首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Repetitive transcranial magnetic stimulation (rTMS) of the posterior parietal cortex (PPC) at frequencies lower than 5 Hz transiently inhibits the stimulated area. In healthy participants, such a protocol can induce a transient attentional bias to the visual hemifield ipsilateral to the stimulated hemisphere. This bias might be due to a relatively less active stimulated hemisphere and a relatively more active unstimulated hemisphere. In a previous study, Jin and Hilgetag (2008) tried to switch the attention bias from the hemifield ipsilateral to the hemifield contralateral to the stimulated hemisphere by applying high frequency rTMS. High frequency rTMS has been shown to excite, rather than inhibit, the stimulated brain area. However, the bias to the ipsilateral hemifield was still present. The participants’ performance decreased when stimuli were presented in the hemifield contralateral to the stimulation site. In the present study we tested if this unexpected result was related to the fact that participants were passively resting during stimulation rather than performing a task. Using a fully crossed factorial design, we compared the effects of high frequency rTMS applied during a visual detection task and high frequency rTMS during passive rest on the subsequent offline performance in the same detection task. Our results were mixed. After sham stimulation, performance was better after rest than after task. After active 10 Hz rTMS, participants’ performance was overall better after task than after rest. However, this effect did not reach statistical significance. The comparison of performance after rTMS with task and performance after sham stimulation with task showed that 10 Hz stimulation significantly improved performance in the whole visual field. Thus, although we found a trend to better performance after rTMS with task than after rTMS during rest, we could not reject the hypothesis that high frequency rTMS with task and high frequency rTMS during rest equally affect performance.  相似文献   

2.
A full-sine (biphasic) pulse waveform is most commonly used for repetitive transcranial magnetic stimulation (TMS), but little is known about how variations in duration or amplitude of distinct pulse segments influence the effectiveness of a single TMS pulse to elicit a corticomotor response. Using a novel TMS device, we systematically varied the configuration of full-sine pulses to assess the impact of configuration changes on resting motor threshold (RMT) as measure of stimulation effectiveness with single-pulse TMS of the non-dominant motor hand area (M1). In young healthy volunteers, we (i) compared monophasic, half-sine, and full-sine pulses, (ii) applied two-segment pulses consisting of two identical half-sines, and (iii) manipulated amplitude, duration, and current direction of the first or second full-sine pulse half-segments. RMT was significantly higher using half-sine or monophasic pulses compared with full-sine. Pulses combining two half-sines of identical polarity and duration were also characterized by higher RMT than full-sine stimuli resulting. For full-sine stimuli, decreasing the amplitude of the half-segment inducing posterior-anterior oriented current in M1 resulted in considerably higher RMT, whereas varying the amplitude of the half-segment inducing anterior-posterior current had a smaller effect. These findings provide direct experimental evidence that the pulse segment inducing a posterior-anterior directed current in M1 contributes most to corticospinal pathway excitation. Preferential excitation of neuronal target cells in the posterior-anterior segment or targeting of different neuronal structures by the two half-segments can explain this result. Thus, our findings help understanding the mechanisms of neural stimulation by full-sine TMS.  相似文献   

3.
This study assessed the efficacy of repetitive transcranial magnetic stimulation (rTMS) in the treatment of patients with chronic primary insomnia. Hundred and twenty patients with chronic primary insomnia were randomly assigned to three study groups (n = 40 per group): rTMS, medication, or psychotherapy treatment (both latter as controls). The treatments proceeded for 2 weeks, after which treatment efficacies were assessed in each study group based on changes in polysomnography parameters, Pittsburgh sleep quality index, and indices of HPA and HPT axes (serum cortisol, adrenocorticotropic hormone, highly sensitive thyrotropin, free T3, and free T4). Further, the relapse and recurrence rates within 3 months after respective treatments were also measured. rTMS treatment significantly better (p < 0.05) improved stage III sleep and REM sleep cycle compared with both control groups. Further, rTMS treatment group was more advantageous in improving the indices of HPA and HPT axes (p < 0.05 vs. both control groups). In addition, the relapse and recurrence rates were also the lowest in rTMS treatment group. In conclusion, rTMS treatment is more advantageous than both medication and psychotherapy treatments in improving the sleep architecture. Further, rTMS significantly decreases the body awakening level and provides a better long-term treatment effect.  相似文献   

