首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In budding yeast Saccharomyces cerevisiae, centromeres and telomeres are tethered to the nuclear envelope during premeiotic interphase. Immediately after cells enter meiotic prophase, chromosomes undergo global reorganization, including bouquet formation (telomere clustering), non-homologous centromere coupling, homologous pairing, and assembly/disassembly of synaptonemal complexes. These chromosome dynamics have been implicated in promoting pairing, synapsis, crossover DNA recombination and segregation between homologous chromosomes. This review discusses recent studies related to the role of small ubiquitin-like modifier (SUMO) modification in controlling the overall budding yeast chromosome dynamics during meiotic prophase. This article is dedicated to the 20th anniversary of the Institute of Molecular Biology, Academia Sinica. TFW is grateful to all teachers at IMB, including James C. Wang, Ru-Chih Huang, Ping-Chien Huang, Chung Wang, Henry Y. Sun, Jychian Chen, Ming-Zong Lai, Bon-Chu Chung, and Soo-Chen Cheng. We apologize to those whose work could not be cited due to the brevity of this contribution. TFW was supported by the Investigator Award from Academia Sinica and by the Ta-You Wu Award from the National Science Council, Taiwan.  相似文献   

2.
Observations of a wide range of organisms show that the centromeres form associations of pairs or small groups at different stages of meiotic prophase. Little is known about the functions or mechanisms of these associations, but in many cases, synaptonemal complex elements seem to play a fundamental role. Two main associations are observed: homology-independent associations very early in the meiotic program—sometimes referred to as centromere coupling—and a later association of homologous centromeres, referred to as centromere pairing or tethering. The later centromere pairing initiates during synaptonemal complex assembly, then persists after the dissolution of the synaptonemal complex. While the function of the homology-independent centromere coupling remains a mystery, centromere pairing appears to have a direct impact on the chromosome segregation fidelity of achiasmatic chromosomes. Recent work in yeast, Drosophila, and mice suggest that centromere pairing is a previously unappreciated, general meiotic feature that may promote meiotic segregation fidelity of the exchange and non-exchange chromosomes.  相似文献   

3.
A period of pairing between nonhomologous centromeres occurs early in meiosis in a diverse collection of organisms. This early, homology-independent, centromere pairing, referred to as centromere coupling in budding yeast, gives way to an alignment of homologous centromeres as homologues synapse later in meiotic prophase. The regulation of centromere coupling and its underlying mechanism have not been elucidated. In budding yeast, the protein Zip1p is a major component of the central element of the synaptonemal complex in pachytene of meiosis, and earlier, is essential for centromere coupling. The experiments reported here demonstrate that centromere coupling is mechanistically distinct from synaptonemal complex assembly. Zip2p, Zip3p, and Red1p are all required for the assembly of Zip1 into the synaptonemal complex but are dispensable for centromere coupling. However, the meiotic cohesin Rec8p is required for centromere coupling. Loading of meiotic cohesins to centromeres and cohesin-associated regions is required for the association of Zip1 with these sites, and the association of Zip1 with the centromeres then promotes coupling. These findings reveal a mechanism that promotes associations between centromeres before the assembly of the synaptonemal complex, and they demonstrate that chromosomes are preloaded with Zip1p in a manner that may promote synapsis.  相似文献   

4.
Reports of centromere pairing in early meiotic cells have appeared sporadically over the past thirty years. Recent experiments demonstrate that early centromere pairing occurs between non-homologous centromeres. As meiosis proceeds, centromeres change partners, becoming arranged in homologous pairs. Investigations of these later centromere pairs indicate that paired homologous centromeres are actively associated rather than positioned passively, side-by-side. Meiotic centromere pairing has been observed in organisms as diverse as mice, wheat and yeast, indicating that non-homologous centromere pairing in early meiosis and active homologous centromere pairing in later meiosis might be themes in meiotic chromosome behavior. Moreover, such pairing could have previously unrecognized roles in mediating chromosome organization or architecture that impact meiotic segregation fidelity.  相似文献   

