGS and ospC genotyping to elucidate B. burgdorferi evolution, host strain specificity, vector-reservoir associations, and disease risk to humans. In California, only six ospC and five IGS genotypes have been described heretofore in samples from LB patients or I. pacificus ticks (40, 49, 56) compared to approximately 20 ospC and IGS genotypes identified in ticks, vertebrate hosts, or humans from the Northeast and Midwest (8, 40, 45, 49, 56). Here, we employ sequence analysis of both the ospC gene and IGS region to describe the population structure of B. burgdorferi in more than 200 infected I. pacificus nymphs from Mendocino County, CA, where the incidence of LB is among the highest in the state (11). Further, we compare the Mendocino County spirochete population to populations found in the Northeast.  相似文献   

11.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

12.
13.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

14.
Helicobacter pylori is the dominant member of the gastric microbiota and has been associated with an increased risk of gastric cancer and peptic ulcers in adults. H. pylori populations have migrated and diverged with human populations, and health effects vary. Here, we describe the whole genome of the cag-positive strain V225d, cultured from a Venezuelan Piaroa Amerindian subject. To gain insight into the evolution and host adaptation of this bacterium, we undertook comparative H. pylori genomic analyses. A robust multiprotein phylogenetic tree reflects the major human migration out of Africa, across Europe, through Asia, and into the New World, placing Amerindian H. pylori as a particularly close sister group to East Asian H. pylori. In contrast, phylogenetic analysis of the host-interactive genes vacA and cagA shows substantial divergence of Amerindian from Old World forms and indicates new genotypes (e.g., VacA m3) involving these loci. Despite deletions in CagA EPIYA and CRPIA domains, V225d stimulates interleukin-8 secretion and the hummingbird phenotype in AGS cells. However, following a 33-week passage in the mouse stomach, these phenotypes were lost in isolate V225-RE, which had a 15-kb deletion in the cag pathogenicity island that truncated CagA and eliminated some of the type IV secretion system genes. Thus, the unusual V225d cag architecture was fully functional via conserved elements, but the natural deletion of 13 cag pathogenicity island genes and the truncation of CagA impaired the ability to induce inflammation.Helicobacter pylori is a microaerophilic bacterium of the Epsilonproteobacteria that has colonized the stomach since early in human evolution (45) and diverged with ancient human migrations (24, 45, 92). Thus, several major H. pylori populations, such as hpAfrica1, hpEurope, hspEAsia, and hspAmerind, whose names indicate their original geographic associations (45, 51), have been defined. In particular, similarities between the hspAmerind and hspEAsia populations suggest that the first colonizers of the New World brought H. pylori with them (24, 28). With recent mixing of human groups, H. pylori populations are also mixing and competing, with an apparent dominance by the hpEurope population at least in Latin America (19).H. pylori usually does not cause illness, but colonization with strains bearing the cag (cytotoxin-associated gene) pathogenicity island (cag PAI) (3, 7, 25, 52, 57, 61, 63) is associated with an increased risk of noncardia gastric adenocarcinoma and peptic ulcer disease (56, 64). Nonetheless, a high prevalence of cag-positive H. pylori strains occurs concurrently with low gastric cancer rates in Africa (40) and some regions in Latin America, such as the Venezuelan savannas and Amazonas (29, 53). Moreover, clinical and epidemiological data provide evidence for an inverse relationship between H. pylori colonization and the prevalence of certain metabolic disorders, esophageal diseases, asthma and allergic disorders, and acute infectious diseases, as well as a direct relationship with improved nutritional status of rural children (3, 14, 34, 37, 49, 68). That the host interaction with an indigenous gastric microbe provides some health benefits to the host is not unexpected given the well-established role of gastrointestinal microflora in maintaining gastroenteric homeostasis (8).The most thoroughly studied H. pylori proteins that interact with human cells are CagA and VacA. CagA is an effector protein injected into gastric epithelial cells by a type IV secretion system encoded by