4.
目的:探讨重复经颅磁刺激在脑卒中康复的应用及效果.方法:选择2010年9月至2012年9月在我院神经内科收治的58例脑卒中患者分为两组,即A组和B组,A组患者给予常规药物治疗和康复训练,B组患者在上述治疗的基础上加用低频重复经颅磁刺激治疗,比较两组患者美国国立卫生院神经功能缺损评分情况、日常生活活动(ADL)评分和不良反应发生情况.结果:治疗后,随着时间的推移,两组患者美国国立卫生院神经功能缺损评分得分逐渐下降(P<0.05).B组患者2周后和6周后两个时点美国国立卫生院神经功能缺损评分得分明显低于A组患者的,差异有显著性(P<0.05),而随着时间的推移,两组患者日常生活活动(ADL)评分得分逐渐上升(P<0.05).B组患者2周后和6周后两个时点日常生活活动(ADL)评分得分明显高于A组患者的,差异有显著性(P<0.05).两组患者在不良反应发生方面差异无显著性(P>0.05).结论:低频重复经颅磁刺激治疗脑卒中单侧肢体功能障碍患者临床疗效确切,安全可靠,不良反应少.  相似文献   

5.

Objectives

Recent repetitive TMS (rTMS) mapping protocols for language mapping revealed deficits of this method, mainly in posterior brain regions. Therefore this study analyzed the impact of different language tasks on the localization of language-positive brain regions and compared their effectiveness, especially with regard to posterior brain regions.

Methods

Nineteen healthy, right-handed subjects performed object naming, pseudoword reading, verb generation, and action naming during rTMS language mapping of the left hemisphere. Synchronically, 5 Hz/10 pulses were applied with a 0 ms delay

Results

The object naming task evoked the highest error rate (14%), followed by verb generation (13%) and action naming (11%). The latter revealed more errors in posterior than in anterior areas. Pseudoword reading barely generated errors, except for phonological paraphasias.

Conclusions

In general, among the evaluated language tasks, object naming is the most discriminative task to detect language-positive regions via rTMS. However, other tasks might be used for more specific questions.  相似文献   

6.
Chronic high-frequency repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation technique that has recently received increasing interests as a therapeutic procedure for neurodegenerative diseases. To identify the metabolism mechanism underlying the improving effects of rTMS, we observed that high frequency (25Hz) rTMS for 14 days could reverse the decline of the performance of the passive avoidance task in aged mice. We further investigated the metabolite profiles in the prefrontal cortex (PFC) in those mice and found that rTMS could also reverse the metabolic abnormalities of gamma-aminobutyric acid, N-acetyl aspartic, and cholesterol levels to the degree similar to the young mice. These data suggested that the rTMS could ameliorate the age-related cognitive impairment and improving the metabolic profiles in PFC, and potentially can be used to improve cognitive decline in the elderly.  相似文献   

7.
Transcranial Magnetic Stimulation (TMS) is an effective method for establishing a causal link between a cortical area and cognitive/neurophysiological effects. Specifically, by creating a transient interference with the normal activity of a target region and measuring changes in an electrophysiological signal, we can establish a causal link between the stimulated brain area or network and the electrophysiological signal that we record. If target brain areas are functionally defined with prior fMRI scan, TMS could be used to link the fMRI activations with evoked potentials recorded. However, conducting such experiments presents significant technical challenges given the high amplitude artifacts introduced into the EEG signal by the magnetic pulse, and the difficulty to successfully target areas that were functionally defined by fMRI. Here we describe a methodology for combining these three common tools: TMS, EEG, and fMRI. We explain how to guide the stimulator''s coil to the desired target area using anatomical or functional MRI data, how to record EEG during concurrent TMS, how to design an ERP study suitable for EEG-TMS combination and how to extract reliable ERP from the recorded data. We will provide representative results from a previously published study, in which fMRI-guided TMS was used concurrently with EEG to show that the face-selective N1 and the body-selective N1 component of the ERP are associated with distinct neural networks in extrastriate cortex. This method allows us to combine the high spatial resolution of fMRI with the high temporal resolution of TMS and EEG and therefore obtain a comprehensive understanding of the neural basis of various cognitive processes.  相似文献   