5.
Recent studies in simple model organisms have shown that centromere pairing is important for ensuring high-fidelity meiotic chromosome segregation. However, this process and the mechanisms regulating it in higher eukaryotes are unknown. Here we present the first detailed study of meiotic centromere pairing in mouse spermatogenesis and link it with key events of the G2/metaphase I transition. In mouse we observed no evidence of the persistent coupling of centromeres that has been observed in several model organisms. We do however find that telomeres associate in non-homologous pairs or small groups in B type spermatogonia and pre-leptotene spermatocytes, and this association is disrupted by deletion of the synaptonemal complex component SYCP3. Intriguingly, we found that, in mid prophase, chromosome synapsis is not initiated at centromeres, and centromeric regions are the last to pair in the zygotene-pachytene transition. In late prophase, we first identified the proteins that reside at paired centromeres. We found that components of the central and lateral element and transverse filaments of the synaptonemal complex are retained at paired centromeres after disassembly of the synaptonemal complex along diplotene chromosome arms. The absence of SYCP1 prevents centromere pairing in knockout mouse spermatocytes. The localization dynamics of SYCP1 and SYCP3 suggest that they play different roles in promoting homologous centromere pairing. SYCP1 remains only at paired centromeres coincident with the time at which some kinetochore proteins begin loading at centromeres, consistent with a role in assembly of meiosis-specific kinetochores. After removal of SYCP1 from centromeres, SYCP3 then accumulates at paired centromeres where it may promote bi-orientation of homologous centromeres. We propose that, in addition to their roles as synaptonemal complex components, SYCP1 and SYCP3 act at the centromeres to promote the establishment and/or maintenance of centromere pairing and, by doing so, improve the segregation fidelity of mammalian meiotic chromosomes.  相似文献   

6.
During meiosis homologous chromosomes pair, recombine, and synapse, thus ensuring accurate chromosome segregation and the halving of ploidy necessary for gametogenesis. The processes permitting a chromosome to pair only with its homologue are not fully understood, but successful pairing of homologous chromosomes is tightly linked to recombination. In Arabidopsis thaliana, meiotic prophase of rad51, xrcc3, and rad51C mutants appears normal up to the zygotene/pachytene stage, after which the genome fragments, leading to sterility. To better understand the relationship between recombination and chromosome pairing, we have analysed meiotic chromosome pairing in these and in dmc1 mutant lines. Our data show a differing requirement for these proteins in pairing of centromeric regions and chromosome arms. No homologous pairing of mid-arm or distal regions was observed in rad51, xrcc3, and rad51C mutants. However, homologous centromeres do pair in these mutants and we show that this does depend upon recombination, principally on DMC1. This centromere pairing extends well beyond the heterochromatic centromere region and, surprisingly, does not require XRCC3 and RAD51C. In addition to clarifying and bringing the roles of centromeres in meiotic synapsis to the fore, this analysis thus separates the roles in meiotic synapsis of DMC1 and RAD51 and the meiotic RAD51 paralogs, XRCC3 and RAD51C, with respect to different chromosome domains.  相似文献   

7.
8.

Background

Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres contain megabase-scale arrays of tandem repeats. Despite their importance, very little is known about the degree to which centromere tandem repeats share common properties between different species across different phyla. We used bioinformatic methods to identify high-copy tandem repeats from 282 species using publicly available genomic sequence and our own data.

Results

Our methods are compatible with all current sequencing technologies. Long Pacific Biosciences sequence reads allowed us to find tandem repeat monomers up to 1,419 bp. We assumed that the most abundant tandem repeat is the centromere DNA, which was true for most species whose centromeres have been previously characterized, suggesting this is a general property of genomes. High-copy centromere tandem repeats were found in almost all animal and plant genomes, but repeat monomers were highly variable in sequence composition and length. Furthermore, phylogenetic analysis of sequence homology showed little evidence of sequence conservation beyond approximately 50 million years of divergence. We find that despite an overall lack of sequence conservation, centromere tandem repeats from diverse species showed similar modes of evolution.

