共查询到20条相似文献,搜索用时 15 毫秒
1.
Andrew H. Miller James F. Jones Daniel F. Drake Hao Tian Elizabeth R. Unger Giuseppe Pagnoni 《PloS one》2014,9(5)
Reduced basal ganglia function has been associated with fatigue in neurologic disorders, as well as in patients exposed to chronic immune stimulation. Patients with chronic fatigue syndrome (CFS) have been shown to exhibit symptoms suggestive of decreased basal ganglia function including psychomotor slowing, which in turn was correlated with fatigue. In addition, CFS patients have been found to exhibit increased markers of immune activation. In order to directly test the hypothesis of decreased basal ganglia function in CFS, we used functional magnetic resonance imaging to examine neural activation in the basal ganglia to a reward-processing (monetary gambling) task in a community sample of 59 male and female subjects, including 18 patients diagnosed with CFS according to 1994 CDC criteria and 41 non-fatigued healthy controls. For each subject, the average effect of winning vs. losing during the gambling task in regions of interest (ROI) corresponding to the caudate nucleus, putamen, and globus pallidus was extracted for group comparisons and correlational analyses. Compared to non-fatigued controls, patients with CFS exhibited significantly decreased activation in the right caudate (p = 0.01) and right globus pallidus (p = 0.02). Decreased activation in the right globus pallidus was significantly correlated with increased mental fatigue (r2 = 0.49, p = 0.001), general fatigue (r2 = 0.34, p = 0.01) and reduced activity (r2 = 0.29, p = 0.02) as measured by the Multidimensional Fatigue Inventory. No such relationships were found in control subjects. These data suggest that symptoms of fatigue in CFS subjects were associated with reduced responsivity of the basal ganglia, possibly involving the disruption of projections from the globus pallidus to thalamic and cortical networks. 相似文献
2.
Mingming Chen Daqing Guo Tiebin Wang Wei Jing Yang Xia Peng Xu Cheng Luo Pedro A. Valdes-Sosa Dezhong Yao 《PLoS computational biology》2014,10(3)
Absence epilepsy is believed to be associated with the abnormal interactions between the cerebral cortex and thalamus. Besides the direct coupling, anatomical evidence indicates that the cerebral cortex and thalamus also communicate indirectly through an important intermediate bridge–basal ganglia. It has been thus postulated that the basal ganglia might play key roles in the modulation of absence seizures, but the relevant biophysical mechanisms are still not completely established. Using a biophysically based model, we demonstrate here that the typical absence seizure activities can be controlled and modulated by the direct GABAergic projections from the substantia nigra pars reticulata (SNr) to either the thalamic reticular nucleus (TRN) or the specific relay nuclei (SRN) of thalamus, through different biophysical mechanisms. Under certain conditions, these two types of seizure control are observed to coexist in the same network. More importantly, due to the competition between the inhibitory SNr-TRN and SNr-SRN pathways, we find that both decreasing and increasing the activation of SNr neurons from the normal level may considerably suppress the generation of spike-and-slow wave discharges in the coexistence region. Overall, these results highlight the bidirectional functional roles of basal ganglia in controlling and modulating absence seizures, and might provide novel insights into the therapeutic treatments of this brain disorder. 相似文献
3.