the cag PAI (10, 12, 15, 83). VacA is initially secreted from the bacterial cell by an autotransporter mechanism (16). Both proteins have multiple effects on host cells. Inside the host cell, phosphorylation of CagA on EPIYA repeats in the phosphotyrosine (PY) region (73) induces cellular elongation known as the hummingbird phenotype (72). CagA may also induce secretion of interleukin-8 (IL-8) (11), a process commonly attributed to NF-κB, and disrupt the barrier function of the tight junctions in polarized epithelial cells, leading to a loss of adhesion (1, 5). Other motifs in the PY region promote phosphorylation-independent effects (79). In addition, cagA may be considered an oncogene (60), since transgenic expression of cagA in mice leads to gastric epithelial hyperplasia through aberrant epithelial cell signaling and gastric carcinogenesis (60, 62). In contrast, VacA is a multifunctional protein with several activities in epithelial and immune cells (16). VacA induces cell vacuolation (43), alters mitochondrial membrane permeability (27, 41, 90), and increases epithelial monolayer permeability. VacA also activates several signal transduction pathways that are important in immune and epithelial cells, including the mitogen-activated protein (MAP) kinase and p38/ATF-2-mediated signal pathways (9, 55).Genomic analysis provides insights into the evolution of H. pylori strains and their relation with their human hosts and may be useful for the development of diagnostic tools and novel therapies. To date, there are six published complete H. pylori genomes, mostly from the hpEurope population (see Table SA1 in the supplemental material). Here, we report the whole genome of a newly characterized hspAmerind strain, V225d, and assess its genetic structure in comparison to those of Old World H. pylori strains through a comprehensive multiprotein phylogenetic analysis, as well as through single-gene examination of cagA and vacA, revealing clues to the evolution and migration of this strain into the New World and the implications for human health. We also present the results of functional and genomic studies using gastric epithelial cells demonstrating that V225d can induce an inflammatory host response, an effect that was lost following passage through the mouse stomach.  相似文献   

15.
16.
Poxviruses produce complement regulatory proteins to subvert the host''s immune response. Similar to the human pathogen variola virus, ectromelia virus has a limited host range and provides a mouse model where the virus and the host''s immune response have coevolved. We previously demonstrated that multiple components (C3, C4, and factor B) of the classical and alternative pathways are required to survive ectromelia virus infection. Complement''s role in the innate and adaptive immune responses likely drove the evolution of a virus-encoded virulence factor that regulates complement activation. In this study, we characterized the ectromelia virus inhibitor of complement enzymes (EMICE). Recombinant EMICE regulated complement activation on the surface of CHO cells, and it protected complement-sensitive intracellular mature virions (IMV) from neutralization in vitro. It accomplished this by serving as a cofactor for the inactivation of C3b and C4b and by dissociating the catalytic domain of the classical pathway C3 convertase. Infected murine cells initiated synthesis of EMICE within 4 to 6 h postinoculation. The levels were sufficient in the supernatant to protect the IMV, upon release, from complement-mediated neutralization. EMICE on the surface of infected murine cells also reduced complement activation by the alternative pathway. In contrast, classical pathway activation by high-titer antibody overwhelmed EMICE''s regulatory capacity. These results suggest that EMICE''s role is early during infection when it counteracts the innate immune response. In summary, ectromelia virus produced EMICE within a few hours of an infection, and EMICE in turn decreased complement activation on IMV and infected cells.Poxviruses encode in their large double-stranded DNA genomes many factors that modify the immune system (30, 56). The analysis of these molecules has revealed a delicate balance between viral pathogenesis and the host''s immune response (2, 21, 31, 61). Variola, vaccinia, monkeypox, cowpox, and ectromelia (ECTV) viruses each produce an orthologous complement regulatory protein (poxviral inhibitor of complement enzymes [PICE]) that has structural and functional homology