Conclusions

While centromere position in most eukaryotes is epigenetically determined, our results indicate that tandem repeats are highly prevalent at centromeres of both animal and plant genomes. This suggests a functional role for such repeats, perhaps in promoting concerted evolution of centromere DNA across chromosomes.  相似文献   

9.
Pairing of homologous chromosomes in meiosis is critical for their segregation to daughter cells. In most eukaryotes, clustering of telomeres precedes and facilitates chromosome pairing. In several species, centromeres also form pairwise associations, known as coupling, before the onset of pairing. We found that, in maize (Zea mays), centromere association begins at the leptotene stage and occurs earlier than the formation of the telomere bouquet. We established that centromere pairing requires centromere activity and the sole presence of centromeric repeats is not sufficient for pairing. In several species, homologs of the ZIP1 protein, which forms the central element of the synaptonemal complex in budding yeast (Saccharomyces cerevisiae), play essential roles in centromere coupling. However, we found that the maize ZIP1 homolog ZYP1 installs in the centromeric regions of chromosomes after centromeres form associations. Instead, we found that maize STRUCTURAL MAINTENANCE OF CHROMOSOMES6 homolog forms a central element of the synaptonemal complex, which is required for centromere associations. These data shed light on the poorly understood mechanism of centromere interactions and suggest that this mechanism may vary somewhat in different species.  相似文献   

10.
The faithful alignment of homologous chromosomes during meiotic prophase requires the coordination of DNA double-strand break (DSB) repair with large-scale chromosome reorganization. Here we identify the phosphatase PP4 (Pph3/Psy2) as a mediator of this process in Saccharomyces cerevisiae. In pp4 mutants, early stages of crossover repair and homology-independent pairing of centromeres are coordinately blocked. We traced the loss of centromere pairing to the persistent phosphorylation of the chromosomal protein Zip1 on serine 75. Zip1-S75 is a consensus site for the ATR-like checkpoint kinase Mec1, and centromere pairing is restored in mec1 mutants. Importantly, Zip1-S75 phosphorylation does not alter chromosome synapsis or DSB repair, indicating that Mec1 separates centromere pairing from the other functions of Zip1. The centromeric localization and persistent activity of PP4 during meiotic prophase suggest a model whereby Zip1-S75 phosphorylation dynamically destabilizes homology-independent centromere pairing in response to recombination initiation, thereby coupling meiotic chromosome dynamics to DSB repair.  相似文献   

11.

Background  

Pairing of homologous chromosomes at meiosis is an important requirement for recombination and balanced chromosome segregation among the products of meiotic division. Recombination is initiated by double strand breaks (DSBs) made by Spo11 followed by interaction of DSB sites with a homologous chromosome. This interaction requires the strand exchange proteins Rad51 and Dmc1 that bind to single stranded regions created by resection of ends at the site of DSBs and promote interactions with uncut DNA on the homologous partner. Recombination is also considered to be dependent on factors that stabilize interactions between homologous chromosomes. In budding yeast Hop2 and Mnd1 act as a complex to promote homologous pairing and recombination in conjunction with Rad51 and Dmc1.  相似文献   

12.
Pairing of homologous chromosomes is important for homologous recombination and correct chromosome segregation during meiosis. It has been proposed that telomere clustering, nuclear oscillation, and recombination during meiotic prophase facilitate homologous chromosome pairing in fission yeast. Here we examined the contributions of these chromosomal events to homologous chromosome pairing, by directly observing the dynamics of chromosomal loci in living cells of fission yeast. Homologous loci exhibited a dynamic process of association and dissociation during the time course of meiotic prophase. Lack of nuclear oscillation reduced association frequency for both centromeric and arm regions of the chromosome. Lack of telomere clustering or recombination reduced association frequency at arm regions, but not significantly at centromeric regions. Our results indicate that homologous chromosomes are spatially aligned by oscillation of telomere-bundled chromosomes and physically linked by recombination at chromosome arm regions; this recombination is not required for association of homologous centromeres.  相似文献   