8.
目的:比较抗精神病药物奥氮平联合复经颅磁刺激(rTMS)或改良电休克(MECT)治疗精神分裂症的疗效。方法:将84例精神分裂症患者随机分为rTMS组(42例)与MECT组(42例),两组分别在奥氮平的基础上联合MECT或rTMS进行治疗。在治疗2、4、8周末后,采用阳性症状和阴性症状量表PANSS、治疗时出现症状量表TESS评估临床治疗效果及不良反应,同时采用修订韦氏记忆量表(WMS-RC)和威斯康星卡片分类测验(WCST)评定认知功能。结果:治疗后,两组总有效率比较无统计学差异(P0.05)。两组治疗后PANSS总分、阳性症状、阴性症状和一般病理分值均显著低于治疗前(P0.05,P0.01),但组间比较无统计学差异(P0.05)。两组TESS评分及不良反应的发生情况比较无统计学差异(P0.05)。与治疗前相比,两组患者治疗后认知功能均显著改善(P0.05,P0.01),且rTMS联合组在改善患者记忆功能、执行能力方面效果优于MTCT组(P0.05)。结论:奥氮平联合MECT或rTMS对精神分裂症状的疗效相当,但联合rTMS可更显著改善患者的认知功能。  相似文献   

9.

Background

Anorexia nervosa (AN) is associated with morbid fear of fatness, extreme food restriction and altered self-regulation. Neuroimaging data implicate fronto-striatal circuitry, including the dorsolateral prefrontal cortex (DLPFC).

Methods

In this double-blind parallel group study, we investigated the effects of one session of sham-controlled high-frequency repetitive transcranial magnetic stimulation (rTMS) to the left DLPFC (l-DLPFC) in 60 individuals with AN. A food exposure task was administered before and after the procedure to elicit AN-related symptoms.

Outcomes

The primary outcome measure was ‘core AN symptoms’, a variable which combined several subjective AN-related experiences. The effects of rTMS on other measures of psychopathology (e.g. mood), temporal discounting (TD; intertemporal choice behaviour) and on salivary cortisol concentrations were also investigated. Safety, tolerability and acceptability were assessed.

Results

Fourty-nine participants completed the study. Whilst there were no interaction effects of rTMS on core AN symptoms, there was a trend for group differences (p = 0.056): after controlling for pre-rTMS scores, individuals who received real rTMS had reduced symptoms post-rTMS and at 24-hour follow-up, relative to those who received sham stimulation. Other psychopathology was not altered differentially following real/sham rTMS. In relation to TD, there was an interaction trend (p = 0.060): real versus sham rTMS resulted in reduced rates of TD (more reflective choice behaviour). Salivary cortisol concentrations were unchanged by stimulation. rTMS was safe, well–tolerated and was considered an acceptable intervention.

Conclusions

This study provides modest evidence that rTMS to the l-DLPFC transiently reduces core symptoms of AN and encourages prudent decision making. Importantly, individuals with AN considered rTMS to be a viable treatment option. These findings require replication in multiple-session studies to evaluate therapeutic efficacy.

Trial Registration

www.Controlled-Trials.com ISRCTN22851337  相似文献   

10.
卒中后抑郁(post-stroke depression,PSD)是并发于脑血管病的一种情感障碍疾病,发病率高,预后差。重复经颅磁刺激(repetitive transcranial magnetic stimulation,r TMS)是通过磁场变化在大脑中产生感应电流来刺激皮层的非创伤性脑刺激技术,是临床上治疗PSD的一种重要非药物治疗方法,可以显著改善PSD患者的抑郁症状。但目前rTMS的作用机制不明确。本文总结了PSD治疗中有效的rTMS刺激方案,并结合PSD的单胺类神经递质相关致病假说及PSD的临床治疗手段,探索了rTMS通过对单胺类神经递质的调控参与PSD治疗的可能机制。rTMS刺激诱导的皮层单胺类递质释放增加、葡萄糖代谢上升、皮层兴奋性增加,提高了单胺类神经递质和脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)水平,进而引发前额叶抑制功能上升、与下游脑区连接改变、脑网络功能的调整,可能是rTMS治疗PSD的重要机制之一。  相似文献   