to host proteins (14, 29, 34, 38, 41, 45, 54). The loss of the regulatory protein resulted in smaller local lesions with vaccinia virus lacking the vaccinia virus complement control protein (VCP) (29) and in a greater local inflammatory response in the case of cowpox lacking the inflammation-modulatory protein (IMP; the cowpox virus PICE) (35, 45, 46). Additionally, the complete loss of the monkeypox virus inhibitor of complement enzymes (MOPICE) may account for part of the reduced mortality observed in the West African compared to Congo basin strains of monkeypox virus (12).The complement system consists of proteins on the cell surface and in blood that recognize and destroy invading pathogens and infected host cells (36, 52). Viruses protect themselves from the antiviral effects of complement activation in a variety of ways, including hijacking the host''s complement regulatory proteins or producing their own inhibitors (7, 8, 15, 20, 23). Another effective strategy is to incorporate the host''s complement regulators in the outermost viral membrane, which then protects the virus from complement attack (62). The extracellular enveloped virus (EEV) produced by poxviruses acquires a unique outer membrane derived from the Golgi complex or early endosomes that contain the protective host complement regulators (58, 62). Poxviruses have multiple infectious forms, and the most abundant, intracellular mature virions (IMV), are released when infected cells lyse (58). The IMV lacks the outermost membrane found on EEV and is sensitive to complement-mediated neutralization. The multiple strategies viruses have evolved to evade the complement system underscore its importance to innate and adaptive immunity (15, 36).The most well-characterized PICE is VCP (24-29, 34, 49, 50, 53, 55, 59, 60). Originally described as a secreted complement inhibitor (34), VCP also attaches to the surface of infected cells through an interaction with the viral membrane protein A56 that requires an unpaired N-terminal cysteine (26). This extra cysteine also adds to the potency of the inhibitor by forming function-enhancing dimers (41). VCP and the smallpox virus inhibitor of complement enzymes (SPICE) bind heparin in vitro, and this may facilitate cell surface interactions (24, 38, 50, 59). The coevolution of variola virus with its only natural host, humans, likely explains the enhanced activity against human complement observed with SPICE compared to the other PICEs (54, 64).Our recent work with ECTV, the causative agent of mousepox infection, demonstrated that the classical and alternative pathways of the complement system are required for host survival (48). The mouse-specific pathogen ECTV causes severe disease in most strains and has coevolved with its natural host, analogous to variola virus in humans (9). This close host-virus relationship is particularly important for evaluating the role of the complement system, given the species specificity of many complement proteins, receptors, and regulators (10, 47, 62). Additionally, the availability of complement-deficient mice permits dissection of the complement activation pathways involved. Naïve C57BL/6 mouse serum neutralizes the IMV of ECTV in vitro, predominately through opsonization (48). Maximal neutralization requires natural antibody, classical-pathway activation, and amplification by the alternative pathway. C3 deficiency in the normally resistant C57BL/6 strain results in acute mortality, similar to immunodeficiencies in important elements of the antiviral immune response, including CD8+ T cells (19, 32), natural killer cells (18, 51), and gamma interferon (33). During ECTV infection, the complement system acts in the first few hours and days to delay the spread of infection, resulting in lower levels of viremia and viral burden in tissues (48).This study characterized the PICE produced by ECTV, ectromelia virus inhibitor of complement enzymes (EMICE), and assessed its complement regulatory activity. Recombinant EMICE (rEMICE) decreased activation of both human and mouse complement. Murine cells produced EMICE at 4 to 6 h postinfection prior to the release of the majority of the complement-sensitive IMV from infected cells. rEMICE protected ECTV IMV from complement-mediated neutralization. Further, EMICE produced during natural infection inhibited complement deposition on infected cells by the alternative pathway. ECTV likely produces this abundance of EMICE to protect both the IMV and infected cells.  相似文献   

17.