Neural activity in the brain of parkinsonian patients is characterized by the intermittently synchronized oscillatory dynamics. This imperfect synchronization, observed in the beta frequency band, is believed to be related to the hypokinetic motor symptoms of the disorder. Our study explores potential mechanisms behind this intermittent synchrony. We study the response of a bursting pallidal neuron to different patterns of synaptic input from subthalamic nucleus (STN) neuron. We show how external globus pallidus (GPe) neuron is sensitive to the phase of the input from the STN cell and can exhibit intermittent phase-locking with the input in the beta band. The temporal properties of this intermittent phase-locking show similarities to the intermittent synchronization observed in experiments. We also study the synchronization of GPe cells to synaptic input from the STN cell with dependence on the dopamine-modulated parameters. Earlier studies showed how the strengthening of dopamine-modulated coupling may lead to transitions from non-synchronized to partially synchronized dynamics, typical in Parkinson''s disease. However, dopamine also affects the cellular properties of neurons. We show how the changes in firing patterns of STN neuron due to the lack of dopamine may lead to transition from a lower to a higher coherent state, roughly matching the synchrony levels observed in basal ganglia in normal and parkinsonian states. The intermittent nature of the neural beta band synchrony in Parkinson''s disease is achieved in the model due to the interplay of the timing of STN input to pallidum and pallidal neuronal dynamics, resulting in sensitivity of pallidal output to the phase of the arriving STN input. Thus the mechanism considered here (the change in firing pattern of subthalamic neurons through the dopamine-induced change of membrane properties) may be one of the potential mechanisms responsible for the generation of the intermittent synchronization observed in Parkinson''s disease. 相似文献
4.
J. A. Hardy J. S. de Belleroche D. Border H. F. Bradford 《Journal of neurochemistry》1980,34(5):1130-1139
Abstract: The K+ -induced release of amino acids and dopamine from synaptosomes of basal ganglia and substantia nigra of sheep was studied. K+ (56 mM) caused an increase in the release of GABA from caudate, putamen, globus pallidus, and substantia nigra, the increased release being 227, 171, 198, and 366%, respectively, compared with samples incubated without stimulation. The release of glutamate was also increased by 56 mM-K+ (136–183%) from all regions except the globus pallidus, and a significant release of aspartate was only seen in response to K+ stimulation of synaptosomes from putamen (50%). Veratrine (75 μM) also stimulated a similar pattern of amino acid release from these regions. Regional correlation was shown between the presence of an uptake system for an amino acid and its evoked release. [14 C]Dopamine formed from L-[U-14 C]tyrosine was released only from caudate and putamen synaptosomes by K+ stimulation, the increases being 105% and 74%, respectively. Synthesis of [14 C]dopamine from L-[U-14 C]tyrosine occurred only in synaptosomes prepared from these two regions and was not detected in synaptosomes from substantia nigra or globus pallidus although whole-tissue homogenates of substantia nigra were able to synthesise dopamine. 相似文献
5.
Robert Schwarcz Kjell Fuxe Tomas Hökfelt Lars Terenius Menek Goldstein 《Journal of neurochemistry》1980,34(4):772-778
Abstract: The chronic effects of kainate-induced lesions of the neostriatum have been evaluated in rats 12 months following the injection of kainic acid. Light microscopical analysis revealed marked disappearance of nerve cells in the neostriatum, with some cells remaining within the medial and lateral zone of the neostriatum and in the most ventral part. The rest of the markedly atrophied neostriatum was mainly made up of densely packed myelinated nerve bundles. Tyrosine hydroxylase immunoreactivity was used as a marker for dopamine neurons and revealed that tyrosine hydroxylase immunoreactive nerve terminals remained between the axon bundles in the striatum and that tyrosine hydroxylase immunoreactive nerve cell bodies in the substantia nigra seemed intact. Studies on enkephalin immunoreactive neurons revealed a marked disappearance of such nerve cells and nerve terminals within the neostriatum. Neurochemical analysis showed a clearcut reduction in the number of dopamine receptors as evaluated by studies on both [3 H]spiperone binding and on [3 H]ADTN binding. Dopamine levels remained unchanged while choline acetyltransferase activity was reduced significantly. Taken together, the present findings demonstrate that the chronically kainate lesioned striatum is characterized by a substantial loss of enkephalin immunoreactive and cholinergic nerve cells and a marked reduction in the number of dopamine receptors. These findings are discussed in relation to neurochemical and therapeutic aspects of Huntington's disease. 相似文献
6.