11.
Transcranial magnetic stimulation (TMS) has been shown to significantly improve language function in patients with non-fluent aphasia1. In this experiment, we demonstrate the administration of low-frequency repetitive TMS (rTMS) to an optimal stimulation site in the right hemisphere in patients with chronic non-fluent aphasia. A battery of standardized language measures is administered in order to assess baseline performance. Patients are subsequently randomized to either receive real rTMS or initial sham stimulation. Patients in the real stimulation undergo a site-finding phase, comprised of a series of six rTMS sessions administered over five days; stimulation is delivered to a different site in the right frontal lobe during each of these sessions. Each site-finding session consists of 600 pulses of 1 Hz rTMS, preceded and followed by a picture-naming task. By comparing the degree of transient change in naming ability elicited by stimulation of candidate sites, we are able to locate the area of optimal response for each individual patient. We then administer rTMS to this site during the treatment phase. During treatment, patients undergo a total of ten days of stimulation over the span of two weeks; each session is comprised of 20 min of 1 Hz rTMS delivered at 90% resting motor threshold. Stimulation is paired with an fMRI-naming task on the first and last days of treatment. After the treatment phase is complete, the language battery obtained at baseline is repeated two and six months following stimulation in order to identify rTMS-induced changes in performance. The fMRI-naming task is also repeated two and six months following treatment. Patients who are randomized to the sham arm of the study undergo sham site-finding, sham treatment, fMRI-naming studies, and repeat language testing two months after completing sham treatment. Sham patients then cross over into the real stimulation arm, completing real site-finding, real treatment, fMRI, and two- and six-month post-stimulation language testing.  相似文献   

12.

Objective

Repetitive Transcranial Magnetic Stimulation (rTMS) is a novel therapeutic tool to induce a suppression of tinnitus. However, the optimal target sites are unknown. We aimed to determine whether low-frequency rTMS induced lasting suppression of tinnitus by decreasing neural activity in the cortex, navigated by high-density electroencephalogram (EEG) source analysis, and the utility of EEG for targeting treatment.

Methods

In this controlled three-armed trial, seven normal hearing patients with tonal tinnitus received a 10-day course of 1-Hz rTMS to the cortex, navigated by high-density EEG source analysis, to the left temporoparietal cortex region, and to the left temporoparietal with sham stimulation. The Tinnitus handicap inventory (THI) and a visual analog scale (VAS) were used to assess tinnitus severity and loudness. Measurements were taken before, and immediately, 2 weeks, and 4 weeks after the end of the interventions.

Results

Low-frequency rTMS decreased tinnitus significantly after active, but not sham, treatment. Responders in the EEG source analysis-based rTMS group, 71.4% (5/7) patients, experienced a significant reduction in tinnitus loudness, as evidenced by VAS scores. The target site of neuronal generators most consistently associated with a positive response was the frontal lobe in the right hemisphere, sourced using high-density EEG equipment, in the tinnitus patients. After left temporoparietal rTMS stimulation, 42.8% (3/7) patients experienced a decrease in tinnitus loudness.

Conclusions

Active EEG source analysis based rTMS resulted in significant suppression in tinnitus loudness, showing the superiority of neuronavigation-guided coil positioning in dealing with tinnitus. Non-auditory areas should be considered in the pathophysiology of tinnitus. This knowledge in turn can contribute to investigate the pathophysiology of tinnitus.  相似文献   

13.
In our previous study on individuals with autism spectrum disorder (ASD) (Sokhadze et al., Appl Psychophysiol Biofeedback 34:37–51, 2009a) we reported abnormalities in the attention-orienting frontal event-related potentials (ERP) and the sustained-attention centro-parietal ERPs in a visual oddball experiment. These results suggest that individuals with autism over-process information needed for the successful differentiation of target and novel stimuli. In the present study we examine the effects of low-frequency, repetitive Transcranial Magnetic Stimulation (rTMS) on novelty processing as well as behavior and social functioning in 13 individuals with ASD. Our hypothesis was that low-frequency rTMS application to dorsolateral prefrontal cortex (DLFPC) would result in an alteration of the cortical excitatory/inhibitory balance through the activation of inhibitory GABAergic double bouquet interneurons. We expected to find post-TMS differences in amplitude and latency of early and late ERP components. The results of our current study validate the use of low-frequency rTMS as a modulatory tool that altered the disrupted ratio of cortical excitation to inhibition in autism. After rTMS the parieto-occipital P50 amplitude decreased to novel distracters but not to targets; also the amplitude and latency to targets increased for the frontal P50 while decreasing to non-target stimuli. Low-frequency rTMS minimized early cortical responses to irrelevant stimuli and increased responses to relevant stimuli. Improved selectivity in early cortical responses lead to better stimulus differentiation at later-stage responses as was made evident by our P3b and P3a component findings. These results indicate a significant change in early, middle-latency and late ERP components at the frontal, centro-parietal, and parieto-occipital regions of interest in response to target and distracter stimuli as a result of rTMS treatment. Overall, our preliminary results show that rTMS may prove to be an important research tool or treatment modality in addressing the stimulus hypersensitivity characteristic of autism spectrum disorders.  相似文献   