Understanding the mechanisms underlying potential altered susceptibility to human immunodeficiency virus type 1 (HIV-1) infection in highly exposed seronegative (ES) individuals and the later clinical consequences of breakthrough infection can provide insight into strategies to control HIV-1 with an effective vaccine. From our Seattle ES cohort, we identified one individual (LSC63) who seroconverted after over 2 years of repeated unprotected sexual contact with his HIV-1-infected partner (P63) and other sexual partners of unknown HIV-1 serostatus. The HIV-1 variants infecting LSC63 were genetically unrelated to those sequenced from P63. This may not be surprising, since viral load measurements in P63 were repeatedly below 50 copies/ml, making him an unlikely transmitter. However, broad HIV-1-specific cytotoxic T-lymphocyte (CTL) responses were detected in LSC63 before seroconversion. Compared to those detected after seroconversion, these responses were of lower magnitude and half of them targeted different regions of the viral proteome. Strong HLA-B27-restricted CTLs, which have been associated with disease control, were detected in LSC63 after but not before seroconversion. Furthermore, for the majority of the protein-coding regions of the HIV-1 variants in LSC63 (except gp41, nef, and the 3′ half of pol), the genetic distances between the infecting viruses and the viruses to which he was exposed through P63 (termed the exposed virus) were comparable to the distances between random subtype B HIV-1 sequences and the exposed viruses. These results suggest that broad preinfection immune responses were not able to prevent the acquisition of HIV-1 infection in LSC63, even though the infecting viruses were not particularly distant from the viruses that may have elicited these responses.Understanding the mechanisms of altered susceptibility or control of human immunodeficiency virus type 1 (HIV-1) infection in highly exposed seronegative (ES) persons may provide invaluable information aiding the design of HIV-1 vaccines and therapy (9, 14, 15, 33, 45, 57, 58). In a cohort of female commercial sex workers in Nairobi, Kenya, a small proportion of individuals remained seronegative for over 3 years despite the continued practice of unprotected sex (12, 28, 55, 56). Similarly, resistance to HIV-1 infection has been reported in homosexual men who frequently practiced unprotected sex with infected partners (1, 15, 17, 21, 61). Multiple factors have been associated with the resistance to HIV-1 infection in ES individuals (32), including host genetic factors (8, 16, 20, 37-39, 44, 46, 47, 49, 59, 63), such as certain HLA class I and II alleles (41), as well as cellular (1, 15, 26, 55, 56), humoral (25, 29), and innate immune responses (22, 35).Seroconversion in previously HIV-resistant Nairobi female commercial sex workers, despite preexisting HIV-specific cytotoxic T-lymphocyte (CTL) responses, has been reported (27). Similarly, 13 of 125 ES enrollees in our Seattle ES cohort (1, 15, 17) have become late seroconverters (H. Zhu, T. Andrus, Y. Liu, and T. Zhu, unpublished observations). Here, we analyze the virology, genetics, and immune responses of HIV-1 infection in one of the later seroconverting subjects, LSC63, who had developed broad CTL responses before seroconversion.  相似文献   

18.
19.
20.