Arousal Biased Competition theory suggests that arousal enhances competitive attentional processes, but makes no strong claims about valence effects. Research suggests that the scope of enhanced attention depends on valence with negative arousal narrowing and positive arousal broadening attention. Attentional scope likely affects declarative-memory-mediated and perceptual-representation-mediated learning systems differently, with declarative-memory-mediated learning depending on narrow attention to develop targeted verbalizable rules, and perceptual-representation-mediated learning depending on broad attention to develop a perceptual representation. We hypothesize that negative arousal accentuates declarative-memory-mediated learning and attenuates perceptual-representation-mediated learning, while positive arousal reverses this pattern. Prototype learning provides an ideal test bed as dissociable declarative-memory and perceptual-representation systems mediate two-prototype (AB) and one-prototype (AN) prototype learning, respectively, and computational models are available that provide powerful insights on cognitive processing. As predicted, we found that negative arousal narrows attentional focus facilitating AB learning and impairing AN learning, while positive arousal broadens attentional focus facilitating AN learning and impairing AB learning. 相似文献
7.
8.
9.
Pragathi Priyadharsini Balasubramani V. Srinivasa Chakravarthy Manal Ali Balaraman Ravindran Ahmed A. Moustafa 《PloS one》2015,10(6)
Impulsivity, i.e. irresistibility in the execution of actions, may be prominent in Parkinson''s disease (PD) patients who are treated with dopamine precursors or dopamine receptor agonists. In this study, we combine clinical investigations with computational modeling to explore whether impulsivity in PD patients on medication may arise as a result of abnormalities in risk, reward and punishment learning. In order to empirically assess learning outcomes involving risk, reward and punishment, four subject groups were examined: healthy controls, ON medication PD patients with impulse control disorder (PD-ON ICD) or without ICD (PD-ON non-ICD), and OFF medication PD patients (PD-OFF). A neural network model of the Basal Ganglia (BG) that has the capacity to predict the dysfunction of both the dopaminergic (DA) and the serotonergic (5HT) neuromodulator systems was developed and used to facilitate the interpretation of experimental results. In the model, the BG action selection dynamics were mimicked using a utility function based decision making framework, with DA controlling reward prediction and 5HT controlling punishment and risk predictions. The striatal model included three pools of Medium Spiny Neurons (MSNs), with D1 receptor (R) alone, D2R alone and co-expressing D1R-D2R. Empirical studies showed that reward optimality was increased in PD-ON ICD patients while punishment optimality was increased in PD-OFF patients. Empirical studies also revealed that PD-ON ICD subjects had lower reaction times (RT) compared to that of the PD-ON non-ICD patients. Computational modeling suggested that PD-OFF patients have higher punishment sensitivity, while healthy controls showed comparatively higher risk sensitivity. A significant decrease in sensitivity to punishment and risk was crucial for explaining behavioral changes observed in PD-ON ICD patients. Our results highlight the power of computational modelling for identifying neuronal circuitry implicated in learning, and its impairment in PD. The results presented here not only show that computational modelling can be used as a valuable tool for understanding and interpreting clinical data, but they also show that computational modeling has the potential to become an invaluable tool to predict the onset of behavioral changes during disease progression. 相似文献
10.
Abstract: Serotonin (5-hydroxytryptamine; 5-HT) 5-HT2A and 5-HT2C receptors belong to the class of phosphoinositide-specific phospholipase C (PLC)-linked receptors. Conditions were established for measuring 5-HT2A-linked and 5-HT2C-linked PLC activity in membranes prepared from previously frozen rat frontal cortex and caudate. In the presence of Ca2+ (300 nM) and GTPγS (1 µM), 5-HT increased PLC activity in caudate membranes. Pharmacological analysis using the selective 5-HT2A antagonist, spiperone, and the nonselective 5-HT2A/2C antagonist, mianserin, demonstrated that over half of the 5-HT-stimulated PLC activity was due to stimulation of 5-HT2C receptors as opposed to 5-HT2A receptors. Radioligand binding assays with [3H]RP 62203 and [3H]-mesulergine were used to quantify 5-HT2A and 5-HT2C sites, respectively, in caudate. From these data, the Bmax for caudate 5-HT2A sites and 5-HT2C sites was 165.4 ± 9.7 fmol/mg of protein and 49.7 ± 3.3 fmol/mg of protein, respectively. In contrast to that in caudate, PLC activity in frontal cortex was stimulated by 5-HT in a manner that was inhibited by the 5-HT2A-selective antagonists, spiperone and ketanserin. Taken together, the results indicate that 5-HT2A- and 5-HT2C-linked PLC activity can be discerned in brain regions possessing both receptor subtypes using membranes prepared from previously frozen tissue. More importantly, significant 5-HT2C-mediated phosphoinositide hydrolysis was observed in caudate, despite the relatively low density of 5-HT2C sites. The significance of these observations with respect to the physiological function of 5-HT2C receptors is discussed. 相似文献
11.