13.
Many plant species, including important crops like wheat, are polyploids that carry more than two sets of genetically related chromosomes capable of meiotic pairing. To safeguard a diploid-like behavior at meiosis, many polyploids evolved genetic loci that suppress incorrect pairing and recombination of homeologues. The Ph1 locus in wheat was proposed to ensure homologous pairing by controlling the specificity of centromere associations that precede chromosome pairing. Using wheat chromosomes that carry rye centromeres, we show that the centromere associations in early meiosis are not based on homology and that the Ph1 locus has no effect on such associations. Although centromeres indeed undergo a switch from nonhomologous to homologous associations in meiosis, this process is driven by the terminally initiated synapsis. The centromere has no effect on metaphase I chiasmate chromosome associations: homologs with identical or different centromeres, in the presence and absence of Ph1, pair the same. A FISH analysis of the behavior of centromeres and distal chromomeres in telocentric and bi-armed chromosomes demonstrates that it is not the centromeric, but rather the subtelomeric, regions that are involved in the correct partner recognition and selection.  相似文献   

14.

Background

The gross chromosomal rearrangements (GCRs) observed in S. cerevisiae mutants with increased rates of accumulating GCRs include predicted dicentric GCRs such as translocations, chromosome fusions and isoduplications. These GCRs resemble the genome rearrangements found as mutations underlying inherited diseases as well as in the karyotypes of many cancers exhibiting ongoing genome instability

Methodology/Principal Findings

The structures of predicted dicentric GCRs were analyzed using multiple strategies including array-comparative genomic hybridization, pulse field gel electrophoresis, PCR amplification of predicted breakpoints and sequencing. The dicentric GCRs were found to be unstable and to have undergone secondary rearrangements to produce stable monocentric GCRs. The types of secondary rearrangements observed included: non-homologous end joining (NHEJ)-dependent intramolecular deletion of centromeres; chromosome breakage followed by NHEJ-mediated circularization or broken-end fusion to another chromosome telomere; and homologous recombination (HR)-dependent non-reciprocal translocations apparently mediated by break-induced replication. A number of these GCRs appeared to have undergone multiple bridge-fusion-breakage cycles. We also observed examples of chromosomes with extensive ongoing end decay in mec1 tlc1 mutants, suggesting that Mec1 protects chromosome ends from degradation and contributes to telomere maintenance by HR.

Conclusions/Significance

HR between repeated sequences resulting in secondary rearrangements was the most prevalent pathway for resolution of dicentric GCRs regardless of the structure of the initial dicentric GCR, although at least three other resolution mechanisms were observed. The resolution of dicentric GCRs to stable rearranged chromosomes could in part account for the complex karyotypes seen in some cancers.  相似文献   

15.
A. Koller  J. Heitman    M. N. Hall 《Genetics》1996,144(3):957-966
In meiosis I, homologous chromosomes pair, recombine and segregate to opposite poles. These events and subsequent meiosis II ensure that each of the four meiotic products has one complete set of chromosomes. In this study, the meiotic pairing and segregation of a trisomic chromosome in a diploid (2n + 1) yeast strain was examined. We find that trivalent pairing and segregation is the favored arrangement. However, insertions near the centromere in one of the trisomic chromosomes leads to preferential pairing and segregation of the ``like' centromeres of the remaining two chromosomes, suggesting that bivalent-univalent pairing and segregation is favored for this region.  相似文献   

16.
Mell JC  Wienholz BL  Salem A  Burgess SM 《Genetics》2008,179(2):773-784
Trans-acting factors involved in the early meiotic recombination pathway play a major role in promoting homolog pairing during meiosis in many plants, fungi, and mammals. Here we address whether or not allelic sites have higher levels of interaction when in cis to meiotic recombination events in the budding yeast Saccharomyces cerevisiae. We used Cre/loxP site-specific recombination to genetically measure the magnitude of physical interaction between loxP sites located at allelic positions on homologous chromosomes during meiosis. We observed nonrandom coincidence of Cre-mediated loxP recombination events and meiotic recombination events when the two occurred at linked positions. Further experiments showed that a subset of recombination events destined to become crossover products increased the frequency of nearby Cre-mediated loxP recombination. Our results support a simple physical model of homolog pairing in budding yeast, where recombination at numerous genomic positions generally serves to loosely coalign homologous chromosomes, while crossover-bound recombination intermediates locally stabilize interactions between allelic sites.  相似文献   

17.
Amin AD  Chaix AB  Mason RP  Badge RM  Borts RH 《PloS one》2010,5(11):e15380

Background

The Saccharomyces cerevisiae RecQ helicase Sgs1 is essential for mitotic and meiotic genome stability. The stage at which Sgs1 acts during meiosis is subject to debate. Cytological experiments showed that a deletion of SGS1 leads to an increase in synapsis initiation complexes and axial associations leading to the proposal that it has an early role in unwinding surplus strand invasion events. Physical studies of recombination intermediates implicate it in the dissolution of double Holliday junctions between sister chromatids.