14.
15.
We study the impact of coil orientation on the motor threshold (MT) and present an optimal coil orientation for stimulation of the foot. The result can be compared to results of models that predict this orientation from electrodynamic properties of the media in the skull and from orientations of cells, respectively. We used a robotized TMS system for precise coil placement and recorded motor-evoked potentials with surface electrodes on the abductor hallucis muscle of the right foot in 8 healthy control subjects. First, we performed a hot-spot search in standard (lateral) orientation and then rotated the coil in steps of 10° or 20°. At each step we estimated the MT. For navigated stimulation and for correlation with the underlying anatomy a structural MRI scan was obtained. Optimal coil orientation was 33.1±18.3° anteriorly in relation to the standard lateral orientation. In this orientation the threshold was 54±18% in units of maximum stimulator output. There was a significant difference of 8.0±5.9% between the MTs at optimal and at standard orientation. The optimal coil orientations were significantly correlated with the direction perpendicular to the postcentral gyrus (). Robotized TMS facilitates sufficiently precise coil positioning and orientation to study even small variations of the MT with coil orientation. The deviations from standard orientation are more closely matched by models based on field propagation in media than by models based on orientations of pyramidal cells.  相似文献   

16.
Humans incur considerable costs to punish unfairness directed towards themselves or others. Recent studies using repetitive transcranial magnetic stimulation (rTMS) suggest that the right dorsolateral prefrontal cortex (DLPFC) is causally involved in such strategic decisions. Presently, two partly divergent hypotheses are discussed, suggesting either that the right DLPFC is necessary to control selfish motives by implementing culturally transmitted social norms, or is involved in suppressing emotion-driven prepotent responses to perceived unfairness. Accordingly, we studied the role of the DLPFC in costly (i.e. third party) punishment by applying rTMS to the left and right DLPFC before playing a Dictator Game with the option to punish observed unfair behavior (DG-P). In addition, sham stimulation took place. Individual differences in empathy were assessed with the German version of the Interpersonal Reactivity Index. Costly punishment increased (non-significantly) upon disruption of the right – but not the left – DLPFC as compared to sham stimulation. However, empathy emerged as a highly significant moderator variable of the effect of rTMS over the right, but not left, DLPFC, suggesting that the right DLPFC is involved in controlling prepotent emotional responses to observed unfairness, depending on individual differences in empathy.  相似文献   

17.
Dystonia is characterized by abnormal posturing due to sustained muscle contraction, which leads to pain and significant disability. New therapeutic targets are needed in this disorder. The objective of this randomized, sham-controlled, blinded exploratory study is to identify a specific motor system target for non-invasive neuromodulation and to evaluate this target in terms of safety and tolerability in the cervical dystonia (CD) population. Eight CD subjects were given 15-minute sessions of low-frequency (0.2 Hz) repetitive transcranial magnetic stimulation (rTMS) over the primary motor cortex (MC), dorsal premotor cortex (dPM), supplementary motor area (SMA), anterior cingulate cortex (ACC) and a sham condition with each session separated by at least two days. The Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) score was rated in a blinded fashion immediately pre- and post-intervention. Secondary outcomes included physiology and tolerability ratings. The mean change in TWSTRS severity score by site was 0.25 ± 1.7 (ACC), -2.9 ± 3.4 (dPM), -3.0 ± 4.8 (MC), -0.5 ± 1.1 (SHAM), and -1.5 ± 3.2 (SMA) with negative numbers indicating improvement in symptom control. TWSTRS scores decreased from Session 1 (15.1 ± 5.1) to Session 5 (11.0 ± 7.6). The treatment was tolerable and safe. Physiology data were acquired on 6 of 8 subjects and showed no change over time. These results suggest rTMS can modulate CD symptoms. Both dPM and MC are areas to be targeted in further rTMS studies. The improvement in TWSTRS scores over time with multiple rTMS sessions deserves further evaluation.