Ling-Hsuan Kung Kerui Gong Mary Adedoyin Johnson Ng Aditi Bhargava Peter T. Ohara Luc Jasmin 《PloS one》2013,8(7)
This study examines key elements of glutamatergic transmission within sensory ganglia of the rat. We show that the soma of primary sensory neurons release glutamate when depolarized. Using acute dissociated mixed neuronal/glia cultures of dorsal root ganglia (DRG) or trigeminal ganglia and a colorimetric assay, we show that when glutamate uptake by satellite glial cells (SGCs) is inhibited, KCl stimulation leads to simultaneous increase of glutamate in the culture medium. With calcium imaging we see that the soma of primary sensory neurons and SGCs respond to AMPA, NMDA, kainate and mGluR agonists, and selective antagonists block this response. Using whole cell patch-clamp technique, inward currents were recorded from small diameter (<30 µm) DRG neurons from intact DRGs (ex-vivo whole ganglion preparation) in response to local application of the above glutamate receptor agonists. Following a chronic constriction injury (CCI) of either the inferior orbital nerve or the sciatic nerve, glutamate expression increases in the trigeminal ganglia and DRG respectively. This increase occurs in neurons of all diameters and is present in the somata of neurons with injured axons as well as in somata of neighboring uninjured neurons. These data provides additional evidence that glutamate can be released within the sensory ganglion, and that the somata of primary sensory neurons as well as SGCs express functional glutamate receptors at their surface. These findings, together with our previous gene knockdown data, suggest that glutamatergic transmission within the ganglion could impact nociceptive threshold. 相似文献
12.
Background
Enlarged perivascular spaces (EPVS) correlate with cognitive impairment and incident dementia. However, etiologies for severe basal ganglia EPVS (BG-EPVS) are still unclear. Our aim was to investigate the independent risk factors for severe BG-EPVS in patients with acute lacunar stroke.Methods
We prospectively identified patients with lacunar stroke (diameter on DWI ≤ 20mm) from Jan 2011 to May 2015. Patients with severe BG-EPVS were identified on T2 weighted MRI. Age (± 1 year) and sex matched controls were also recruited in the same population (two controls for one case). Vascular risk factors, clinical data, EPVS in centrum semiovale (rated 0 to 4), white matter hyperintensities (WMH) (by Fazekas scale), brain atrophy (rated 0 to 6) were compared between two groups. Logistic regression was performed to determine independent risk factors for severe BG-EPVS.Results
During study period, 89 patients with severe BG-EPVS and 178 matched controls were included. Vascular risk factors did not differ between two groups. Patients with severe BG-EPVS had lower level of HbA1c and diastolic BP at admission, but presented with larger infarct size, more severe WMH (including total WMH, periventricular WMH and deep WMH) and brain atrophy. In logistic regression, brain atrophy (OR = 1.40; 95%CI 1.13, 1.73) and deep WMH (OR = 1.88; 95%CI 1.24, 2.83) were independent risk factors for severe BG-EPVS.Conclusions
Brain atrophy and deep WMH are independent risk factors for severe BG-EPVS, supporting the hypothesis that brain atrophy may be associated with the development of EPVS in basal ganglia. 相似文献13.