Methodology/Principal Findings

In this work, we observed an increase in meiotic recombination between diverged sequences (homeologous recombination) and an increase in unequal sister chromatid events when SGS1 is deleted. The first of these observations is most consistent with an early role of Sgs1 in unwinding inappropriate strand invasion events while the second is consistent with unwinding or dissolution of recombination intermediates in an Mlh1- and Top3-dependent manner. We also provide data that suggest that Sgs1 is involved in the rejection of ‘second strand capture’ when sequence divergence is present. Finally, we have identified a novel class of tetrads where non-sister spores (pairs of spores where each contains a centromere marker from a different parent) are inviable. We propose a model for this unusual pattern of viability based on the inability of sgs1 mutants to untangle intertwined chromosomes. Our data suggest that this role of Sgs1 is not dependent on its interaction with Top3. We propose that in the absence of SGS1 chromosomes may sometimes remain entangled at the end of pre-meiotic replication. This, combined with reciprocal crossing over, could lead to physical destruction of the recombined and entangled chromosomes. We hypothesise that Sgs1, acting in concert with the topoisomerase Top2, resolves these structures.

Conclusions

This work provides evidence that Sgs1 interacts with various partner proteins to maintain genome stability throughout meiosis.  相似文献   

18.
Meiotic recombination requires pairing of homologous chromosomes, the mechanisms of which remain largely unknown. When pairing occurs during meiotic prophase in fission yeast, the nucleus oscillates between the cell poles driven by astral microtubules. During these oscillations, the telomeres are clustered at the spindle pole body (SPB), located at the leading edge of the moving nucleus and the rest of each chromosome dangles behind. Here, we show that the oscillatory nuclear movement of meiotic prophase is dependent on cytoplasmic dynein. We have cloned the gene encoding a cytoplasmic dynein heavy chain of fission yeast. Most of the cells disrupted for the gene show no gross defect during mitosis and complete meiosis to form four viable spores, but they lack the nuclear movements of meiotic prophase. Thus, the dynein heavy chain is required for these oscillatory movements. Consistent with its essential role in such nuclear movement, dynein heavy chain tagged with green fluorescent protein (GFP) is localized at astral microtubules and the SPB during the movements. In dynein-disrupted cells, meiotic recombination is significantly reduced, indicating that the dynein function is also required for efficient meiotic recombination. In accordance with the reduced recombination, which leads to reduced crossing over, chromosome missegregation is increased in the mutant. Moreover, both the formation of a single cluster of centromeres and the colocalization of homologous regions on a pair of homologous chromosomes are significantly inhibited in the mutant. These results strongly suggest that the dynein-driven nuclear movements of meiotic prophase are necessary for efficient pairing of homologous chromosomes in fission yeast, which in turn promotes efficient meiotic recombination.  相似文献   

19.
Both homologous and non-homologous chromosomes in wheat associate via their centromeric hetero chromatin in the developing xylem vessel cells of the root. The antimetabolite 5-azacytidine (which reduces DNA methylation) decreases the overall level of centromere association. Treatment with 5-azacytidine caused a more marked reduction in the level of homologous chromosome association observed in a wheat line carrying a pair of marked chromosomes. On the other hand, treatment of wheat seedlings with trichostatin A (which increases histone acetylation) raises the overall level of centromere association. The Ph1 locus controls the specificity of both somatic and meiotic pairing of homologous centromeres in wheat. The level of non-homologously associated centromeres is, however, reduced in the presence of Ph1 compared with its absence, even after treatment with either drug. Thus these two drugs, which have been shown to affect chromatin structure, do affect chromosome association, but Ph1 must act at least in part by a different mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号