Trial Registration

ClinicalTrials.gov NCT01859247  相似文献   

18.
During the last decade, repetitive transcranial magnetic stimulation (rTMS) of the prefrontal cortex has become established as a treatment for various mental diseases. The rational of prefrontal stimulation has been adapted from the mode of action known from rTMS using motor-evoked potentials though little is known about the precise effect of rTMS at prefrontal sites. The objective of the current study is to investigate the inhibitory effect of prefrontal 1 Hz rTMS by stimulating the generators of event-related potentials (ERP) which are located in the prefrontal cortex. Thus, 1 Hz rTMS was applied offline over the left dorsolateral prefrontal cortex (DLPFC) and the medial prefrontal cortex (MPFC) in 18 healthy subjects who subsequently underwent a GoNogo task. Both active conditions were compared to sham rTMS within a randomized and counterbalanced cross-over design in one day. ERPs were recorded during task performance and the N2 and the P3 were analysed. After 1 Hz rTMS of the left DLPFC (but not of the MPFC), an inhibitory effect on the N2 amplitude was observed, which was related to inhibitory control. In contrast, after 1 Hz rTMS of the MPFC (but not at the left DLPFC) a trend towards an increased P3 amplitude was found. There was no significant modulation of latencies and behavioural data. The results argue in favour of an inhibitory effect of 1 Hz rTMS on N2 amplitudes in a GoNogo task. Our findings suggest that rTMS may mildly modulate prefrontally generated ERP immediately after stimulation, even where behavioural effects are not measurable. Thus, combined rTMS-ERP approaches need to be further established in order to serve as paradigms in experimental neuroscience and clinical research.  相似文献   

19.
Behavioral studies support the concept of an auditory spatial attention gradient by demonstrating that attentional benefits progressively diminish as distance increases from an attended location. Damage to the right inferior parietal cortex can induce a rightward attention bias, which implicates this region in the construction of attention gradients. This study used event-related potentials (ERPs) to define attention-related gradients before and after repetitive transcranial magnetic stimulation (rTMS) to the right inferior parietal cortex. Subjects (n = 16) listened to noise bursts at five azimuth locations (left to right: -90°, -45°, 0° midline, +45°, +90°) and responded to stimuli at one target location (-90°, +90°, separate blocks). ERPs as a function of non-target location were examined before (baseline) and after 0.9 Hz rTMS. Results showed that ERP attention gradients were observed in three time windows (frontal 230–340, parietal 400–460, frontal 550–750 ms). Significant transient rTMS effects were seen in the first and third windows. The first window had a voltage decrease at the farthest location when attending to either the left or right side. The third window had on overall increase in positivity, but only when attending to the left side. These findings suggest that rTMS induced a small contraction in spatial attention gradients within the first time window. The asymmetric effect of attended location on gradients in the third time window may relate to neglect of the left hemispace after right parietal injury. Together, these results highlight the role of the right inferior parietal cortex in modulating frontal lobe attention network activity.  相似文献   

20.
We examined whether unilateral exercise creates perception bias in the non-exercised limb and ascertained whether rTMS applied to the primary motor cortex (M1) interferes with this perception. All participants completed 4 interventions: 1) 15-min learning period of intermittent isometric contractions at 35% MVC with the trained hand (EX), 2) 15-min learning period of intermittent isometric contractions at 35% MVC with the trained hand whilst receiving rTMS over the contralateral M1 (rTMS+EX); 3) 15-min of rTMS over the ‘trained’ M1 (rTMS) and 4) 15-min rest (Rest). Pre and post-interventions, the error of force output production, the perception of effort (RPE), motor evoked potentials (MEPs) and compound muscle action potentials (CMAPs) were measured in both hands. EX did not alter the error of force output production in the trained hand (Δ3%; P>0.05); however, the error of force output production was reduced in the untrained hand (Δ12%; P<0.05). rTMS+EX and rTMS alone did not show an attenuation in the error of force output production in either hand. EX increased RPE in the trained hand (9.1±0.5 vs. 11.3±0.7; P<0.01) but not the untrained hand (8.8±0.6 vs. 9.2±0.6; P>0.05). RPE was significantly higher after rTMS+EX in the trained hand (9.2±0.5 vs. 10.7±0.7; P<0.01) but ratings were unchanged in the untrained hand (8.5±0.6 vs. 9.2±0.5; P>0.05). The novel finding was that exercise alone reduced the error in force output production by over a third in the untrained hand. Further, when exercise was combined with rTMS the transfer of force perception was attenuated. These data suggest that the contralateral M1 of the trained hand might, in part, play an essential role for the transfer of force perception to the untrained hand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号