Leonardo M. R. Ferreira Elisa M. Floriddia Giorgia Quadrato Simone Di Giovanni 《Molecular neurobiology》2012,46(2):227-241
One only needs to see a salamander regrowing a lost limb to become fascinated by regeneration. However, the lack of robust axonal regeneration models for which good cellular and molecular tools exist has hampered progress in the field. Nevertheless, the nervous system has been revealed to be an excellent model to investigate regeneration. There are conspicuous differences in neuroregeneration capacity between amphibia and warm-blooded animals, as well as between the central and the peripheral nervous systems in mammals. Exploration of such discrepancies led to significant discoveries on the basic tenets of neuroregeneration in the last two decades, identifying several positive and negative regulators of axonal regeneration. Implications of these findings to the comprehension of mammalian regeneration and to the development of spinal cord injury therapies are also addressed. 相似文献
14.
Neuroanatomical Correlates of Intelligence in Healthy Young Adults: The Role of Basal Ganglia Volume
Cosima Rhein Christiane Mühle Tanja Richter-Schmidinger Panagiotis Alexopoulos Arnd Doerfler Johannes Kornhuber 《PloS one》2014,9(4)
Background
In neuropsychiatric diseases with basal ganglia involvement, higher cognitive functions are often impaired. In this exploratory study, we examined healthy young adults to gain detailed insight into the relationship between basal ganglia volume and cognitive abilities under non-pathological conditions.Methodology/Principal Findings
We investigated 137 healthy adults that were between the ages of 21 and 35 years with similar educational backgrounds. Magnetic resonance imaging (MRI) was performed, and volumes of basal ganglia nuclei in both hemispheres were calculated using FreeSurfer software. The cognitive assessment consisted of verbal, numeric and figural aspects of intelligence for either the fluid or the crystallised intelligence factor using the intelligence test Intelligenz-Struktur-Test (I-S-T 2000 R). Our data revealed significant correlations of the caudate nucleus and pallidum volumes with figural and numeric aspects of intelligence, but not with verbal intelligence. Interestingly, figural intelligence associations were dependent on sex and intelligence factor; in females, the pallidum volumes were correlated with crystallised figural intelligence (r = 0.372, p = 0.01), whereas in males, the caudate volumes were correlated with fluid figural intelligence (r = 0.507, p = 0.01). Numeric intelligence was correlated with right-lateralised caudate nucleus volumes for both females and males, but only for crystallised intelligence (r = 0.306, p = 0.04 and r = 0.459, p = 0.04, respectively). The associations were not mediated by prefrontal cortical subfield volumes when controlling with partial correlation analyses.Conclusions/Significance
The findings of our exploratory analysis indicate that figural and numeric intelligence aspects, but not verbal aspects, are strongly associated with basal ganglia volumes. Unlike numeric intelligence, the type of figural intelligence appears to be related to distinct basal ganglia nuclei in a sex-specific manner. Subcortical brain structures thus may contribute substantially to cognitive performance. 相似文献15.
《Journal of receptor and signal transduction research》2013,33(1-4):521-532
AbstractRecent studies on the neurotransmitter organization of the basal ganglia and forebrain in lower vertebrates suggest that, in contrast to the old concepts of the phylogeny of the brain, there are many similarities between the chemical organization of the brain throughout evolution. By examining neurotransmitter receptors using in vitro autoradiography we have attempted to further our understanding of the evolution of the brain. Receptors enriched in different parts of the basal ganglia in mammals appear to be also enriched in the homologous areas in lower vertebrates. Thus, for example, dopamine and muscarinic receptors, but not serotonin-1A, are enriched in the paleostriatum augmentatum while GABA/benzo-diazepine receptors are enriched in the paleostriatum primitivum corresponding with their localization to the caudate-putamen and globus pallidus respectively. Our results support the concept of a more conservative evolution of the vertebrate brain and demonstrate the usefulness of receptor autoradiography in the understanding of brain evolution. 相似文献
16.