The human scavenger receptor gp340 has been identified as a binding protein for the human immunodeficiency virus type 1 (HIV-1) envelope that is expressed on the cell surface of female genital tract epithelial cells. This interaction allows such epithelial cells to efficiently transmit infective virus to susceptible targets and maintain viral infectivity for several days. Within the context of vaginal transmission, HIV must first traverse a normally protective mucosa containing a cell barrier to reach the underlying T cells and dendritic cells, which propagate and spread the infection. The mechanism by which HIV-1 can bypass an otherwise healthy cellular barrier remains an important area of study. Here, we demonstrate that genital tract-derived cell lines and primary human endocervical tissue can support direct transcytosis of cell-free virus from the apical to basolateral surfaces. Further, this transport of virus can be blocked through the addition of antibodies or peptides that directly block the interaction of gp340 with the HIV-1 envelope, if added prior to viral pulsing on the apical side of the cell or tissue barrier. Our data support a role for the previously described heparan sulfate moieties in mediating this transcytosis but add gp340 as an important facilitator of HIV-1 transcytosis across genital tract tissue. This study demonstrates that HIV-1 actively traverses the protective barriers of the human genital tract and presents a second mechanism whereby gp340 can promote heterosexual transmission.Through correlative studies with macaques challenged with simian immunodeficiency virus (SIV), the initial targets of infection in nontraumatic vaginal exposure to human immunodeficiency virus type 1 (HIV-1) have been identified as subepithelial T cells and dendritic cells (DCs) (18, 23, 31, 36-38). While human transmission may differ from macaque transmission, the existing models of human transmission remain controversial. For the virus to successfully reach its CD4+ targets, HIV must first traverse the columnar mucosal epithelial cell barrier of the endocervix or uterus or the stratified squamous barrier of the vagina or ectocervix, whose normal functions include protection of underlying tissue from pathogens. This portion of the human innate immune defense system represents a significant impediment to transmission. Studies have placed the natural transmission rate of HIV per sexual act between 0.005 and 0.3% (17, 45). Breaks in the epithelial barrier caused by secondary infection with other sexual transmitted diseases or the normal physical trauma often associated with vaginal intercourse represent one potential means for viral exposure to submucosal cells and have been shown to significantly increase transmission (reviewed in reference 11). However, studies of nontraumatic exposure to SIV in macaques demonstrate that these disruptions are not necessary for successful transmission to healthy females. This disparity indicates that multiple mechanisms by which HIV-1 can pass through mucosal epithelium might exist in vivo. Identifying these mechanisms represents an important obstacle to understanding and ultimately preventing HIV transmission.Several host cellular receptors, including DC-specific intercellular adhesion molecule-grabbing integrin, galactosyl ceramide, mannose receptor, langerin, heparan sulfate proteoglycans (HSPGs), and chondroitin sulfate proteoglycans, have been identified that facilitate disease progression through binding of HIV virions without being required for fusion and infection (2, 3, 12, 14, 16, 25, 29, 30, 43, 46, 50). These host accessory proteins act predominately through glycosylation-based interactions between HIV envelope (Env) and the host cellular receptors. These different host accessory factors can lead to increased infectivity in cis and trans or can serve to concentrate and expose virus at sites relevant to furthering its spread within the body. The direct transcytosis of cell-free virus through primary genital epithelial cells and the human endometrial carcinoma cell line HEC1A has been described (7, 9); this is, in part, mediated by HSPGs (7). Within the HSPG family, the syndecans have been previously shown to facilitate trans infection of HIV in vitro through binding of a specific region of Env that is moderately conserved (7, 8). This report also demonstrates that while HSPGs mediate a portion of the viral transcytosis that occurs in these two cell types, a significant portion of the observed transport occurs through an HSPG-independent mechanism. Other host cell factors likely provide alternatives to HSPGs for HIV-1 to use in subverting the mucosal epithelial barrier.gp340 is a member of the scavenger receptor cysteine-rich (SRCR) family of innate immune receptors. Its numerous splice variants can be found as a secreted component of human saliva (34, 41, 42) and as a membrane-associated receptor in a large number of epithelial cell lineages (22, 32, 40). Its normal cellular function includes immune surveillance of bacteria (4-6, 44), interaction with influenza A virus (19, 20, 32, 51) and surfactant proteins in the lung (20, 22, 33), and facilitating epithelial cell regeneration at sites of cellular inflammation and damage (27, 32). The secreted form of gp340, salivary agglutinin (SAG), was identified as a component of saliva that inhibits HIV-1 transmission in the oral pharynx through a specific interaction with the viral envelope protein that serves to agglutinate the virus and target it for degradation (34, 35, 41). Interestingly, SAG was demonstrated to form a direct protein-protein interaction with HIV Env (53, 54). Later, a cell surface-associated variant of SAG called gp340 was characterized as a binding partner for HIV-1 in the female genital tract that could facilitate virus transmission to susceptible targets of infection (47) and as a macrophage-expressed enhancer of infection (10).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号