《Endocrine practice》2007,13(5):487-492
ObjectiveTo report a case of idiopathic hypoparathyroidism presenting with severe hypocalcemia and intracerebral calcifications that resulted in a spontaneous intracerebral bleed.MethodsWe present the clinical, laboratory, and radiologic findings in a woman with idiopathic hypoparathyroidism who developed spontaneous intracerebral bleed in the setting of chronic intracerebral calcifications.ResultsA 37-year-old woman presented with vague symptoms of hypocalcemia. Clinical evaluation revealed brisk deep tendon Reflexes and positive Chvostek’s and Trousseau’s signs. The serum calcium level was 3.7 mg/ dL (reference range, 8.0 to 10.6 mg/dL) and the phosphorus level was 8.2 mg/dL (reference range, 2.3 to 5.0 mg/dL). Serum intact parathyroid hormone was undetectable. Computed tomography of the head showed extensive bilateral symmetrical calcification of basal ganglia and dentate nucleus in the cerebellum and centrum semiovale. Fluid and electrolytes were replaced appropriately, and calcium and calcitriol were prescribed. While in the hospital, the patient developed an acute intracerebral bleed confirmed by computed tomography. The patient recovered without neurologic sequelae and was discharged from the hospital on calcium supplementation and calcitriol. Repeated computed tomography of the head 3 years later demonstrated complete resolution of the bleed.ConclusionThis case suggests that patients with severe hypoparathyroidism and intracerebral calcification may be at risk for spontaneous intracerebral bleed and should be monitored accordingly. (Endocr Pract. 2007; 13:487-492 相似文献
17.
Background
Locating the pyramidal tract (PT) is difficult in patients with thalamic or basal ganglia tumors, especially when the surrounding anatomical structures cannot be identified using computed tomography or magnetic resonance images. Hence, we objected to find a way to predict the location of the PT in patients with thalamic and basal ganglia tumorsMethodology/Principal Findings
In 59 patents with thalamic or basal ganglia tumors, the PTs were constructed by with diffusion tensor imaging (DTI)-based fiber tracking (FT). In axial slices crossing the foramen of Monro, the tumor position was classified according to three lines. Line 1 was vertical and crossed the vertex point of the anterior limbs of the internal capsule. Lines 2 and line 3 were horizontal and crossed the foramen of Monro and joint of the middle and lateral thirds of the posterior limbs, respectively. Six (10.17%) patients were diagnosed with type 1 tumor, six (10.17%) with type 2, seven (11.86%) with type 3a, five (8.47%) with type 3b, 17 (28.81%) with type 4a, six (10.17%) with type 4b, three (5.08%) with type 5, and nine (15.25%) with type 6. In type 1 tumors, the PTs were located at the 12 o''clock position of the tumor, type 2 at six o''clock, type 3a between nine and 12 o''clock, type 3 between six and nine o''clock, type 4a between 12 and three o''clock, type 4b at three o''clock, type 5 between six and nine o''clock, and type 6 between three and six o''clock.Conclusions/Significance
The position of the PT relative to the tumor could be determined according to the tumor location. These results could prove helpful in determining the location of the PT preoperatively. 相似文献18.
Natural auditory stimuli are characterized by slow fluctuations in amplitude and frequency. However, the degree to which the neural responses to slow amplitude modulation (AM) and frequency modulation (FM) are capable of conveying independent time-varying information, particularly with respect to speech communication, is unclear. In the current electroencephalography (EEG) study, participants listened to amplitude- and frequency-modulated narrow-band noises with a 3-Hz modulation rate, and the resulting neural responses were compared. Spectral analyses revealed similar spectral amplitude peaks for AM and FM at the stimulation frequency (3 Hz), but amplitude at the second harmonic frequency (6 Hz) was much higher for FM than for AM. Moreover, the phase delay of neural responses with respect to the full-band stimulus envelope was shorter for FM than for AM. Finally, the critical analysis involved classification of single trials as being in response to either AM or FM based on either phase or amplitude information. Time-varying phase, but not amplitude, was sufficient to accurately classify AM and FM stimuli based on single-trial neural responses. Taken together, the current results support the dissociable nature of cortical signatures of slow AM and FM. These cortical signatures potentially provide an efficient means to dissect simultaneously communicated slow temporal and spectral information in acoustic communication signals. 相似文献
19.
Ilka M. Axmann Ulf Dühring Luiza Seeliger Anne Arnold Jens T. Vanselow Achim Kramer Annegret Wilde 《Journal of bacteriology》2009,191(17):5342-5347
Organisms coordinate biological activities into daily cycles using an internal circadian clock. The circadian oscillator proteins KaiA, KaiB, and KaiC are widely believed to underlie 24-h oscillations of gene expression in cyanobacteria. However, a group of very abundant cyanobacteria, namely, marine Prochlorococcus species, lost the third oscillator component, KaiA, during evolution. We demonstrate here that the remaining Kai proteins fulfill their known biochemical functions, although KaiC is hyperphosphorylated by default in this system. These data provide biochemical support for the observed evolutionary reduction of the clock locus in Prochlorococcus and are consistent with a model in which a mechanism that is less robust than the well-characterized KaiABC protein clock of Synechococcus is sufficient for biological timing in the very stable environment that Prochlorococcus inhabits.Cyanobacteria are photosynthetic prokaryotes that are known to possess a true circadian clock. Gene expression and other biological activities follow rhythmic cycles with a circa 24-h period. Rhythmic behavior is maintained even in the absence of environmental stimuli such as light and temperature. The underlying core oscillator consisting of the clock proteins KaiA, KaiB, and KaiC is the only characterized prokaryotic circadian oscillator. It was previously demonstrated that these three proteins, together with ATP, can produce 24-h oscillations of KaiC phosphorylation in vitro (17). The essential roles of KaiA and KaiB in oppositely influencing KaiC phosphorylation are well documented for the oscillator of “Synechococcus elongatus” PCC 7942 (hereafter S. elongatus), the species for which most bacterial circadian research has been conducted. Thus, it is puzzling that marine cyanobacteria of the genus Prochlorococcus, probably the most abundant photosynthetic organisms on Earth (5, 28), contain homologs of only two of these clock proteins, KaiC and KaiB (3, 11, 20). Laboratory cultures (10) as well as natural Prochlorococcus populations (24) display a rhythmic cell cycle together with a daily periodicity of gene expression that can be explained by the functioning of a circadian clock. Alternatively, these rhythms could be controlled directly by the daylight (10). The functional role of the Kai proteins from Prochlorococcus has remained entirely unclear and has not been experimentally addressed thus far.In the well-studied protein clock of S. elongatus, KaiC hexamers are at the center of the circadian oscillator, combining three intrinsic enzymatic activities: autokinase, autophosphatase, and ATPase. KaiA and KaiB modulate KaiC''s activities in opposite manners. KaiA seems to be essential for the shift between autophosphatase and autokinase, and for generating KaiC phosphorylation rhythms, by stabilizing C-terminal residues of KaiC, the A-loops (12). Thus, the absence of KaiA should have consequences for the enzymatic activities of the remaining Kai proteins of Prochlorococcus. In this study, the previously unknown functions of the Prochlorococcus sp. strain MED4 protein KaiB (ProKaiB) and ProKaiC are examined. In our in vitro experiments, we analyzed the recombinant proteins ProKaiB and ProKaiC in direct comparison to the core oscillator of S. elongatus, which consists of S. elongatus KaiA (SynKaiA), SynKaiB, and SynKaiC. We show here that both clock proteins from Prochlorococcus sp. strain MED4 independently exhibit their known biochemical functions, although the influence of ProKaiB on ProKaiC dephosphorylation is different certainly due to the absence of KaiA, the third protein of the oscillator. For ProKaiC, we demonstrate ATPase activity as well as the phosphorylation of serine 427 (S427) and threonine 428 (T428) using mass spectrometry and high-resolution sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE). Moreover, we suggest that the deletion of kaiA is compensated by the enhanced autophosphorylation activity of ProKaiC. Our results might have further implications for the analysis of a possible timing mechanism in other bacterial species, such as purple bacteria that encode KaiB and KaiC homologs but that lack the KaiA component. 相似文献